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Abstract: The aim of this study was to determine the percentage of healthy veal calves carrying
mcr-positive E. coli strains at the time of slaughter in France. Fecal samples were selectively screened
for mcr-positive E. coli isolates using media supplemented with colistin. Screening for mcr genes
was also carried out in E. coli isolates resistant to critically important antimicrobials used in human
medicine recovered from the same fecal samples. Overall, 28 (16.5%) out of the 170 veal calves
tested carried mcr-positive E. coli. As some calves carried several non-redundant mcr-positive strains,
41 mcr-positive E. coli were recovered. Thirty-one and seven strains were positive for mcr-1 and mcr-3
genes, respectively, while no strain was positive for the mcr-2 gene. Co-carriage of mcr-1 and mcr-3
was identified in three strains. All mcr-positive E. coli isolates, except one, were multidrug-resistant,
with 56.1% being ciprofloxacin-resistant and 31.7% harboring blaCTX-M genes. All mcr-3-positive E. coli
carried blaCTX-M genes, mainly blaCTX-M-55. This study highlights the high prevalence of mcr-positive
E. coli strains in feces of veal calves at the time of slaughter. It also points out the multidrug (including
ciprofloxacin) resistance of such strains and the co-occurrence of mcr-3 genes with blaCTX-M-55 genes.

Keywords: Escherichia coli; mcr genes; colistin; extended spectrum β-lactamase; critically important
antibiotics; healthy veal calves

1. Introduction

Colistin is currently considered as the last-resort antibiotic for human infections
due to multidrug-resistant Enterobacteriaceae, notably those producing extended spectrum
β-lactamases (ESBLs) and carbapenemases [1]. Colistin has also been used in veterinary
medicine, notably, as a first-intention antibiotic for treating gastrointestinal infections
in food-producing animals [2]. The future usefulness of this last-resort antibiotic was
challenged by the first description of a plasmid-mediated colistin resistance gene (mcr-1) [3],
especially as other plasmid-mediated colistin resistance genes (mcr-2 and mcr-3) were also
identified [4,5]. Up to the present, seven additional mcr genes (mcr-4 to mcr-10) have been
identified [6], with mcr-1 remaining the most prevalent [7]. The most common plasmids
carrying the mcr-1 gene, which are IncI2, IncHI2 and IncX4, have been shown to be highly
transferable and to carry other resistance genes [8–10]. They contributed to the widespread
distribution of the mcr-1 gene worldwide [6].

As food-producing animals have been identified as a possible source of transmission of
colistin-resistant bacteria to humans [6], the monitoring of such strains in the food chain is
required. The detection of mcr-positive E. coli in food-producing animals has been recently
reviewed [11]. This review indicated that the comparison of epidemiological studies, and
their reported prevalence, is often challenging due to varying study design, methodologies
and reporting. The first prevalence data were mainly obtained in a diseased context and
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through PCR screenings of ESBL-producing E. coli, and only a few reports focused on the
detection of mcr genes in E. coli isolated from healthy animals [12]. Moreover, as only a few
attempts were made to selectively isolate mcr-positive E. coli, the true prevalence of such
strains in the commensal intestinal microbiota of healthy animals slaughtered for human
consumption remains poorly described. This is especially true in the veal calf sector where
only a few prevalence studies were conducted [11]. The monitoring of colistin resistance
should be carried out in veal calves as they are frequently exposed to antibiotics, including
colistin [2,13].

The objective of this study was therefore to evaluate the intestinal carriage of E. coli
isolates positive for mcr-1, mcr-2 and mcr-3 by veal calves at the time of slaughter in France.
A total of 170 fecal samples were selectively screened for mcr-positive E. coli isolates on
colistin-supplemented media. Moreover, as co-detection of mcr genes with ESBL genes
has been reported [12], ESBL-producing E. coli were also isolated from the same 170 fecal
samples and screened for mcr genes. The occurrence of such genes in E. coli resistant to
other critically important antimicrobials (CIA) for human medicine: ciprofloxacin and
carbapenem was also investigated.

