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Abstract
Global climate change, causing large parts of the world to become drier with 
longer drought periods, severely affects production of common beans (Phaseolus 
vulgaris L.). The bean is worldwide the most produced and consumed food grain 
legume in the human diet. In common beans, adapted to moderate climates, ex-
posure to drought/heat stress not only results in significant reduction of bean 
yield but also the nutritional value. This review explores the contribution of com-
mon beans to food and nutrient security as well as health. Also discussed is the 
existing knowledge of the impact of drought/heat stress, associated with a chang-
ing climate, specifically on iron (Fe) and phytic acid (PA) that are both among 
the most important mineral and anti-nutritional compounds found in common 
beans. Further discussed is how the application of modern “omics” tools con-
tributes in common beans to higher drought/heat tolerance as well as to higher 
Fe and reduced PA content. Finally, possible future actions are discussed to de-
velop new common bean varieties with both improved drought/heat tolerance 
and higher mineral (Fe) content.
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1   |   INTRODUCTION

1.1  |  Climate change and crop 
production

Global climate change will severely affect the UN goal 
to sustainably produce enough food by 2050 to feed a 
projected global population of 9.1 billion people. This is 
despite previous progress in addressing global undernu-
trition with increased food production by agricultural 
expansion and intensification (Myers et al., 2017). Global 
climate change, which has a long-term impact in the form 
of different abiotic stresses (Redden, 2013), will particu-
larly cause large parts of the world to become drier with 
longer drought periods, more intense heat and irregular 
rainfall. These changes will severely affect agriculture as 
well as the stability and distribution of food production 
(Kellogg & Schware, 2019). These changes in the climatic 
conditions might even become progressively worse (Hao 
et al., 2018). A major factor in driving such temperature 
increase and altering precipitation patterns is a higher at-
mospheric carbon dioxide (CO2) concentration (Kellogg & 
Schware, 2019; Lindsey, 2020).

Warmer and drier climatic conditions, resulting in 
increased evaporative losses, will also drive the demand 
for more water. A substantial part of the world's agricul-
ture is, however, already suffering from chronic soil water 
shortages due to severe drought conditions (Nadeem et al., 
2019). Predicted shifts in crop production, due to regional 
changes in temperature and rainfall patterns, might fur-
ther worsen local food shortages. The future demand for 
affordable nutritious food will, therefore, require integra-
tion of such regional predictions within drought moni-
toring and forecasting (Leisner, 2020; Mbiriri et al., 2018; 
Myers et al., 2017; Parsons et al., 2019; Zolina et al., 2013).

1.2  |  Drought/heat stress and 
plant growth

Stresses associated with a changing climate are predicted 
to severely impact plant metabolism as well as soil fertil-
ity and carbon sequestration. This impact will limit plant 
growth and productivity and, ultimately, availability of 
nutritious food (Dankher & Foyer, 2018; Myers et al., 
2017). A higher atmospheric CO2 concentration affects, for 
example, the nutritional composition of crops by reduc-
ing the protein content of the edible plant parts and also 
lowering concentrations of important minerals (Loladze, 
2014; Medek et al., 2017; Myers et al., 2014). In particular, 
soil water deficit, due to drought/heat conditions, causes 
considerable reduction in plant productivity. This reduc-
tion is specifically evident in areas where the agricultural 

system is dependent on rainfall, such as on the Southern 
Plains of the USA and in eastern Africa (Adhikari et al., 
2015; Ahmed & Stepp, 2016; Steiner et al., 2018). Impacts 
of drought/heat range from negatively affecting all plant 
development stages with key physiological, biochemical 
and metabolic pathways seriously disrupted (Dankher 
& Foyer, 2018). Temperature extremes are further more 
strongly associated with a reduction in crop yield, com-
pared to precipitation extremes, and irrigation partly lim-
its the negative effects of high temperatures (Vogel et al., 
2019). While plants are always exposed to a combination 
of stresses under field conditions (Hussain et al., 2018), 
most studies have focused on the impact of individual 
stresses on crop yield (Fahad et al., 2017). Combined 
drought and high temperature stress is known to reduce 
yields of maize, soybean and wheat (Matiu et al., 2017). 
Physiological characterization of plants exposed to either 
drought or heat stress, or a combination of both stresses, 
has indicated that combined stresses have several dis-
tinctive characteristics. These characteristics include low 
photosynthesis combined with increased respiration and 
closed stomata combined with increased leaf temperature 
(Mittler, 2006). However, how plants respond to a com-
bination of different abiotic stresses cannot be simply in-
ferred by the response of the plant to an individual stress 
(Mittler, 2006). To develop strategies maintaining crop 
productivity under such individual or combined stresses 
is, therefore, a major future research challenge (Ferguson, 
2019).

1.3  |  Potential of legumes

Legumes, as members of the large Fabaceae (Leguminosae) 
family, are predominantly grown in the world's tropical 
and subtropical areas. The production and consumption 
of pulses, the edible seeds of legumes, has further greatly 
increased over the last 15 years (Rawal & Navarro, 2019). 
Legumes include a number of important agricultural and 
food plants, such as Glycine max (soybean) and Phaseolus 
species (beans). They have an important function in both 
the diversification and sustainable intensification of agri-
culture. Apart from being a major dietary protein source, 
legumes are a rich source of minerals to humans and ani-
mals. Stresses, associated with changing climatic condi-
tions, pose, however, a severe threat towards their growth, 
yield potential as well as nutritional value (Foyer et al., 
2016; Gepts et al., 2008; Latef & Ahmad, 2015; Nadeem 
et al., 2019; Sica et al., 2021; Vasconcelos et al., 2020). An 
important feature of legumes is further the ability to form 
root nodules allowing to fix atmospheric nitrogen. With 
the help of rhizobia, legumes reduce atmospheric nitro-
gen to ammonia in these root nodules with various genes 
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required for symbiotic nitrogen fixation (SNF) (Roy et al., 
2020). The natural ability to add fixed nitrogen into soils 
renders legumes a keystone species for natural and agri-
cultural ecosystems, injecting over 50 million tons of nitro-
gen into the soil per annum (Roy et al., 2020). SNF, which 
significantly contributes not only to protein production 
but also to increase in soil fertility (Sørensen & Sessitsch, 
2007; Wagner, 2011), is, however, highly drought sensitive 
(Kunert et al., 2016).

