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RWTH Aachen University, Germany

REVIEWED BY

Bo Wang,
Vanderbilt University, United States
Arti Mishra,
Amity University, India

*CORRESPONDENCE

Caroline Baroukh
caroline.baroukh@inrae.fr

SPECIALTY SECTION

This article was submitted to
Plant Systems and Synthetic Biology,
a section of the journal
Frontiers in Plant Science

RECEIVED 11 May 2022
ACCEPTED 02 August 2022
PUBLISHED 22 August 2022

CITATION

Baroukh C, Mairet F and Bernard O
(2022) The paradoxes hidden behind
the Droop model highlighted by a
metabolic approach.
Front. Plant Sci. 13:941230.
doi: 10.3389/fpls.2022.941230

COPYRIGHT

© 2022 Baroukh, Mairet and Bernard.
This is an open-access article
distributed under the terms of the
Creative Commons Attribution License
(CC BY). The use, distribution or
reproduction in other forums is
permitted, provided the original
author(s) and the copyright owner(s)
are credited and that the original
publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or
reproduction is permitted which does
not comply with these terms.
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We propose metabolic models for the haptophyte microalgae Tisochrysis

lutea with di�erent possible organic carbon excretion mechanisms. These

models—based on the DRUM (Dynamic Reduction of UnbalancedMetabolism)

methodology—are calibrated with an experiment of nitrogen starvation under

day/night cycles, and then validated with nitrogen-limited chemostat culture

under continuous light. We show that models including exopolysaccharide

excretion o�er a better prediction capability. It also gives an alternative

mechanistic interpretation to the Droop model for nitrogen limitation, which

can be understood as an accumulation of carbon storage during nitrogen

stress, rather than the common belief of a nitrogen pool driving growth.

Excretion of organic carbon limits its accumulation, which leads to a maximal

C/N ratio (corresponding to the minimum Droop N/C quota). Although others

phenomena—including metabolic regulations and dissipation of energy—are

possibly at stake, excretion appears as a key component in our metabolic

model, that we propose to include in the Droop model.

KEYWORDS

metabolic network, microalgae, nitrogen stress, excretion, Tisochrysis lutea

1. Introduction

Microalgae are unicellular eukaryotic microorganisms, playing a key role in the
ocean. How nutrient stress affects microalgal growth is a central issue, particularly in
the context of climate change (Moore et al., 2013). Microalgae are also promising sources
of products, addressing various markets including animal feeding (aquaculture, poultry
or pig farming), green chemistry (food colorants) or biofuel (Spolaore et al., 2006; Mata
et al., 2010; Wijffels and Barbosa, 2010). Nutrient stress can be used to trigger product
accumulation (e.g., to increase neutral lipid content for biofuel production), but growth is
severely hindered during these adverse growing conditions (Lacour et al., 2012a; Huang
et al., 2019). Better understanding the response of microalgal metabolism to dynamical
conditions (of light, nutrients, etc.) is therefore key to understand their dynamics in their
natural environment but also to tame them for biotechnological applications.

Systems biology and metabolic modeling have proven to be very efficient
tools for helping to understand microorganisms’ metabolism. Indeed, in silico
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studies can help to clarify the intracellular mechanisms taking
place and open routes for optimizing the production of
molecules of interest (Kim et al., 2017). Systems biology can
pave the way toward a better comprehension of microalgae
metabolism during nitrogen starvation. So far, metabolic
modeling of photosynthetic microorganisms have mainly
focused on balanced growth (Tibocha-Bonilla et al., 2018),
although some recent promising developments deals with
dynamical conditions (e.g., Broddrick et al., 2016; Flassig et al.,
2016; Loira et al., 2017; Reimers et al., 2017; Zuniga et al., 2018;
Sarkar et al., 2019). However, no metabolic model exists to
represent and understand nitrogen starvation under day/night
cycles in microalgae. Only macroscopic models were used so far,
see e.g., Geider et al. (1998) and Muñoz-Tamayo et al. (2013).
Most of them are based on the Droop model (Droop, 1968,
1983). This empiric model is widely used to predict microalgal
behavior under nutrient limited conditions. It represents the
specific growth rate µ as a function of the intracellular quota of
the limiting nutrient q

µ(q) = µm

(

1−
Q0

q

)

(1)

where µ̄ is the growth rate at an hypothetical infinite quota,
while Q0 is the minimum quota for phytoplankton growth. Yet,
the Droop model and all its derivatives rely on empiric laws
that do not allow representing the intracellular mechanisms
at place.