2. Results
2.1. Detection of mcr-Positive E. coli Isolates

A specific detection of mcr-positive E. coli isolates in media supplemented with col-
istin was performed. For 24 out of the 170 calf fecal samples, at least one E. coli was
isolated from colistin-supplemented RAPID’E. coli 2 agar plates which had been inocu-
lated with colistin-supplemented BGBB turbid broths. A total of 27 presumptive colistin-
resistant E. coli isolates were recovered, as 2 non-redundant isolates were obtained from
3 calves as determined by ERIC-PCR typing (data not shown). PCR screening of the mcr-1,
mcr-2 or mcr-3 gene showed that 23 out of the 27 colistin-resistant E. coli isolates were
mcr-positive (identified as “COL” in Table 1). These originated from 21 calves. Mean-
while, PCR screening of the mcr-1, mcr-2 and mcr-3 gene was also performed in collec-
tions of CIA-resistant E. coli isolated from the same 170 fecal calf samples. From these,
110 yielded ciprofloxacin-resistant E. coli isolates. ERIC-PCR typing led to the recovery of
172 non-redundant ciprofloxacin-resistant E. coli isolates. Twelve mcr-positive E. coli isolates
were identified amongst these strains (identified as “CIP” in Table 1). At least 1 ESBL-
producing E. coli from 56 fecal samples was isolated. ERIC-PCR typing led to the recovery of
69 non-redundant ESBL-producing E. coli isolates, among which 9 were positive for mcr
genes (identified as “CTX” in Table 1). No E. coli isolate was recovered from ChromoID
CARBA and OXA-48 media. In all, 44 mcr-positive E. coli isolates were detected, in-
cluding 23 isolated from media supplemented with colistin (COL), 12 corresponding to
ciprofloxacin-resistant E. coli (CIP) and 9 corresponding to ESBL-producing E. coli (CTX)
(Table 1).
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Table 1. Characterization of 44 mcr-positive E. coli strains isolated from French veal calves at the time of slaughter.

Campaign ID 1 Farm ID Calf ID Strain ID 2 Isolation Medium 3 mcr Gene Resistance Pattern 4 blaCTX-M Gene PFGE Type 5

B2 13 B2-4 B2-4-COL-1 * COL mcr-1 AMP-STR-TET-CHL-SUL-TMP-CIP-NAL 7
B2-4-CIP-1 * CIP mcr-1 AMP-STR-TET-CHL-SUL-TMP-CIP-NAL 7

B2-5 B2-5-COL-1 * COL mcr-1 AMP-STR-TET-CHL-SUL-TMP-CIP-NAL 7

B2-5-CTX-1 CTX mcr-1 AMP-AMC-LEX-CXM-CTX-CAZ-GEN-STR-TET-
CHL-SUL-TMP-CIP-NAL blaCTX-M-14 16

B2-5-CIP-1 * CIP mcr-1 AMP-STR-TET-CHL-SUL-TMP-CIP-NAL 7
B2-6 B2-6-COL-1 COL mcr-1 AMP-STR-TET-CHL-SUL-TMP-CIP-NAL 7
B2-7 B2-7-COL-1 COL mcr-1 AMP-STR-TET-CHL-SUL-TMP-CIP-NAL 7
B2-8 B2-8-COL-1 COL mcr-1 TET 2
B2-9 B2-9-COL-1 COL mcr-1 AMP-STR-TET-CHL-SUL-TMP-CIP-NAL 7
B2-10 B2-10-COL-1 COL mcr-1 AMP-STR-TET-SUL-TMP 7