1.4  |  Common beans and abiotic stress

Among the legumes, common bean (Phaseolus vulgaris L.; 
Figure 1), which is the focus of this review, is the most 
produced and consumed food grain legume worldwide. 
Common beans are adapted to relatively moderate cli-
matic conditions and not to extreme climatic and edaphic 
environments. Day temperature exceeding 30°C or night 
temperatures higher than 20°C can significantly reduce 
seed yield due to flower abscission, development of par-
thenocarpic pods (pin pods), lower seed set per pod as 
well as decreased seed size (Rainey & Griffiths, 2005). Soil 
degradation and factors, such as soil acidy and aluminium 
toxicity, lead to deficiencies in nitrogen and phosphorus. 
This can limit root development and consequently access 
to soil moisture (Samago et al., 2018).

Growth of legumes is generally affected by several abi-
otic stresses causing as a response changes in the plant 
phenotype (Araújo et al., 2015). Among the reported 
changes in common beans due to abiotic stresses are less 
leaf expansion due to ultraviolet-B radiation (Riquelme 
et al., 2007), increase of production of malondialdehyde, 
antioxidants and carotenoids, a decrease in the chlo-
rophyll content of leaves due to heavy metal exposure 
(Zengin, 2013), reduction of seedling emergence after 
low temperature treatment (De Ron et al., 2016), as well 
as suppression of growth, photosynthesis and transpira-
tion under high soil salinity (Kaymakanova et al., 2008). 
Changes in protein expression, reduced germination, 
stunted growth, serious damage to photosynthesis and 

a reduction in nutrient uptake particularly occur after 
exposure to drought/heat stress, (Mathobo et al., 2017; 
Nadeem et al., 2019; Zadražnik et al., 2013). In addition, 
a shallow root system further renders common beans vul-
nerable to any shortage of soil water with the reproductive 
stage, which includes flowering and pod-filling, also very 
drought-sensitive (Daryanto et al., 2017).

Adaptation, particularly to drought conditions, in-
cludes the improvement in the photosynthetic capacity, 
water-use efficiency and adaptation to different environ-
ments. Such adaptation has been already found in a few 
common bean genotypes, including the BAT477 race 
(Beebe et al., 2008; Polania, Rao, et al., 2016), and selec-
tion for drought resistance improved yield in phosphorus 
limited environments (Beebe et al., 2008). Root traits for 
improved water uptake include existence of more small 
fine roots, higher root length as well as higher root den-
sity (Fenta et al., 2020; Polania et al., 2017). In drought-
tolerant common beans, maturity acceleration with a 
high seed filling rate further limits any drought impact 
(Rosales-Serna et al., 2004). Besides improved remobili-
zation and partitioning of photosynthates (Teran et al., 
2019), a change of canopy biomass and harvest index has 
also been found to contribute in common beans to more 
drought tolerance (Assefa et al., 2015; Polania, Rao, et al., 
2016). Hageman et al. (2020) further provided evidence 
that resource partitioning from pod walls into seeds and 
the inherent sensitivity of leaflet growth rate to drought 
can be used as further indicators for drought sensitivity/
tolerance. When screening 25 common bean genotypes 
with contrasting drought tolerance in a phenotyping 
platform under different water supply conditions, gas ex-
change and osmotic adjustment together with increase in 
grain yield were also proposed as useful indicators for se-
lecting more drought-tolerant common bean lines (Lanna 
et al., 2018). Polania et al. (2016) further reported that the 
best nitrogen-fixing common bean lines under soil water 
deficit are more drought-tolerant. But common bean gen-
otypes, even more tolerant to soil water deficit, can ulti-
mately be severely affected by nitrogen-deficiency under 
such soil water deficit (Beebe et al., 2014).

F I G U R E  1   Common bean plants 
(left) and effect of drought on common 
beans (right) (adapted from Michigan 
State University Department of Plant, Soil 
and Microbial Sciences at https://www.
canr.msu.edu/beanb​reedi​ng/resea​rch/
drought)

https://www.canr.msu.edu/beanbreeding/research/drought
https://www.canr.msu.edu/beanbreeding/research/drought
https://www.canr.msu.edu/beanbreeding/research/drought
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Abiotic stresses further affect the nutritional quality of 
common beans (Sica et al., 2021). Variability in rainfall af-
fects, for example, the production of secondary metabolites, 
such as phenolics. This change directly impacts the bean's 
health-related benefits and sensory qualities (Ahmed & 
Stepp, 2016). Mild drought stress increases certain phenolic 
compounds without affecting the seed yield (Herrera et al., 
2019). Studies investigating irrigation effects further found 
that the total fibre decreases under rain-fed conditions. 
Water availability, however, also influences the digestibil-
ity of bean carbohydrates, extractable polyphenols and, 
depending on the bean variety, the antioxidant capacity 
(Ovando-Martínez et al., 2014). Only a few studies have so 
far investigated in greater detail the impact of stresses as-
sociated with climate change, such as drought/heat stress, 
on the bean's mineral and antinutrient content with phytic 
acid (PA) a potent antinutrient (Hummel et al., 2018).