In this article, we focus on Tisochrysis lutea—a haptophyte
widely used in aquaculture and considered for fucoxanthin
or biofuel productions (Bendif et al., 2013; Garnier et al.,
2014; Mohamadnia et al., 2020)—whose core metabolic network
(Baroukh et al., 2014) allows to represent the synthesis of
its main constituants (proteins, lipids, carbohydrates, RNA,
DNA and chlorophyll). A metabolic model is used to study
the dynamics of carbon storage accumulation during nitrogen
stress. More precisely, five competitive models were built,
from a metabolic model developed for non-limiting nitrogen
conditions (Baroukh et al., 2014), by adding extensions
implementing various excretion pathways which are generally
neglected. These models were calibrated and validated by
comparing their predictions to experimental data of respectively
a nitrogen starvation under day/night cycles (Lacour et al.,

Abbreviations: PG, 6-Phosphogluconate; AcCoA, Acetyl-CoA; ACE,

Acetate; AKG, alpha-ketoglutarate; B, Functional Biomass; CARB,

Carbohydrate; E4P, Erythrose 4-phosphate; EPS, Exopolysaccharides;

F6P, Fructose 6-phosphate; FUM, Fumarate; G3P, Glycerate 3-phosphate;

G6P, Glucose 6-phosphate; GAP, Glyceraldehyde 3-phosphate; GLYC,

Glycerol; ICIT, Isocitrates; MAL, Malate; OA, Oxaloacetate; PA, Phosphatic

Acid; PEP, Phosphoenolpyruvate; Pi, Orthophosphate; PYR, Pyruvate; R5P,

Ribose 5-phosphate; Ru5P, Ribulose 5-phosphate; RuBP, Ribulose 1,5-

bisphosphate; S7P, Sedoheptulose 7-phosphate; SUC, Succinate; X5P,

Xylulose 5-phosphate; Xc, Total biomass.

2012a) and nitrogen limited chemostat equilibria (Lacour et al.,
2012b). Once validated, these models provide a paradoxical
interpretation of the Droop model.

2. Results

2.1. A metabolic model without excretion

Microalgae submitted to day/night cycles exhibit an
unbalanced growth: they accumulate lipids and carbohydrates
during the day to support cell division and maintenance during
the night (Lacour et al., 2012a; Vitova et al., 2015). The DRUM
(Dynamic Reduction of Unbalanced Metabolism) framework
was used to deal with unbalanced growth. The idea is to
split the metabolic network into subnetworks, in which no
internal compounds can accumulate (Baroukh et al., 2014).
But, unlike the classical quasi-steady-state frameworks, some
metabolites can accumulate when situated at the junction
between the subnetworks. These subnetworks are defined by
metabolic functions, taking into account cell compartments and
metabolic pathways. Here we use a core metabolic network
of phototrophic eukaryote, developed for T. lutea (Baroukh
et al., 2014). This network, composed of 157 metabolites
and 162 reactions, as most of the concurrent metabolic
models of microalgae (Baroukh et al., 2015), neglect the
loss of carbon due to excretion [except in the theoretical
study of Ofaim et al. (2021)]. We split the network into
six subnetworks corresponding to Figure 1: i) photosynthesis
ii) upper glycolysis iii) lower glycolysis iv) carbohydrates
synthesis v) lipids synthesis vi) functional biomass synthesis
(composed of DNA, RNA, proteins, chlorophyll and membrane
lipids). Metabolites that can internally accumulate (A) are
glyceraldehyde 3-phosphate (GAP), glucose 6-phosphate (G6P),
phosphoenolpyruvate (PEP), neutral lipids (represented by
phosphatidic acid, PA) and carbohydrates (CARB). Functional
biomass (B) is defined as the total biomass (Xc) without the
compounds which do accumulate. Each sub-network is then
reduced to macroscopic reactions (MRs) thanks to elementary
flux mode analysis (Table 1). When a subnetwork has more
than two elementary flux modes, the one with the best carbon
yield was selected. Seven MRs were obtained (represented as
a stoichiometric matrix K’). A mass action law hypothesis
was used for the kinetics (α), assumed proportional to the
product of the intracellular concentration of the metabolites
necessary for the reaction (i.e., proportional to

∏ Ai
B ), or to

reactor concentration for external substrates (Table 1). While
each sub-network has a fixed stoichiometry, the different kinetic
rates lead to specific dynamics for each metabolites A, and
therefore ultimately to a variable biomass composition. The
resultingmetabolic model is called w/oEx (standing for “without
excretion”), see Section 4 for more details.
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FIGURE 1

Model of the central carbon metabolic network of a unicellular photoautrotophic microalgae including di�erent carbon excretion extensions.
Three excreted molecules (EPS, ACE, and GLYC) were tested at four di�erent loci of the metabolism (CARB, G6P, PEP, and GAP).

2.2. The model without excretion
overestimates carbon fixation under
nitrogen starvation

Experimental data of T. lutea culture under day/night cycles
(Lacour et al., 2012a) were used to estimate the 10 kinetic
parameters (see Section 4). Fitted only on the first day, the
w/oEx model is not able to correctly predict the experimental
data when nitrogen is exhausted (Figure 2). Total organic carbon
biomass XC is overestimated from day 3 up to twofold at day
6, just before the end of nitrogen starvation. On the other
hand, total organic nitrogen biomass XN and chlorophyll are
globally well predicted. The parameters of the w/oExmodel were
estimated using data from nitrogen replete period only, which
might explain the discrepancy of the model to represent the
experimental data during nitrogen starvation. Therefore, a new
parameter estimation (w/oEx*) was performed on the whole set
of data, including both nitrogen replete and nitrogen deplete

conditions. A better fit was found, with lower error (-27,2%) and

lower standard deviations on parameters (Table 2). Nevertheless

carbon biomass is underestimated at the beginning of the

experiment, and then overestimated during nitrogen starvation

(slightly less than with the original parameter values). The

new set of parameters achieves a trade-off by underestimating

carbon fixation during nitrogen replete conditions not to
dramatically overestimate carbon accumulation during nitrogen
deplete conditions. Even with the new set of parameters, the
w/oEx* model does not accurately represent the data for both
nitrogen replete and stress conditions. The overestimation of
TAGs, carbohydrates and total organic carbon by the model
obtained from non-limiting conditions (Figure 2) is probably
due to the unmodeled excretion of some carbon compound such
as exopolysaccharides (EPS), glycerol or acetate during nitrogen
starvation. In the next section, this hypothesis was tested in silico
to identify its ability and relevance for describing the microalgae
metabolism under nitrogen starvation.
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TABLE 1 Sub-networks and resulting macroscopic reactions and kinetic rates.