B2-10-COL-2 COL mcr-1 AMC-AMP-STR-TET-CHL-SUL-TMP-CIP-NAL 1

14 B2-25 B2-25-CTX-1 CTX mcr-1 AMP-AMC-LEX-CXM-CTX-CAZ-STR-TET-SUL-
TMP blaCTX-M-1 4

B2-26 B2-26-CTX-1 CTX mcr-1 AMP-AMC-LEX-CXM-CTX-CAZ-STR-TET-SUL-
TMP blaCTX-M-1 4

A 32 A12 A12-CTX-1 CTX mcr-3 AMP-AMC-LEX-CXM-CTX-CAZ-GEN-TET-
CHL-SUL-TMP-CIP-NAL blaCTX-M-55 9

A15 A15-CTX-1 CTX mcr-3 AMP-AMC-LEX-CXM-CTX-CAZ-GEN-TET-
CHL-SUL-TMP-CIP-NAL blaCTX-M-55 9

34 A1 A1-CTX-2 CTX mcr-1, -3 AMP-AMC-LEX-CXM-CTX-CAZ-FEP-GEN-STR-
CHL-TMP-CIP-NAL blaCTX-M-55 11

A1-CIP-1 CIP mcr-3 AMP-AMC-LEX-CXM-CTX-CAZ-FEP-GEN-TET-
CHL-SUL-TMP-CIP-NAL blaCTX-M-55 15

A3 A3-CTX-1 CTX mcr-3 AMP-AMC-LEX-CXM-CTX-CAZ-STR-TET-SUL blaCTX-M-14 3

A4 A4-COL-1 COL mcr-1, -3 AMP-AMC-LEX-CXM-CTX-CAZ-FEP-GEN-STR-
TET-CHL-SUL-TMP-CIP-NAL blaCTX-M-55 15

A4-CTX-1 CTX mcr-3 AMP-AMC-LEX-CXM-CTX-CAZ-FEP-GEN-TET-
CHL-SUL-TMP-CIP-NAL blaCTX-M-55 15

A4-CIP-1 CIP mcr-1, -3 AMP-AMC-LEX-CXM-CTX-CAZ-FEP-GEN-STR-
CHL-TMP-CIP-NAL blaCTX-M-55 15

A5 A5-COL-1 COL mcr-3 AMP-AMC-LEX-CXM-CTX-CAZ-FEP-GEN-STR-
TET-CHL blaCTX-M-55 18

A5-CTX-1 CTX mcr-3 AMP-AMC-LEX-CXM-CTX-CAZ-FEP-GEN-STR-
TET-CHL blaCTX-M-55 17
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Table 1. Cont.

Campaign ID 1 Farm ID Calf ID Strain ID 2 Isolation Medium 3 mcr Gene Resistance Pattern 4 blaCTX-M Gene PFGE Type 5

B1 37 B1-29 B1-29-COL-1 * COL mcr-1 AMP-GEN-STR-TET-CHL-SUL-TMP-CIP-NAL 6
B1-29-CIP-1 * CIP mcr-1 AMP-GEN-STR-TET-CHL-SUL-TMP-CIP-NAL 6

39 B1-2 B1-2-CIP-1 CIP mcr-1 AMP-GEN-STR-TET-CHL-SUL-TMP-CIP-NAL 13

NP2 B1-6 B1-6-COL-1 COL mcr-1 AMP-STR-TET-SUL-TMP 8
B1-6-CIP-1 CIP mcr-1 AMP-GEN-STR-TET-CHL-SUL-TMP-CIP-NAL 5

B1-11 B1-11-COL-1 COL mcr-1 AMP-STR-TET-SUL-TMP 10
B1-11-CIP-1 CIP mcr-1 AMP-GEN-STR-TET-CHL-SUL-TMP-CIP-NAL 5

B1-12 B1-12-COL-1 COL mcr-1 AMP-STR-TET-SUL-TMP 8
B1-12-CIP-1 CIP mcr-1 AMP-GEN-STR-TET-CHL-SUL-TMP-CIP-NAL 5

B1-13 B1-13-COL-1 COL mcr-1 AMP-STR-TET-SUL-TMP NT
B1-13-COL-6 COL mcr-1 AMP-GEN-STR-TET-CHL-SUL-TMP-CIP-NAL NT
B1-13-CIP-2 CIP mcr-1 AMP-GEN-STR-TET-CHL-SUL-TMP-CIP-NAL 5