The aim of this review is, therefore, to discuss the cur-
rent existing knowledge on the link between drought/heat 
stress and content of Fe and PA in common beans. In our 
review, we will first provide a short general overview on 
the contribution of common beans to food/nutrient secu-
rity as well as health. This will include the guidelines dic-
tated by countries to improve human diet-related habits 
and lifestyle, and the role of antinutrients. We will then 
review the existing knowledge with regards to Fe and PA 
content in common beans and how drought/heat stress 
affects the content of these two compounds. Figure 2 pro-
vides a simplified overview of the processes specifically 
reviewed. A discussion will follow on how breeding using 
modern “omics” approaches has so far contributed not 
only to more drought/heat stress tolerance in common 
beans but also to identify genes involved in drought/heat 
stress tolerance as well as increase in Fe content and re-
duction in the PA content. Finally, we will discuss areas 
for possible future exploration of existing knowledge in 
common beans regarding increasing Fe and antinutrient 
content particularly under drought/heat stress conditions.

2   |   FOOD AND NUTRIENT 
SECURITY

2.1  |  Food security

Globally, common beans are grown on 23 million ha (http://
www.cgiar.org/ our-research/crop-factsheets/beans) and 
the global common bean production has now risen to 12 
million tons (mt) per year (FAO, 2014, 2018; Heinemann 
et al., 2016). The bean greatly contributes to overall food 
and nutrient security particularly in sub-Saharan Africa 
and in Central and Southern American countries (Beebe, 
2012; Broughton et al., 2003). Latin America is the region 

with the greatest production of common beans, represent-
ing about 50% of world volume, followed by Africa with 
25% (Figure 3). In sub-Saharan Africa, common beans are 
produced on more than 3.5 million ha with production tak-
ing place mainly in East Africa, the lakes region and the 
highlands of Southern Africa, with a combined production 
of almost 1  mt (Demelash, 2018). In Latin America, per 
capita annual consumption of common beans ranges from 
10–18  kg, whereas in East Africa common annual bean 
consumption can be as high as 50 kg per capita.

In 2019, Myanmar, India and Brazil were further the 
top three dry bean producing countries in the world and 
Myanmar and India produced each over 5 mt (FAOSTAT, 
2020; Table 1). In Latin America, Brazil was in 2019 the 
main producer of dry beans, with about 2.8 mt, followed by 
Mexico with about 0.9 mt. In Europe, only about 544,330 ha 
were cultivated with beans, with a production of about 
1.9  mt (https://www.pulse​sincr​ease.eu/crops/​commo​n-
bean; accessed August 2021). Although having the lowest 
production area of all top dry bean producers, the United 
States of America (Table 1) achieved the highest bean yield 
in 2019 (1979 kg ha−1). This was most likely due to a better 
technological input and also better seed quality. However, in 
India, despite having the greatest cultivation area, bean yield 
is still very low (418 kg ha−1; Table 1). Such low yields in 
countries, such as India, Mexico and Kenya, are very likely 
due to a low technological input by resource poor farmers, 
irregularities of rainfall as well as poor seed quality.

Low input agricultural systems further account for 
the majority of common bean production and small-scale 
farmers particularly depend on beans for food and income 
(Kermah et al., 2017). They use, however, poor quality 
seed material caused by poor storage, seed-borne fungal 
infection as well as sowing and harvesting under unfa-
vourable environmental conditions (Oshone et al., 2014). 

F I G U R E  2   Effect of drought/heat stress on minerals 
and phytic acid in common beans and the consequences of 
biofortification

http://www.cgiar.org/
http://www.cgiar.org/
https://www.pulsesincrease.eu/crops/common-bean
https://www.pulsesincrease.eu/crops/common-bean
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They further grow beans in association, or in rotation, with 
maize with minimal production inputs (Rurangwa et al., 
2018). Cereals are thereby grown on more fertile fields 
and legumes on soils depleted in nutrients (Chekanai 
et al., 2018; Kelly et al., 1998). Due to its existing SNF ca-
pacity, although lower when compared to soybean and 
faba beans (Peoples et al., 2009), common beans can grow 
on such marginal lands. Although common bean variet-
ies with high SNF capacity and environmental resilience 
would be, therefore, of great benefit (Wilker, 2021), com-
mon bean breeding seldom includes selection for the SNF 
trait. In addition, modern bean production practices in-
volve the application of nitrogen-fertilizer which causes 
not only SNF downregulation but also environmental 
pollution (Wilker et al., 2019). To solve this problem, 
moderate phosphorus fertilization in combination with 
an appropriate more affordable Rhizobium inoculation 
as a nitrogen source might be one potential option for 

improved production, especially under soil water deficit 
(Kibido et al., 2020; Samago et al., 2018). Overall, all these 
problems ultimately limit bean yields to low as ≤0.5 t ha−1. 
This not only greatly affects smallholder systems (FAO, 
2014; Rao et al., 2016), but prevents the realization of the 
bean's full yield potential and causes production instabil-
ity from 1 year to the other. Most worrying, based on crop 
modelling, the majority of current common bean growing 
areas, especially in south-eastern Africa, will be in 2050 
unsuitable for bean cultivation greatly affecting food and 
nutrient security (Hummel et al., 2018).