Sub-network Macroscopic reactions Kinetic rates

MR1 Photosynthesis 30 Light+3 CO2 +2 H2O+Pi→ GAP+3 O2 kMR1I(t)

MR2 Upper glycolysis 2 GAP+H2O→ G6P+Pi kMR2 GAP/B

MR2’ G6P+ATP→H+ADP+2 GAP k′MR2 G6P/B

MR3 Lower glycolysis GAP+ADP+Pi+NAD↔ PEP+ATP kMR3 GAP/B - k′MR3 PEP/B

+NADH+H2O+H

MR4 Carbohydrate synthesis G6P↔ CARB+Pi kMR4 G6P/B - k′MR4 CARB/B

MR5 Lipids synthesis GAP+16.61 PEP+2 ADP+13.46 NAD+29.3 NADPH kMR5 GAP/B . PEP/B - k′MR5 PA/B

+34.48 H+2.15 O2↔ PA+14.61 Pi+2 ATP

+13.46 NADH+29.3 NADP+4.31 H2O+16.61 CO2

MR6 Biomass synthesis 3.13 PEP+7.37 O2 +4.46 H+1.31 NO3 +1.14 G6P kMR6 PEP/B . G6P/B . PA/B . NO3

+0.11 PA+0.03 SO4 +0.0025 Mg→ B

+11.67 CO2 +4.23 Pi+6 H2O

MR7 Excretion i) CARB→ EPS kEX CARB/B

ii) G6P→ EPS+Pi kEX G6P/B

iii) PEP+NAD+2 ADP+Pi+H→ ACE+CO2 kEX PEP/B

+NADH+2 ATP

iv) GAP+H2O+H+NADPH→ GLYC+Pi+NADP kEX GAP/B

2.3. Including excretion in the metabolic
model

As for all the existing microalgal metabolic models, no
excretion pathway was included in the original metabolism.
However, excretion was observed for several microalgae species
(Claquin et al., 2008; Szul et al., 2019), particularly during
nutrient deplete conditions (Staats et al., 2000; Underwood
et al., 2004; Szul et al., 2019). The objective was thus to in

silico assess how various excretion scenarii are likely to modify
the metabolic fluxes and eventually improve the predictive
capacities of the model.

Excretion is species-dependent (Hellebust, 1965), and the
nature of the excreted molecules for T. lutea is unknown. Three
different common organic molecules were tested in silico, at
four different levels of the metabolic network (Figure 1): i)
exopolysaccharides-like molecules from carbohydrates (CARB)
or glucose 6-phosphate (G6P), ii) acetate (ACE) and iii) glycerol
(GLYC). Each tested metabolite was linked to an accumulating
metabolite (PEP, GAP, G6P, and CARB) of the w/oEx model,
since each metabolite is only few reactions steps (maximum 3)
away. Each excretion pathway was assumed to be a new sub-
network from which four macroscopic reactions were deduced
(Table 1, see also Section 4.2 for details). Mass action kinetics
were assumed, in line with the kinetics used for the w/oEx
model. Only a single excretion pathway was tested at a time
and four models were obtained: i) CARB excretion (ExCARB)
ii) G6P excretion (ExG6P) iii) PEP excretion (ExPEP) and iv)
GAP excretion (ExGAP).

2.4. Models with excretion do capture
microalgal dynamics

The four modified models include excretion of a metabolite
(EPS, ACE, or GLYC), at different loci of the metabolism
(Figure 1). Parameters were re-identified for each model so as
to find the best set of parameters that could fit the experimental
data (Table 2).

The models for each excretion hypothesis correctly fit
the experimental data for both nitrogen replete and nitrogen
starvation conditions (Figure 3 and Table 2), showing a real
improvement in comparison with the model without excretion
(as reflected by lower AICc). The confidence intervals on
model parameters are also globally reduced, as well as the
uncertainties on model outputs (see Supplementary Figure S2).
Day/night accumulation and reuse of lipids and carbohydrates
are well represented, even if neutral lipids are underestimated
in nitrogen replete conditions. The simulated dynamics
are almost the same for the four models, except for the
carbohydrate quota which are higher for the ExCARB
model during nitrogen starvation. It is therefore difficult to
discern, between the four excretions, the most appropriate
one. All the models present similar fittings, the lowest
least square error being obtained with ExPEP in this
calibration step.