B1-14 B1-14-COL-1 COL mcr-1 AMP-STR-TET-SUL-TMP 8
B1-14-CIP-1 CIP mcr-1 AMP-GEN-STR-TET-CHL-SUL-TMP-CIP-NAL 5

B1-15 B1-15-COL-1 COL mcr-1 AMP-STR-TET-SUL-TMP 8
B1-15-CIP-1 CIP mcr-1 AMP-GEN-CHL-CIP-NAL 5

A2 41 A2-4 A2-4-COL-1 COL mcr-1 AMC-AMP-STR-TET-CHL-SUL-TMP-CIP-NAL 1

42 A2-22 A2-22-COL-1 COL mcr-1 AMP-STR-TET-SUL 14
A2-25 A2-25-COL-1 COL mcr-1 AMP-STR-TET-SUL 14

B3-2 50 B3-2-7 B3-2-7-COL-1 COL mcr-1 AMP-STR-TET-SUL-TMP 12
B3-2-11 B3-2-11-COL-1 COL mcr-1 AMP-STR-TET-SUL-TMP 12

1 Sampling campaigns were performed in 2017 as follows: B2, March; B3 and A, April; B1, May; A2, June; B2-2 and B3-2, September; RA, October. 2 Redundant E. coli isolates originating
from the same calf are marked with an asterisk. 3 E. coli strains subjected to PCR screening for mcr genes were isolated on BGBB tubes + 2 µg/mL of colistin and then on RAPID’ E.
coli 2 agar + 2 µg/mL of colistin (COL), RAPID’ E.coli 2 agar + 1 µg/mL of cefotaxime (CTX) and RAPID’E. coli 2 agar + 1 µg/mL of ciprofloxacine (CIP). 4 AMC, amoxicillin plus
clavulanic acid; AMP, ampicillin; CAZ, ceftazidime; CIP, ciprofloxacin; CHL, chloramphenicol; CTX, cefotaxime; CXM, cefuroxime; FEP, cefepime; GEN, gentamicin; LEX, cephalexin;
NAL, nalidixic acid; SUL, sulfonamides; STR, streptomycin; TET, tetracycline; TMP, trimethoprim. 5 NT, Not Typed.
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2.2. Characterization of mcr-Positive E. coli Isolates

The characterization of mcr-positive E. coli isolates led to the identification of redundant
isolates sharing the same pulsed-field gel electrophoresis (PFGE) type, resistance pattern
and mcr gene. These were isolated using colistin- and CIP-containing media from three
calves (i.e., B2-4, B2-5 and B1-29; Table 1). By contrast, nine calves (i.e., B2-5, A1, A5,
B1-6, B1-11, B1-12, B1-13, B1-14 and B1-15) were found each to carry two non-redundant
mcr-positive E. coli isolates recovered from colistin- and CIA-containing media. Lastly, for
calf B2-10, two mcr-positive E. coli isolates belonging to distinct PFGE types were isolated
from colistin-containing medium. The three redundant isolates were discarded from our
selection of strains, which thus contained 41 mcr-positive E. coli strains isolated from
28 calves.

Thirty-one and seven E. coli isolates were positive for mcr-1 and mcr-3 genes, respec-
tively. The remaining three isolates showed a co-occurrence of the two genes (Table 1). All
mcr-positive E. coli isolates, except for one strain (B2-8-COL-1), were multidrug-resistant
(MDR), and 56.1% were resistant to ciprofloxacin. None of the mcr-positive E. coli isolates
was positive for plasmid-mediated quinolone resistance (PMQR) genes. ESBL was pro-
duced by 13 mcr-positive E. coli (31.7%), and blaCTX-M genes were detected in all these
strains. Co-carriage of blaCTX-M-1 or blaCTX-M-14 and mcr-1 was observed in three strains.
blaCTX-M-55 was identified in nine mcr-3-positive E. coli strains, associated or not with the
mcr-1 gene; blaCTX-M-14 was identified in one mcr-3-positive E. coli strain.