As much as one-third of bean production areas are fur-
ther influenced by drought/heat stress. This greatly affects 
the contribution of common beans to food and nutrient 
security (Beebe et al., 2014; Kazai et al., 2019). Common 
bean production areas particularly subjected to frequent 
droughts are highland Mexico, the Pacific coast of Central 
America, northeast Brazil, and eastern and southern 

F I G U R E  3   Impact of climate change on the suitability of bean production (adapted from Beebe et al., 2011). White areas represent areas 
where common beans are either not extensively grown or where climate change might have very little impact on bean growth

Area (ha)
Production 
(kg/ha)

Total 
production 
(tons)

Myanmar 3.201.135 1826 5.845.272

India 12.690.696 418 5.309.787

Brazil 2.610.585 1113 2.897.749

China 745.936 1739 1.297.182

United Republic of Tanzania 893.570 1340 1.197.383

Uganda 539.660 1815 979.482

United States of America 470.890 1979 931.891

Mexico 1.207.395 728 878.983

Kenya 1.167.543 639 746.059

Note: Source: Food and Agriculture Organization Statistical Databases was used to develop this table; 
FAOSTAT, 2020).

T A B L E  1   Top common bean 
producing countries in the world
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Africa from Ethiopia to South Africa (Beebe et al., 2013). 
More than 60% of the world's common beans are cultivated 
under non-irrigated conditions in areas where seasonal 
rainfall is erratic and beans grow under rain-fed condi-
tions (Seidel et al., 2016; Smith et al., 2019). Drought/heat 
stress can cause yield losses of up to 80% in these rain-fed 
production systems (Kazai et al., 2019), Specifically, inter-
mittent or terminal drought stress causes severe yield loss 
(Beebe et al., 2013), although drought stress towards the 
end of the growing season might not cause much harm for 
grain yield (Mathobo et al., 2017). Irrigation would, there-
fore, allow to increase common bean production. Indeed, 
in Brazil yields of around 2900 kg ha−1 have been already 
obtained by irrigation (Alves Souza et al., 2020).

Recent modelling studies raise further concern for fu-
ture food and nutrient security. They predict a significant 
decrease in the future suitability to grow common beans 
due to increased drought and also heat stress (Heinemann 
et al., 2017). In Africa, for example, where an estimated 
682,000 ha of beans are currently cultivated, annual yield 
loss due to drought/heat conditions is already in the range 
of 781,000 t. Simulation models to characterize bean pro-
duction in Brazil in rain-fed environments also indicate 
that climate change will cause more frequent but less se-
vere drought conditions (Heinemann et al., 2017). A pre-
vious ecological diversity study with wild common bean 
accessions covering a habitat from Mexico to Argentina 
further found that accessions are distributed among differ-
ent precipitation regimes following a latitudinal gradient. 
The habitat ecological diversity of the collection sites was 
further associated with natural sub-populations (Cortés 
et al., 2013). Finally, current common bean areas might 
also shift to colder regions of the Northern Hemisphere, 
such as Canada, the Nordic countries and Russia, as indi-
cated by recent model projections (Ramirez-Cabral et al., 
2016). How these changes will actually affect overall bean 
production has still to be investigated in more detail.

2.2  |  Nutrient security

In contrast to the industrialized world, common bean is 
the most important grain legume consumed in areas with 
a low income where health is influenced mainly by dietary 
deficiencies rather than by excesses. Common beans are 
therefore also regarded, as other pulses, the “poor man's 
meat”. As a food staple, common beans contribute up to 
35% of the protein and 340 calories/100 grams to the daily 
diet of resource poor urban and rural families. Food, how-
ever, not only needs to satisfy the caloric requirements, 
but has ultimately to provide sufficient amounts of nutri-
ents such as minerals and vitamins (Muller et al., 2017). 
Common beans are an important source for the minerals 

Fe and Zn (Beebe et al., 2000; Castro-Guerrero et al., 2016; 
Drewnowski, 2010; Graham et al., 2007; Hall et al., 2017; 
Mitchell et al., 2009). For a general overview of the nutri-
tional value of common beans, see https://feedt​ables.com/
conte​nt/commo​n-bean and also Celmeli et al. (2018). Fe 
and Zn deficiency further affects over 30% of the world's 
population (Bailey et al., 2015). Common bean has, there-
fore, the potential to not only reduce poverty but also to 
increase nutrient security, particularly on smallholder 
farms (De Luque & Creamer, 2014). The access to diverse, 
nutrient-dense food sources is consequently a priority in 
order to improve sustainable nutrient security, especially 
in low-income countries and to prevent hidden hunger 
(Nelson et al., 2018; Petry et al., 2015). Hidden hunger is 
generally concerned with a deficiency of nutrients and oc-
curs when the food quality in a person's diet is insufficient 
for normal growth and development. Minerals, such as Fe 
and Zn, are thereby key determinants in staple crops and 
foods for sufficient dietary micronutrient uptake (Díaz-
Gómez et al., 2017).

Common beans further present a much better source 
for these minerals in comparison to cereals (Castro-
Guerrero et al., 2016). In common beans, the Fe con-
centration ranges from 35 to 90  µg/g with an average 
of 55  μg/g and is higher when compared to crops like 
rice (6.3–24.4 µg/g), wheat (25 µg/g–56 µg/g) or maize 
(9.6–63.2 µg/g). Breeding approaches have recently even 
achieved a Fe concentration of 130  μg/g (Kimani & 
Warsame, 2019). Common beans also have a relatively 
high Zn seed content (21–54 µg/g), with an average of 
35 μg/g. Environmental and genotypes can, however, in-
fluence seed mineral concentrations as recently found 
with landraces and improved common bean varieties 
(Caproni et al., 2020; Hummel et al., 2018; Murube 
et al., 2021; Philipo et al., 2020). Although there is no 
statistically significant correlation between Fe and Zn 
content of seeds and the geographical distribution of 
bean (Caproni et al., 2020), previous studies provided 
evidence for a tendency for Andean pools to contain 
more Fe (Beebe et al., 2000) and Mesoamerican pools 
more Zn (Islam et al., 2002). Moreover, in a more recent 
study, new multi-parent populations were developed at 
the University of Nairobi. Lines harbouring different 
tolerance traits (drought, low soil fertility, major bean 
diseases) were combined with lines with high mineral 
traits (Fe and Zn). Eighty-four selected lines were more 
drought-tolerant and had more than 90% better yield 
compared to their parents. Forty-six promising lines had 
further higher grain Fe and also Zn concentrations com-
pared with their parents. These lines can possibly now 
contribute to increased bean productivity and also com-
bating micronutrient deficiencies in eastern Africa and 
other parts of Africa (Kimani & Warsame, 2019).