The clear fit improvement when considering excretions
(compared to the w/oEx* model) gives some insights of
the impact of nitrogen starvation on the metabolism of T.

lutea. The four models predict different metabolic modes
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FIGURE 2

Calibration of the original model with the first day (w/oEx) or the whole experiment (w/oEx*) of T. lutea culture under day/night cycles and
nitrogen starvation. Experimental data taken from Lacour et al. (2012a) are represented by symbols. Gray bands represent night periods.

depending on light and nitrogen availability. What differs is the
glycolysis direction, the carbon storage direction (consumption
or accumulation of lipids and carbohydrates) and the relative
distribution between carbon storage sources, photosynthesis
and excretion. First, as expected, the excretion rates dictated
by the intracellular metabolite concentrations increase during
nitrogen starvation (see Figure 4). Although the four models
show quite similar behavior in term of biomass prediction, they
give different estimation of the amount of excreted carbon,
compensated by different fluxes of carbon fixation. ExGAP and
ExPEP predict the highest excretion rates (associated with the
highest photosynthetic rates).

The intracellular fluxes also change, depending on the locus
of excretion. Metabolic fluxes show that, during the day, the
four models present different allocations of the assimilated
inorganic carbon between functional biomass, carbon storage
and excretion. During the night, excretion is almost null in
nitrogen replete condition, while it continues—at a lower

level—during nitrogen starvation (Figure 4). Night excretion
is fuelled by carbon storage (mainly neutral lipids). Note that
when the locus of excretion is CARB, the synthesis rate of
carbohydrate is positive during the night due to the carbon
flux from lipids to EPS, resulting in an upper glycolysis in
the glyconeogenic direction. Although fatty acids β-oxidation
coupled with gluconeogenesis is common (Kong et al., 2018), its
occurrence at night needs to be confirmed experimentally.

During nitrogen starvation, the flux maps differ greatly
from the nitrogen replete conditions. Except the Calvin
cycle whose fluxes (per unit of functional biomass) remain
almost unchanged, all the other fluxes are much lower and,
as expected, some parts of the metabolic network are not
activated (see Figure 5 and Supplementary File S2). As there
is no functional biomass synthesis, the pentose phosphate
pathway and the TCA cycle are not active. This result might
be artificial because lipid synthesis requires NADPH reductive
power and hence potentially requires the pentose phosphate
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TABLE 2 Estimated kinetic parameters (with their standard deviations) and resulting least squared error.

Parameter (unit) w/oEx w/oEx* Ex CARB Ex G6P Ex PEP Ex GAP

kMR1 (10−3 µE−1 .m2 .s.h−1 . mol B−1) 1.30± 0.02 1.10± 0.01 1.61± 0.02 2.11± 0.04 4.50± 0.18 4.14± 0.19

kMR2 (mol−1 .h−1) 205± 1,761 62.6± 112.9 6.07± 4.55 3.32± 1.43 569± 195 0.589± 0.069

k′MR2 (mol−1 .h−1) 0.216± 73.3 0± 0.89 0.092± 1.41 0± 0.47 3.04± 2.44 2.62± 2.0

kMR3 (103 mol−1 .h−1) 8.10± 67.6 7.70± 20.1 7.96± 7.21 0.347± 0.141 5.17± 0.94 0.0262± 0.011

k′MR3 (mol−1 .h−1) 11.9± 237 321± 1,548 547± 964 122± 120 0± 3.2 36.2± 11.4

kMR4 (mol−1 .h−1) 16.8± 110 13.5± 15.7 13.6± 7.4 46.2± 19.4 13,400± 8,140 403± 254

k′MR4 (mol−1 .h−1) 0± 0.11 0± 0.001 0± 0.01 1.21± 0.77 376± 248 16.4± 10.0

kMR5 (mol B.mol−2 .h−1) 55.9± 471 141± 280 0.783± 0.470 0.413± 0.12 108± 37 0.0967± 0.0340

k′MR5 (10
−3 mol−1 .h−1) 39.3± 28.3 43.1± 8.9 120± 15 117± 9.9 90.0± 9.6 106± 8.1

kMR6 (103mol B2 .mol−4 .h−1) 11.5± 99.4 317± 195 2.89± 1.38 1.34± 0.97 2.03± 1.52 1.17± 0.93

kEX (mol−1 .h−1) - - 0.0778± 0.0040 5.90± 4.68 7.29± 1.24 3.47± 0.27

Calibration

Least squared error 58.5 46.0 33.4 34.2 33.0 34.4

% improvement –27.2 0. 27.4 25.7 28.3 25.2

AICc –439 –508 –598 –592 –602 –590

ATP unbalance (%) –4.37 –4.16 –3.23 –2.57 –19.6 –0.67

NADPH unbalance (%) 6.98 6.51 3.95 3.22 1.61 13.7

Validation

Least squared error 1.44 1.15 1.13 1.64 1.28

% improvement 0. 20.1 21.7 –13.8 11.4

pathway. Still, NADPH can be directly synthesized from
photophosphorylation, if lipids synthesis takes place in the
chloroplast as it has been hypothesized (Boyle and Morgan,
2009).