2.3. Prevalence of mcr-Positive E. coli Calf Ahedders at Alaughter

Overall, the prevalence of mcr-positive E. coli in fecal samples from healthy calves
was 16.5% (28/170) (Table 2). More precisely, it was 12.9% (22/170) and 3.5% (6/170) for
calf carriers of mcr-1- and mcr-3-positive E. coli isolates, respectively. Positive calves came
from 10 out of the 32 farms providing calves that were tested at slaughter. Information
about the use of colistin could be obtained for 25 farms with only 3 of them reporting
the use of colistin. Positive calves originated from two of these farms (Table 2). PFGE
analysis showed that mcr-positive E. coli strains from calves originating from the same farm
commonly shared PFGE types, suggesting circulation of strains or clones within a farm and
potential transmission between animals. By contrast, PFGE types were distinct between
farms, except for PFGE type 1 that was identified in farms 13 and 41 (Table 1).

Table 2. Distribution of sampled calves according to campaign, farm, number of calves carrying
mcr-positive E. coli and use of colistin in farms.

Campaign ID 1 Farm ID No. of Calves Carrying mcr-Positive
E. coli/No. of Calves Tested Use of Colistin 2

B2 13 7/7 Y
14 2/3 N

B3 NP 0/5 NK
29 0/5 N

A 31 0/5 Y
32 2/5 N
33 0/5 NK
34 4/5 N
35 0/5 N
36 0/5 N

B1 37 1/6 N
38 0/4 N
39 1/5 Y
40 0/5 N

NP1 0/4 NK
NP2 6/6 NK
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Table 2. Cont.

Campaign ID 1 Farm ID No. of Calves Carrying mcr-Positive
E. coli/No. of Calves Tested Use of Colistin 2

A2 41 1/5 N
42 2/5 N
43 0/5 N
44 0/5 N

NP3 0/5 NK

B2-2 45 0/6 N
47 0/6 N
48 0/3 N

B3-2 50 2/6 NK
51 0/6 N
53 0/3 N

RA 62 0/7 N
63 0/8 N
64 0/8 N
65 0/7 N

NP4 0/5 NK

Total 32 28/170
1 Sampling campaigns were performed in 2017 as follows: B2, March; B3 and A, April; B1, May; A2, June; B2-2
and B3-2, September; RA, October. 2 Use of colistin: Y, Yes; N, No; NK, Not Known.

3. Discussion

A significant number of studies on colistin resistance concentrated on pigs and chick-
ens and highlighted high prevalence in these sectors. Fewer studies were conducted in
cattle, and they tended to show low prevalence in dairy cattle [11]. The aim of our study
was to accurately determine the prevalence of carriage of mcr-positive E. coli isolates by
healthy veal calves at the time of slaughter. To do so, we isolated presumptive colistin-
resistant E. coli by inoculating BGBB with Durham tubes supplemented with 2 µg/mL of
colistin. This isolation procedure was completed by parallel screening for the presence of
mcr genes in ciprofloxacin-resistant and ESBL-producing E. coli recovered from the same fe-
cal samples. Indeed, it has been shown that plasmids carrying mcr genes also carried genes
encoding resistance to various antibiotics such as cephalosporins, carbapenems and fluo-
roquinolones [14–16]. This multifaceted approach improved the detection of mcr-positive
E. coli isolates from fecal samples.