https://feedtables.com/content/common-bean
https://feedtables.com/content/common-bean
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3   |   HEALTH

3.1  |  Impact on health

Pregnant women and children are specifically at risk in 
their health due to high mineral needs but poor mineral 
intake. While minerals are required by humans in small 
quantities, minerals participate in a wide variety of 
metabolic processes. Fe is, for example, required for the 
synthesis of haemoglobin and several hormones. A con-
ventional breeding programme developed in Rwanda 
and in the Democratic Republic of Congo (DRC) already 
resulted in the selection of high Fe-containing common 
bean lines. These lines were also well adapted to the local 
conditions and suited both the farmers' and consumer 
preferences (Mulambu et al., 2017). The programme 
HarvestPlus of the Consultative Group for International 
Agricultural Research (CGIAR) particularly focuses 
on the selection of such Fe bio-fortified common bean 
lines (Asare-Marfo et al., 2013). African countries, fol-
lowed by countries in Latin America, the Caribbean as 
well as Asia, rank, therefore, high on the list of coun-
tries targeted under the Biofortification Priority Index 
(HarvestPlus, 2020) (Figure 4). Such Fe-biofortified bean 
lines have already improved the Fe status and health of 
women in several African countries (Andersson et al., 

2017; Haas et al., 2016). However, how these lines per-
form with regards to yield as well as nutrition under 
drought/heat stress conditions associated with climate 
change still remains to be investigated.

A previous study on diet modelling also found an 
association between bean consumption, improvement 
of nutrient intakes and healthy eating index scores 
(Hornick, 2007). Low-quality diets often lack dietary 
diversity along with high amounts of saturated fat and 
low vegetable, fruit, as well as fibre intake that can con-
tribute to disease risk (Hiza et al., 2013). Consuming dry 
beans results in higher intake (10% or more) of fibre, 
protein, folate, Zn, Fe and Mg with lower intake of satu-
rated fat and total fat which provides an improvement in 
the overall diet quality (Mitchell et al., 2009). Replacing 
refined carbohydrates in the diet with protein sources 
that are low in saturated fat, as in beans, reduces, for 
example, the risk of cardiovascular diseases (Hu, 2005; 
Mobley et al., 2014). People following a Mediterranean-
style diet, richer in plant foods, including bean, have, 
indeed, a lower risk of cardiovascular disease and mor-
tality (Estruch et al., 2006; Serra-Majem et al., 2006). The 
Dietary Guidelines for Americans (DGA, 2015–2020) 
(available at https://health.gov/our-work/food-nutri​
tion/previ​ous-dieta​ry-guide​lines/​2015, accessed May 
2021) further consider the beans' nutritional content 

F I G U R E  4   Common bean Bio-fortification Priority Index. Picture courtesy of HarvestPlus (https://bpi.harve​stplus.org/bpi_cropm​aps.
html?id=c12021)

https://health.gov/our-work/food-nutrition/previous-dietary-guidelines/2015
https://health.gov/our-work/food-nutrition/previous-dietary-guidelines/2015
https://bpi.harvestplus.org/bpi_cropmaps.html?id=c12021
https://bpi.harvestplus.org/bpi_cropmaps.html?id=c12021
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and benefit as both a protein and a vegetable. Beans can, 
therefore, be regarded as either in order to appropriately 
meet the recommended dietary intakes. The Guidelines 
on Nutrition and Physical Activity for Cancer Prevention 
advocates the consumption of poultry, fish and beans 
as an alternative to pork, lamb and beef while stress-
ing the importance of vegetables (Kushi et al., 2012). 
The American Heart Association further recommends 
consuming 360  g of beans per week for adults for the 
prevention of cardiovascular diseases (Van Horn et al., 
2016). However, the large consumption of bean seeds, as 
a “meat replacement” staple food in many countries of 
Africa, Central and South America and Southern Asia, 
has already contributed to nutritional problems.

Finally, it should not be overlooked that common bean 
seeds are also an important protein source (16–30%), de-
spite being deficient in sulphur amino acids (methionine 
and cysteine). In particular for geographic areas, where a 
large part of the dietary protein is obtained from legumes, 
there is a need to increase the content of sulphur con-
taining amino acids in legume proteins. Increasing the 
concentration of S-containing amino acids is, therefore, a 
current major research task (Saboori-Robat et al., 2019). 
Several legume proteins, including those of common bean 
seeds (e.g. 7S globulins, protease inhibitors, lectins), are 
now regarded not only as, but also functional ingredients 
(Carbonaro et al., 2015). Common bean seeds further 
contain no cholesterol and only low amounts of total and 
saturated fats. They are rich, however, in carbohydrates 
(up to 60%), especially starch and several vitamins (bio-
tin, folic acid, niacin, thiamine and riboflavin). They are 
further an important source of dietary fibre (up to 37%) 
(Trinidad et al., 2010). Distinctive physiological roles have 
been attributed to the two different fibre fractions: soluble 
vs. insoluble. Soluble fibre, making up only a small part 
of the total dietary fibre, can assist in lowering cholesterol 
levels as well as decreasing the risk of heart diseases in reg-
ulating blood glucose levels. The regulation of intestinal 
function is affected by the insoluble fibre fraction. Studies 
have also produced evidence showing the protective effect 
of legume fibres against risk of developing colon cancer 
(Zhu et al., 2015, Wang et al., 2013; Campos-Vega et al., 
2013). Due to this high fibre content, common beans can 
significantly contribute to the recommended dietary fibre 
intake of adult women (25 g/day) and adult men (38 g/
day) (Dahl & Stewart, 2015).