Our reduced model was developed with a focus on C and
N fluxes, without constraining ATP and NADPH balance which
should be a model outcome. Some subnetworks such as MR6
are perfectly balanced (so ATP and NADPH do not appear
in the macroscopic reaction), but others are not, meaning
that should exchange cofactors with other subnetworks. To
validate the energy balance in the model, we computed the
production and consumption rates of ATP and NADPH from
the reactions of the whole metabolic network. It results that
for w/oEx*,Ex CARB and Ex G6P, the ATP and NADPH
are globally well balanced (see Figure 6 and Table 2): the
relative difference between the overall consumption and the
production do not exceed 7%. This means that the underlying
hypotheses lead to a realistic energy balance in the cell.
On the contrary, ATP is produced in excess in the ExPEP
model and, NADPH is consumed in excess in the ExGAP
model, pointing out that these hypothetical metabolic modes
would require additional mechanisms to be included in our
current models (such as cyclic electron flow) to balance their
cofactors.

Lipid and carbohydrate quotas reach an almost periodic
regime at day 3 (Figure 3). These values are higher than the
maximal value reached during a day/night cycle in nutrient

replete conditions, but they do not increase anymore after day
3. Hence, in these conditions, a long nitrogen starvation is not a
good strategy for improving lipid and carbohydrate production
yields, given that most of the carbon fixed during the day is
excreted during the night.

2.5. Model validation in nitrogen-limited
balanced growth conditions

After the calibration with starvation cultures under
day/night cycles, the parameter were kept constant to assess
the predictive capabilities of the four models with steady-states
nitrogen-limited conditions under constant light. All the
models predict an increasing relationship between the nitrogen
quota (N:C) to the specific growth rate (Figure 7A). For the
model without excretion w/oEx*, the curve starts at the origin.
This behavior does not comply with the minimum quota
for growth usually observed (Droop, 1968). All the models
with excretion predict a minimum quota and are consistent
with the experimental data at steady state, except for the
highest quota for which the growth rate is overestimated. This
discrepancy may be explained by the fact that the calibration was
performed under day/night cycles, while this new experiment
was carried out under continuous light. It is worth noting that
the models simulate growth rates close to the one predicted
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FIGURE 3

Calibration of the models that take into account excretion with a T. lutea culture under day/night cycles and nitrogen starvation. Experimental
data taken from Lacour et al. (2012a) are represented by symbols. Gray bands represent night periods.

by a standard Droop model (Equation 1) fitted with these
data (leading to µ̄ = 1.73 d−1 and Q0 = 0.04 gN.gC−1),
although the saturation is less pronounced with the latter. In
addition, the models also predict an almost linear decreasing
relationship between the specific growth rate and carbon
storage (Figure 7B). For all the models with excretion, this
prediction is also consistent with the experimental data-set,
although neutral lipids are slightly underestimated at high
growth rates. The percentage of fixed carbon which is excreted
also decreases with growth rate, ranging e.g., for the ExCARB
model from 60 to 25% when growth rate increases from 0.4 to 1
d−1.

Considering at the same time calibration and validation
steps, the models considering EPS excretion (ExCARB and
ExG6P) give the best results. The ExPEP model presents a
lower performance in validation, while the NADPH was not
balanced with the ExGAP model in the day-night simulation.
Additionally, the ExPEP and ExGAP models must be discarded
due to their unlikely high rate of excretion (see Figure 4).

3. Discussion

3.1. Carbon excretion as a crucial
component of T. lutea metabolic model

Nitrogen starvation causes a re-routing of carbon fluxes in
microalgae leading to a gradual decrease in the carbon fixation
rate. The original metabolic model proposed by Baroukh et al.
(2014), which was developed for nutrient replete conditions,
represents a slowdown of photosynthesis (due to the decrease
of functional biomass resulting from C accumulation). But
this was not enough: excretion clearly improves model fitting
and its predictive capability. It allows a good representation of
the carbon fluxes, especially in case of substrate limitation or
starvation, by limiting the accumulation of carbon and adapting
it to the structural biomass. This confirms the key role of
excretion in microbial metabolism and its modeling, although
it is generally not considered [except in the recent works for
Prochlorococcus of Ofaim et al. (2021)].
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FIGURE 4

Prediction of carbon flux rates for the models with excretion in the calibration experiment. Top left: photosynthetic rate; bottom left: excretion
rate; top right: neutral lipid production; bottom right: carbohydrate production. Gray bands represent night periods.

Different excreted molecules (namely EPS, acetate, and
glycerol) have been tested in silico and EPS seem to be the
most likely. Other excretion schemes associated to other
metabolites cannot be excluded, and considering the similar
performances for the four studied cases (Figures 3, 7), it
is likely that they would also lead to plausible predictions.
Additional experiments are definitively required to better
characterize the nature of the excreted molecules and the
associated fluxes, so as to definitely select the most appropriate
model (potentially implying several excreted molecules).
More generally, some metabolic fluxes are well characterized
(e.g., the photosynthetic reactions R1-14), while others
suffer from larger uncertainties (see Supplementary File S2).
Measurements of targeted intracellular fluxes would be
highly valuable to reduce the uncertainties on model
parameters and, in fine, on the intracellular fluxes and
biomass dynamics.