We identified that the prevalence of mcr-positive E. coli in fecal samples from healthy
calves was 16.5%, with 12.9% and 3.5% of the calves carrying mcr-1-positive and mcr-3-
positive E. coli isolates, respectively. No mcr-2-positive isolate was detected here, in agree-
ment with the detection of this gene from animals reported only in China and Belgium [4,17].
In the USA, Meinersmann et al. did not detect any mcr-positive Enterobacteriaceae when
1077 cecal contents from cattle were tested for presumptive colistin-resistant E. coli [18]. A
pan-European study from 2008 to 2014 did not report any isolation of mcr-1-positive E. coli
isolates when 3101 cattle were tested [19]. Reviewing the prevalence of mcr genes in cattle,
Shen et al. reported that the prevalence of mcr-1 in bacteria was consistently low, from
0.5% to 0.8% in China, 2.6% in Egypt and from 0.1% to 3.3% in Europe [11]. The discrep-
ancies between these studies and ours might partly result from the fact that mcr-positive
E. coli form part of the sub-dominant fecal microbiota. The majority of prevalence studies
screened for only a single E. coli isolate per animal, consequently, mcr-positive strains
present in the intestinal microbiota of the animal could remain undetected and are named
the ‘phantom resistome’ [20]. In our study, the use of colistin-supplemented media after an
enrichment step in the presence of colistin likely increased the identification of mcr-positive
E. coli isolates, which is in agreement with previous reports showing the importance of an
enrichment step with colistin to detect mcr-positive E. coli [21,22]. Screening performed on
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ESBL-producing or ciprofloxacin-resistant E. coli also contributed here to the identification
of higher proportions of mcr-positive E. coli isolates in cattle and also shown by others in
France. Haenni and colleagues tested 1398 ESBL producers from diseased veal calves and
detected 15.0% and 2.6% of mcr-1- and mcr-3-positive E. coli isolates, respectively [23,24].
These higher proportions are consistent with the fact that these diseased calves might have
been treated with antibiotics, and especially colistin.

Our results confirmed that mcr-positive isolates were resistant to other antibiotics [10,25,26].
Except for one isolate, all mcr-positive strains were MDR and 56.1% of them were resistant
to ciprofloxacin. Regarding resistance to cephalosporins, only 15.8% of mcr-1-positive E. coli
had blaCTX-M genes, whereas all mcr-3-positive E. coli carried such genes. The co-occurrence of
mcr-3 genes and blaCTX-M 55 was the most frequently observed gene combination. Although
the CTX-M 55 subtype is very common in Asia and, until recently, seemed to be limited to
this continent [27], the emergence of blaCTX-M 55 associated with mcr-1 and/or mcr-3 genes was
reported in France in cattle and in a pediatric infection, suggesting that CTX-M-55-producing
E. coli could be vectors of mcr-3 dissemination outside Asia [23,28].

Calves harboring mcr-positive E. coli came from ten farms, from which only two re-
ported the use of colistin in the batch from which the calves sampled at the slaughterhouses
originated. Out of the 32 farms, another farm reported the use of colistin, but no calf har-
boring mcr-positive E. coli was detected at the time of slaughter. Since the year 2017 when
the sampling was performed, the use of colistin in food animal production has drastically
decreased in France and several countries around the world, in order to limit the spread of
mcr genes [29,30]. The occurrence and distribution of mcr genes was monitored after the
withdrawal of colistin at pig and chicken farms. Studies showed different results, and the
association between colistin withdrawal and control of the spread of mcr genes was not
evidenced [25,31–33]. It should be stressed, however, that in the absence of colistin use,
treatment with other antibiotics might co-select mcr genes and favor their spread. Indeed,
eight out the ten farms with mcr-positive isolates did not report the use of colistin.

In conclusion, this study revealed a high prevalence of fecal carriage of mcr-positive
E. coli by healthy veal calves at the time of slaughter. It also pointed out the multidrug-
resistance of such strains. Although the use of colistin has drastically decreased in food-
producing animals in recent years, it should be kept in mind that the use of other antibiotics
could lead to the selection of mcr-positive isolates. The monitoring of such strains in the
food chain is still required.