3.2  |  Antinutrients

Common beans are also a source, as other legumes, of 
bioactive compounds. Bioactive compounds in common 
bean seeds include oligosaccharides, lectins, phytates, 

enzyme inhibitors, phenolic compounds, complex poly-
phenols (tannins) as well as saponins. The presence 
of these compounds has promoted the nutraceutical 
use of legumes (Carbonaro, 2021). In spite of the well-
documented antinutritional effects of some legumes, 
residual (i.e. below their toxic level) amounts of most bi-
ologically active compounds help in the prevention and 
management of severe diseases, such as cardiovascular 
diseases. These diseases mainly affect the world popu-
lation of industrialized countries (Padhi & Ramdath, 
2017). Hypercholesterolemia (Zhang et al., 2010), type-2 
diabetes (Mattei et al., 2015) and cancer (Mitchell et al., 
2009) are diseases which can be prevented. Selection 
to decrease the antinutritional substances have been 
already done for common bean varieties that are gen-
erally consumed. Cooking and processing are two 
methods that also inactivate trypsin inhibitors that are 
relevant antinutritional factors. These inhibitors re-
duce the digestion and absorption of dietary proteins 
(Avilés-Gaxiola et al., 2018). Removing antinutritional 
substances may, however, result in yield reductions as 
they also play an additional protective role in patho-
gen or insect resistance (Boulter, 1982). Varieties with 
a high content of heat-stable (non-protein) compounds, 
such as tannins and PA, pose further concern. This is 
because protein digestibility is lowered by high molecu-
lar weight tannins (Mr 500–5000), especially condensed 
tannins (proanthocyanidins). They form strong insolu-
ble complexes with proteins. Moreover, the reactivity of 
some tannins, in particular those in common beans, in-
creases after thermal treatment (Carbonaro et al., 1992). 
Tannins further adversely affect the absorption of trace 
elements, especially of Fe, but also of Zn and Cu, as a 
result of tannin–metal complex insolubilization, par-
ticularly after cooking (Carbonaro et al., 2001). As dis-
cussed below, it is now also well documented that the 
other major cation chelator in the seed is PA (reviewed 
by Petry et al., 2015). Finally, tannins, PA and saponins 
also interact with the absorption of fat-soluble com-
pounds including fat-soluble vitamins and carotenoids.

4   |   MINERALS/PA AND 
DROUGHT/HEAT STRESS

4.1  |  Mineral/PA content

In order to provide sufficient minerals to millions of con-
sumers, relying on common beans as part of their diet, a 
better understanding is needed of the effect that particu-
larly drought/heat stress has on bean yield as well as on 
the bean's mineral and antinutrient content. In this re-
gard, some knowledge already exists from characterizing 
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lentils. Lentil plants exposed to drought and/or heat stress 
had lower amounts of vital minerals (K, P, Ca, Fe, Mn and 
Zn). This decrease was further associated with a reduction 
of root biomass under heat stress and a negative effect, due 
to drought stress, on transpiration, stomatal conductance 
as well as root function. When both stresses (drought and 
heat) acted simultaneously on lentil plants, the effect was 
even more profound (Sehgal et al., 2019). Choukri et al. 
(2020) also analysed 100 lentil genotypes from a global 
collection grown under normal, heat and combined heat–
drought conditions. Fe, Zn and crude protein content was 
significantly reduced under these stress conditions. The 
effect of combined heat–drought stress was, however, 
more severe than by heat stress alone. A significant posi-
tive correlation also existed in lentils between Fe and Zn 
concentrations under both non-stress and stress condi-
tions (Choukri et al., 2020).

Most efforts to improve the nutritional quality of 
common beans have up to now focused on developing 
varieties with lower amounts of antinutritional com-
pounds, such as lectins (phyto-hemagglutinin L, phyto-
hemagglutinin E), phaseolin and phytates, and a higher 
Fe and Zn content (Cominelli et al., 2020; Samtiya et al., 
2020; Vasconçelos & Oliveira, 2004). For common beans, 
genotypic variation in the content of Mg, sulphur and Fe 
in bean leaves, and Ca and Fe in seeds have been reported 
in response to drought (Beebe et al., 2000). Smith et al. 
(2019) also found, by analysing a small number of 10 bred 
lines developed by CIAT, that drought can decrease the 
amount of minerals in the common bean soluble leaf 
fraction, but not within the seeds. A reduction in the con-
centration of Fe as well as phosphorus and Zn by 5–20% 
have been also reported for a still rather small number of 
bean lines/varieties under drought conditions (Hummel 
et al., 2018; Sehgal et al., 2018; Smith et al., 2019). A first 
multi-year field trial at a climate analogue site experienc-
ing weather conditions, similar which has been predicted 
in year 2095 for Malawi, has also provided strong evidence 
that the amount of Fe significantly declines in common 
beans under drought conditions (Hummel et al., 2018). In 
contrast, when 20 bean varieties were tested, a significant 
increase in Zn, due to drought stress, has been measured 
(Hummel et al., 2018). While changing climatic condi-
tions might, therefore, result in increased Zn-levels in fu-
ture bean servings, these servings possibly have a lower Fe 
content and a higher amount of undesirable antinutrients, 
such as PA (Hummel et al., 2018; Nelson et al., 2018).