A key issue that our model addresses is the quantification of
carbon excretion. This is necessary to expand our understanding

of microbial interactions within the phycosphere (Seymour
et al., 2017) or more broadly the microbial loop in the
ocean (Azam et al., 1994; Pomeroy et al., 2007). A full
grasp of excretion is also required to better predict primary
production, as recently pointed out by Wu et al. (2021)
using a biogeochemical model in which photosynthesis and
biosynthesis are decoupled. Our model predicts that the
percentage of excretion decreases with growth rate, which is
in line with field observations, that is excretion is higher
in oligotrophic ocean than in productive zones (such as
upwelling regions) (Moran et al., 2022). Quantitatively, this
survey shows that excretion represents around 25% of the net
primary production (ranging from 3 to 50%). More specifically,
for T. lutea, Claquin et al. (2008) report that 15.9% of
the photosynthetic carbon production was excreted in non-
limiting condition. This value is based only on transparent
exopolymeric particle (TEP) measurements and thus probably
underestimates the actual excreted photosynthetic carbon.
Considering all this, the ExCarb model gives the soundest
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FIGURE 5

Metabolic fluxes obtained with the ExCARB model at noon for nitrogen replete (top, t = 0.75 d) and starved (bottom, t = 3.75 d) conditions. The
conversion between flux map is given is the legend box of the figure (the same conversion was used for both maps). Bold metabolites indicate
metabolites A allowed to accumulate. The complete names of metabolites can be found in the list of abbreviations.
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FIGURE 6

Production and consumption rates for ATP and NADPH with the ExCARB model. The ATP and NADPH balances—not imposed in the
model—are validated a posteriori.

predictions in term of excretion (e.g., 25% in non-limiting
condition), but our models tend to globally overestimate this
flux.

3.2. Other mechanisms at play

While excretion clearly improves model predictions and is
likely to play a central role, other mechanisms – not considered
herein – are known to mitigate nutrient stress. The most
important one is probably the dissipation of light energy. The
synthesis of photoprotective pigments, such as carotenoids, can
help to dissipate the excessive light energy received by the cell
during nitrogen starvation (Stehfest et al., 2005; Solovchenko
et al., 2013). Indeed, some of these photoprotective pigments
can perform non-photochemical quenching (NPQ) via the
xanthophyll cycle, which harmlessly dissipate excess excitation
energy as heat throughmolecular vibrations (Niyogi et al., 1997).
Other mechanisms, including dissipation of electrons, NADPH,
ATP and carbon via several pathways (Melher-like reactions,
alternative electron flow, photorespiration, futile cycles...), might
take place to dissipate the excess of incoming energy.

These phenomena are of course non-exclusive and are likely
to take place simultaneously to more efficiently address different
time scales of light or nutrient variations. As none of these
dissipating mechanisms were directly or indirectly measured
during the experiment, it is difficult to know whether they
take place and at which extent. Additional experiments with
supplementary measurements, such as the profile of the carbon
pools in the cell and of the excreted carbon, are definitely
required. They will allow to more accurately close the carbon
and energy balances, and eventually to unravel which of these

mechanisms takes place, and even quantify their respective
effects.

3.3. New insights on the Droop function

Our results now provide new insights about the Droop
function, which is largely used to describe phytoplankton growth
(Droop, 1968, 1983). The Droop function is an empirical
function representing the effect of the limiting nutrient internal
quota q (N/C in our case) on phytoplankton specific growth rate
µ(q), see Equation (1).

Droop model is generally justified by the necessity for
the cell to have stored enough limiting element to grow (see
Figure 8). Note that there is often a confusion in the literature,
where “internal quota” is often mixed up with “storage pool”,
so that it is sometimes written that the growth rate depends
on the internal nitrogen storage. Such vision [implemented
in Lemesle and Mailleret (2008)] would provide a clearer
mechanistic explanation, but this is not the Droop model.
The quota model principle is meaningful at a macroscopic
level, but its interpretation at the level of metabolism is not
clear. In our metabolic model, we assume that carbon and
nitrogen uptakes are respectively triggered by light intensity and
nitrate concentration. This uncoupling induces the observed
variable N/C ratio in our simulations, which was further
validated with experimental data. This makes a strong difference
with bacteria where in general carbon and nitrogen uptakes
are tightly coupled (Doucette et al., 2011), explaining why
these microorganisms are overall less plastic than microalgae.
Paradoxically, the variable N/C in our simulations is not due to
the storage of the limiting nutrient (N in our case), but rather
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FIGURE 7

Experimental observations and predictions of T. lutea growth and biochemical composition under nitrogen-limited balanced growth conditions
(with constant light). Experimental data of di�erent nitrogen-limited equilibria in chemostat (Lacour et al., 2012b) are used for model validation.
(A) Specific growth rate as a function of the nitrogen quota. (B) Biochemical composition (color bars) and percentage of excreted carbon over
total carbon fixed (white diamonds) as a function of the specific growth rate.
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to variable carbon storage accumulation. This interpretation,
already sometimes used within macroscopic models (Mairet
et al., 2011; Wu et al., 2021; Di Caprio, 2022), inverses the
classical point of view on the Droop model. It means that the
represented variable growth rate in the Droop model would
be due to the storage of carbon in the cell rather than to the
intracellular storage of the limiting element (see Figure 8). This
feature explains the ability of the metabolic models including
excretion to link the specific growth rate to the internal quota.
Our modeling approach highlights that the minimum quota for
growth actually corresponds to a maximum accumulation of
carbon storage. This limit appears in our simulations because
of excretion, but it can also be due to physical constraints inside
the cell.