4. Materials and Methods
4.1. Study Population and Sampling

Fecal samples were collected from 170 calves aged from 6 to 8 months, originating
from 32 calf fattening units and intended for meat production. Feces were collected after
evisceration at the time of slaughter in five French slaughterhouses (identified as A, B1,
B2, B3 and RA) during 8 sampling campaigns from March to September 2017 (Table 2). A
survey was conducted at the farms to identify their use of colistin in the batch from which
the calves sampled at the slaughterhouses originated.

4.2. Collections of Presumptive Colistin- and CIA-Resistant E. coli

Feces were diluted (10 g in 90 mL) in modified tryptone soya broth (mTSB). In order
to detect presumptive colistin-resistant E. coli, fecal samples were diluted 1:10 in brilliant
green bile broth (BGBB) with Durham tubes and supplemented with 2 µg/mL of colistin.
Duplicate BGBB tubes were incubated at 44 ◦C for 24 h. The positive BGBB tubes were
then plated onto RAPID’E. coli 2 agar (Bio-Rad®) with 2 µg/mL of colistin (COL). At the
same time, CIA-resistant E. coli were detected by plating fecal suspensions in duplicate
onto: (i) RAPID’E. coli 2 agar (Bio-Rad®) supplemented with 1 µg/mL of cefotaxime (CTX),
(ii) RAPID’E. coli 2 agar (Bio-Rad®) supplemented with 1 µg/mL of ciprofloxacin (CIP),
(iii) ChromID CARBA agar and (iv) ChromID OXA-48 agar (bioMérieux®, Marcy-l’Étoile,
France). All plates were incubated overnight at 44 ◦C. Up to 8 E. coli colonies were collected
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per positive plate, confirmed for species using the indole production test and typed using
the Enterobacterial Repetitive Intergenic Consensus (ERIC) -PCR fingerprinting assay with
the ERIC 2 primer [34]. The DNA fingerprints of the isolates collected from each animal
were visually compared to identify non-redundant resistant strains in each positive calf
that was submitted for further characterization.

4.3. Screening for Plasmid-Mediated Resistance Genes

The presence of mcr-1, mcr-2 and mcr-3 genes was investigated by PCR using previously
described primers and conditions [5,35]. For ESBLs producers, multiplex PCR assays
were performed to detect (i) blaTEM/blaSHV/blaOXA-1 genes, (ii) blaCTX-M genes and (iii)
plasmid AmpC genes [36]. The products of the PCR amplification of blaCTX-M genes were
purified using QIAquick® PCR Purification Kit (QIAGEN) and subjected to bidirectional
Sanger sequencing using an Applied Biosystems Analyzer 3130 xl at GeT-Purpan platform
(Genotoul, Toulouse, France). The resulting data were analyzed with Sequence Scanner 2
Software and BLAST. Strains resistant to ciprofloxacin were screened for the presence of
the PMQR determinants qnrA, qnrB, qnrC, qnrD, qnrS, aac(6’)-Ib-cr, qepA, oqxA and oqxB,
with the previously described primers [37–43].

4.4. Screening for Plasmid-Mediated Resistance Genes

Antimicrobial susceptibility was tested by the disk diffusion method and interpreted
according to the French Society for Microbiology (SFM) and the European Committee
on Antimicrobial Susceptibility Testing (EUCAST) guidelines [44]. The antibiotic disks
(Bio-Rad®, Marnes-La-Coquette, France) tested included amoxicillin plus clavulanic acid,
ampicillin, cefalexin, cefepime, cefotaxime, ceftazidime, cefuroxime, chloramphenicol,
ciprofloxacin, ertapenem, gentamicin, nalidixic acid, streptomycin, sulfonamides, tetracy-
cline and trimethoprim.

4.5. PFGE Typing

E. coli strains were typed using PFGE on XbaI-digested DNA following the CDC-
standard operating procedure [45]. Analysis was conducted using BioNumerics software.
A Dice similarity coefficient with a UPGMA dendrogram was generated based on 1%
tolerance windows and 1% optimization. A cutoff line at 95% was considered to identify
genetically related isolates.
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