PA is the most abundant phosphorylated derivative of 
myo-inositol and the main storage form of phosphorus 
in the seed. PA also plays an important function in reg-
ulating different cellular processes and also limits oxida-
tive stress (Sparvoli & Cominelli, 2015). The amount of 
PA, dependent on the phosphate concentration, mainly 

accumulates in the bean seed and in the cotyledons (95–
98%), with only a small quantity found in the embryo and 
the seed coat (Blair, Herrera, et al., 2012). PA is further 
negatively charged and a strong mineral cation chelator. 
Any increase in the PA amount due to drought/heat con-
ditions is, therefore, of great concern. In experiments car-
ried out in the field with different common bean varieties 
under rain-fed and drought conditions, representing con-
ditions forecasted by 2050 for south-eastern Africa by the 
EcoCrop climate impact modelling system, a significant 
increase in the PA amount in common beans exposed to 
drought stress was already found. This increase was from 
0.96% under rain-fed conditions to 1.16% under drought 
conditions. Fe, Zn and PA under drought stress conditions 
at the field site were further influenced by weather condi-
tions rather than genotype (variety) (Hummel et al., 2018). 
The underlying physiological basis for the PA increase 
under drought stress is, however, not well studied.

Since data are overall still contradicting and only based 
on a small number of lines and varieties tested, more in-
depth investigations are urgently required to more exactly 
determine how drought and heat-associated reductions 
in yield also affects the nutrient quality of common bean 
seeds and the PA content. Such more detailed investiga-
tions should be carried out, however, not only under com-
bined drought and heat stress conditions in a greenhouse 
but also under natural field conditions to more precisely 
determine the effect of intense natural drought/heat con-
ditions on minerals and antinutrients.

4.2  |  Mineral uptake and bioavailability

Fe accumulation is highest in leaves with increasing 
ferritin synthesis during plant development (Zielińska-
Dawidziak, 2015). Ferritin functions as the main Fe-
storing protein in the seeds of legumes, which has 
traditionally been the source of plant-derived ferritin 
(Marentes & Grusak, 1998). Relatively little is, however, 
currently known about Fe uptake and regulation in leg-
umes, in particular under drought/heat stress conditions. 
This is despite several articles having recently reviewed 
Fe uptake and transportation in plants in general (Curie 
& Mari, 2017; Kobayashi & Nishizawa, 2012; Thomine & 
Vert, 2013). A large number of likely transport protein can-
didates have been already identified in legumes as more 
genome and transcriptome data of various legumes are 
becoming available. Members of the NRAMP, YSL, VIT 
and ZIP transport families have higher expression in leg-
ume root nodules. These members likely play a role in the 
transport of Fe across symbiotic membranes (Brear et al., 
2013). The application of fertilizers, either to the soil or as a 
foliar spray, also significantly increases the accumulation 
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of nutrients in the seed, but transport is hampered by lim-
ited mobility in the phloem sap (Bindraban et al., 2015).

Nutrients can be further relatively immobile, not only 
in plant tissues, but also in the soil. This immobility af-
fects their transport within the phloem. A greater rooting 
depth is generally required for plants to access from the 
soil sufficient amounts of minerals (Maillard et al., 2015). 
Transporters, which are essential for the uptake of miner-
als from the rhizosphere, have been characterized in com-
mon beans (Castro-Guerrero et al., 2016). Fe and ferritin 
further accumulate in separate cellular locations in bean 
seeds. Fe primarily accumulates in the cytoplasm of cells 
surrounding the pro-vascular tissue, while ferritin, the 
major Fe-storing protein in legume seeds, accumulates in 
the amyloplast, as found for peas (Cvitanich et al., 2010; 
Marentes & Grusak, 1998). In common bean seeds, only 
15% to 30% of total Fe is, however, ferritin bound. An ex-
cess of Fe and osmotic stress increases ferritin expression 
in common beans (Hoppler et al., 2014), but ferritin does, 
overall, not contribute much in the provision of Fe.

IRT-like transporters are further involved in the uptake 
of both minerals that are then mobilized to the shoots via 
the xylem and then delivered to developing tissues, includ-
ing seeds, exclusively via the phloem (Hindt & Guerinot, 
2012; Khan et al., 2014; Sinclair & Krämer, 2012). Fe up-
take regulation is under the control of two transcriptional 
networks, FIT (At2g28160) and PYE (At3g47640), while 
Zn uptake requires bZIP transcription factors (Hindt & 
Guerinot, 2012; Sinclair & Krämer, 2012). The common 
bean genome contains putative homologs for the com-
ponents of the networks (Phvul.005G130500/FIT1-like; 
Phvul.002G099700/IRT1-like; Phvul.003G086500/OPT3-
like; Phvul.011G035700/bZIP23-like) (Castro-Guerrero 
et al., 2016). Furthermore, an Arabidopsis protein local-
ized in the phloem, OPT3, is a component of the shoot-to-
root signalling network. This protein, not yet characterized 
in more detail in common beans, passes on the Fe status in 
leaves to roots and opt3 mutants accumulate more Fe and 
Zn in roots and leaves (Mendoza-Cózatl et al., 2014).