There is a growing body of literature showing that excretion
increases with nutrient limitation (Moran et al., 2022), as we also
see in our simulations. The Droop model, which represents only
biomass, expresses the specific growth rate as a function of the
internal quota q:

µ(q) = µm

(

1−
Q0

q

)

(2)

It can be complemented with an excretion rate η (expressed in
term of mass of carbon excreted per unit of carbon biomass and
time). Given the linear trend observed between the excretion
and the growth rate in Figure 7, we propose a simplified model
which completes the Droop model by representing the flux of
excreted carbon. In this add-on model, η depends, as the growth
rate, on the inverse of the nutrient quota:

η(q) = η̄
Q0

q
, (3)

where η̄ is the maximum excretion rate, obtained for q = Q0.
This choice of kinetics becomes more straightforward when
the quota is flipped: the excretion rate η actually increases
linearly with the C/N ratio, i.e., with carbon accumulation. A
comparison of this model with the output of the ExCARBmodel
is given in Figure 8.

The Net Primary Production can now be estimated by
summing biomass growth and excretion:

µ(q)+ η(q) = µ̄

[

1−

(

1−
η̄

µ̄

)

Q0

q

]

. (4)

Additional experiments at different levels of nutrient
limitation are now necessary to further validate this coarse grain
model. It will eventually contribute to propose a more accurate
picture of the carbon fluxes at the global scale.

In conclusion the set of considered metabolic models gives
a mechanistic view on the Droop model during nitrogen
stress, and explains why this simple model is very efficient,
as demonstrated by Mairet et al. (2011). Surprisingly, Droop
model has been shown to efficiently represent limitation with

very different types of nutrients, from a co-factor (vitamin
B12) to a key constituent of proteins (nitrogen) or energy
carriers (phosphorus). Whether our mechanistic explanation
(with nitrogen stress) can be extrapolated to other limiting
nutrients is not straightforward, given the different roles they
have. However, in any case, the limiting nutrient slows down the
production of functional biomass, so that the incoming carbon
flux has to be redirected toward carbon storage (Fernandes et al.,
2013). The same alternative explanations of an actual carbon
storage might therefore also reveal these different behaviors, and
deserves to be further consolidated by dedicated studies.

4. Materials and methods

4.1. Experimental data

The experimental data of Lacour et al. (2012a) and Lacour
et al. (2012b) were used to support respectively the model
calibration and validation. In brief, in both studies, T. lutea
(clone T-iso, CCAP 927/14) was grown in duplicate chemostat
in 5 L cylindrical vessels at constant temperature (22◦C) and
pH (8.2, maintained by automatic injection of CO2). For
model calibration (Lacour et al., 2012a), light intensity I(t) was
monitored to mimic a 12 h light — 12 h night cycle, with
approximately 1,500 µmol.m−2.s−1 measured at noon at the
center of the reactor. The experiment was carried out for 8 days,
and a nitrogen starvation was performed from day 1 to day 5.5
(Supplementary Figure S1). Nitrogen starvation was achieved
by removing nitrates in the incoming media, and waiting for
the complete exhaustion of nitrates in the chemostat. At day
5.5, nitrate was reintroduced, under the form of a pulse (2.7
mgN.L−1) and simultaneously added in the incoming media.
Since growth is hindered during nitrogen starvation, the dilution
rate was decreased accordingly in order to avoid washout.
Nitrate, particulate carbon and nitrogen, chlorophyll, total
carbohydrates and neutral lipid concentrations were measured
throughout the experiment (Lacour et al., 2012a). The latter two
were expressed as quota, i.e., divided by particulate carbon.

For model validation (Lacour et al., 2012b), nitrogen-limited
chemostat cultures under constant light (at 430 µmol.m−2.s−1)
were carried out. Different levels of nitrogen stress were obtained
through a succession of dilution rate changes. Steady-states
values of nitrogen quota and carbon storage quota were used for
model validation.

4.2. Model equation

The metabolic model of T. lutea has been reduced to
seven macro-reactions given in Table 1 [see Baroukh et al.
(2014)], with additionally three different excreted molecules.
For carbohydrates, the EPS excretion is made directly from the

Frontiers in Plant Science 12 frontiersin.org

https://doi.org/10.3389/fpls.2022.941230
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Baroukh et al. 10.3389/fpls.2022.941230

FIGURE 8

Revisiting Droop model. (A) Illustrations of the empirical relationship (left) and common views (middle) on Droop model, in comparison with the
insight from our metabolic model (right). (B) Growth and excretion rates as a function of the N/C quota given by the metabolic model ExCARB
(left) and by the Droop model (2) with the additional equation (3) (right).

CARB pool. For acetate, excretion is only a few reaction steps
from PEP, since acetate is synthesized from Acetyl-CoA:

ADP+H+ PEP → PYR+ ATP

PYR+NAD+ CoA → AcCoA+ CO2+NADH

AcCoA+ Pi+ ADP ↔ ACE+ ATP+ CoA

Similarly, glycerol is only a few reaction steps from GAP, since
glycerol is synthesized from DHAP:

GAP ↔ DHAP

DHAP+H2O ↔ DHA+ Pi

DHA+H+NADPH ↔ GLYC+NADP

These reactions are gathered into a macro-reaction given in
Table 1.

The dynamical model, obtained from mass balance, is
described by an ODE system representing the dynamics over
time of substrate S (nitrate), accumulating metabolites A (GAP,

PEP, G6P, PA, CARB), functional biomass B and excreted
molecule P (in mol/L):

d

dt











S

A

B

P











= K′αB+ D











Sin

0
0
0











− D











S

A

B

P











(5)

with Sin the incoming substrate concentration and D the
dilution rate. The composition of functional biomass is
determined from experimental data (Lacour et al., 2012a). The
stoichiometric matrix K′ and the kinetic vector α result from
Table 1. In addition, total biomass, in terms of particulate carbon
XC and nitrogen XN (in mol/L), is computed using a mass
balance:

XC(t) =
∑

A

CAA(t)+ CBB(t)

XN (t) =
∑

A

NAA(t)+ NBB(t)
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where CA and CB correspond to the number of carbon atoms
per molecule of A and B and NA and NB correspond to the
number of nitrogen atoms per molecule of A and B. Metabolic
fluxes of the cell can be computed using the elementary flux
mode matrices that were obtained during the reduction of the
162 reactions of metabolic network to macroscopic reactions.
That is, the flux of reaction j is given by:

vj(t) =
∑

i

aijαi(t),

where aij is the contribution of reaction j in the macro-reaction
i, given by the elementary flux mode matrices. The consumption
and production of ATP and NADPH are computed from these
fluxes to check a posteriori their balance, e.g., for ATP:

ConsATP(t) = −

∑

j

min
(

0,KiATP,jvj(t)
)

,

ProdATP(t) =
∑

j

max
(

0,KiATP,jvj(t)
)

,

where K is the stoichiometric matrix of the core network. For
further details on this model construction, the reader is referred
to Baroukh et al. (2014).

4.3. Calibration strategy

T. lutea cultures under nitrogen starvation and day/night
cycles (Lacour et al., 2012a) were used for model calibration. For
each model, parameters were estimated by minimizing the sum
of squared error (SSE) between simulation and experimental
measurements. The Nelder-Mead algorithm implemented in
the Scilab software (fminsearch) was used. In line with
the experimental protocol, the simulations were started 5
days before the beginning of the measurements to reach a
periodic regime (i.e., simulations start at t0 = −5d). The
simulation outputs as shown on Figure 3 are thus not depend
on the initial conditions. A constraint was added on kMR1

to account for the quantum limit of photosynthesis. Using
an absorption coefficient of 16 m2/g Chl (Bannister, 1974)
and a photosynthetic requirement of 10 photons per fixed
carbon (Baroukh et al., 2014), we get an upper bound of
4.5 10−3 µE−1.m2.s.h−1.mol B−1. To reduce the risk of
ending up in a local minima, several optimizations were
performed with random initial parameters. The parameters
were re-estimated for each model since the extension is likely
to modify the distribution of fluxes between the different
metabolic branches. For example, if excretion is performed at
the level of carbohydrates, fluxes in upper glycolysis should
be higher so as to compensate carbon loss. The w/oEx model
was calibrated with nitrogen replete condition (the first day
of measurements), as already done in Baroukh et al. (2014).
Alternatively, a set of parameter minimizing the error on

the whole experiment (including nitrogen starvation) was also
determined, and the resulting model calibration was called
w/oEx*. For the four extended models (ExCARB, ExG6P,
ExPEP, ExGAP), the same parameters estimation procedure was
carried out using the whole experiment. Results of parameter
identification are presented in Table 2. Confidence intervals
on model parameters have been estimated following Casagli
et al. (2021). Briefly, the Fisher Information Matrix (FIM) is
computed from the sensitivity functions of model outputs ywith
respect to parameters θ and the covariance matrix of measured
standard deviationW:

FIM =

∑

i

(

∂y(ti)

∂θ

)

W(ti)

(

∂y(ti)

∂θ

)T

The standard deviations on model parameters are then
computed from the diagonal terms of the FIM’s inverse:

σ 2
θj
=

(

FIM−1
)

j,j
.

From these values, we can estimate the error propagation on all
the model outputs (i.e., the biochemical concentrations and the
intracellular fluxes), as follows:

σ 2
yi (t) =

∑

j

(

∂yi(t)

∂θj

)2

σ 2
θj
.

The 95% confidence intervals on model outputs are finally given
by yi(t)± 1.96σyi (t).

To compare models with different parameter numbers, the
corrected Akaike Information Criterion (AICc) was computed
as follows (Burnham and Anderson, 2002):

AICc = n log

(

SSE

n

)

+ 2(p+ 1)+
2(p+ 1)(p+ 2)

n− p− 2

where n is the number of measurements, and p the number of
estimated parameters. The model with the lowest AICc should
be preferred.

4.4. Model validation

Steady-state chemostat cultures under nitrogen limitation
at various dilution rates (Lacour et al., 2012b) were used to
validate the models. Simulations with dilution rates ranging
from 0.02 d−1 to 1.4 d−1 were carried out. For all the conditions,
nitrogen and carbon storage quotas were computed when the
trajectories reach their equilibria. Several randomly chosen
initial conditions were considered to check that the equilibria
do not depend on them. The squared-error between simulation
and experimental measurements were computed to assess model
prediction capability. The Droop model (Equation 1) was fitted
to the experimental data using the least-squares routine leastsq
in Scilab.
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