The presence of antinutritional compounds, such as 
PA and polyphenols, limits the bioavailability of min-
erals (Glahn et al., 2017; Petry et al., 2010; Tako et al., 
2014). By adversely affecting the absorption of minerals, 
PA decreases the bioavailability of these minerals and, 
as a consequence, negatively impacts the nutritional 
value of seeds (Petry et al., 2015). The amount of PA 
has been further positively correlated with amounts of 
non-ferritin bound Fe (DeLaat et al., 2014). Polyphenols 
are also highly interconnected with mineral amounts 
(e.g. Fe). They are further involved in resistance to dif-
ferent types of stresses, in part due to their antioxidant 
properties (Herrera et al., 2019). A major obstacle to 

Fe biofortification in common beans is, therefore, low 
Fe absorption due to the presence of polyphenol(s) 
(Ganesan & Xu, 2017). Different subclasses of such poly-
phenols are present in common beans, mainly located 
in the seed coat. Although some polyphenols, such 
as kaempferol, kaempferol 3-glucoside, catechin and 
3,4-dihydroxybenzoic acid, are able to promote Fe up-
take, at least in an in vitro system, others have a strong 
inhibitory effect. This outweighs the effect of those 
compounds promoting an increase in Fe uptake (de 
Figueiredo et al., 2017; Hart et al., 2015). Unfortunately, 
to our knowledge, a serious gap is still the lack of any 
bean breeding programme specifically targeting poly-
phenols for reduction of any negative effects these poly-
phenols have particularly on Fe bioavailability and how 
drought/heat stress can affect this process.

5   |   BREEDING USING “OMICS” 
TOOLS

Previous common bean research work, particularly on 
drought/heat tolerance, focused mainly on investigating 
and characterizing agro-morphological traits to identify 
bean lines with better plant growth under these stresses. 
Several different traits, for example pod harvest index, 
were thereby found to be associated with drought toler-
ance (Polania, Rao, et al., 2016). “Omics” tools (genom-
ics, transcriptomics and proteomics) have been, or are 
currently, applied to identify and characterize genes and 
genome sequences in common bean plants that are in-
volved in drought/heat stress tolerance or mineral pro-
duction. These activities are aimed to produce improved 
common bean material for drought/stress tolerance and 
higher mineral content. A recent review has highlighted 
the achievements in common beans by applying “omics” 
tools (Nadeem et al., 2021).

Most of the recent/current advances made by applying 
“omics” tools were/are only achievable due to the publi-
cation of the common bean genome sequence (Schmutz 
et al., 2014; Vlasova et al., 2016). In contrast to the Andean 
common bean genome with an estimated size of 587 mega 
base pairs (Mbp) with ~27 thousand genes (91% clustered 
in synteny blocks with Glycine max), the Mesoamerican 
genome is 549.6 mega base pairs in size with ~30 thousand 
genes and 94% of which has been functionally annotated 
(Vlasova et al., 2016). The availability of the common bean 
sequence in 2014 has further offered the opportunity for 
better understanding drought adaptation and tolerance in 
common beans. However, previous studies never focused 
on a deeper level on any possible link between mineral 
accumulation and availability and drought/heat stress.
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5.1  |  Quantitative trait loci (QTL) 
identification

5.1.1  |  QTLs for drought tolerance

Advances in genetic investigation using genomics paved 
in common beans the way not only to better understand 
genetic variation, for example within the European com-
mon bean germplasm and to trace its divergence from 
the American germplasm (Bellucci et al., 2021; Caproni 
et al., 2020; Lioi & Piergiovanni, 2013) but also for the 
identification and characterization of quantitative trait 
loci (QTL) related to agronomic and nutrient traits. QTL 
analysis generally links phenotypic and genotypic data. In 
particular, numerous QTL studies in common beans have 
been carried out to identify specific traits linking abiotic 
stresses—including drought—to agronomic traits of inter-
est such as plant size, seed yield and flowering time. These 
approaches rely on the genetic analyses on crosses of sus-
ceptible x tolerant parental common bean genotypes, be-
longing to either a single gene pool, or both the Andean 
and Mesoamerican gene pools (Nadeem et al., 2021). The 
resulting population is then used to construct genetic link-
age maps. The resolution of these maps has considerably 
improved over the years. Based on these maps, an increas-
ing amount of genetic markers including microsatellites 
and single-nucleotide polymorphisms (SNPs), a variation 
at a single position in a DNA sequence, have been recently 
developed (Leitão et al., 2021; Sedlar, Kidrič, et al., 2020; 
Sedlar, Zupin, et al., 2020). Particularly, mining in com-
mon beans QTLs affecting field performance and nutri-
ent value under drought will be still crucial in the future 
design of molecular tools for marker-associated selection 
(MAS). Mining will also be crucial for the identification 
of possible molecular targets important for gene editing 
(GE) approaches, as recently described for wheat grown 
in dry and hot environments (Tura et al., 2020). QTLs re-
lated to yield, flowering time as well as days to maturity, 
were specifically identified in common beans based on 
the genetic analysis of a Mesoamerican x Mesoamerican 
drought-tolerant x susceptible cross (Blair, Galeano, et al., 
2012). In addition, QTLs related to seed yield and flower-
ing time have been recently identified after crossing two 
Andean genotypes reacting differently to drought stress 
(Dramadri et al., 2019). Three loci related to seed yield 
per plant (Syp1.1, Syp1.2, Syp2.1) are of specific interest 
for yield-oriented MAS under drought stress with Syp1.1 
emerging as a master regulator of yield under drought 
(Sedlar, Zupin, et al., 2020; Trapp et al., 2015). Moreover, 
a great number (189) of QTLs have been found related to 
seed weight and 33 QTLs related to yield. Many of these 
QTLs are within—or in proximity—to genes known 
to be involved in primary or specialized metabolism 

(Valdisser et al., 2020). Finally, a stable QTL related to 
yield (Yd4.1) has been recently identified in a common 
bean BAT881 × G21212 RIL population tested in field tri-
als across four different locations in Colombia. This QTL 
is not only associated with drought stress, but also to phos-
phorus and Al stress. The molecular function of Yd4.1 is, 
however, still unknown (Diaz et al., 2018).

Further, SNPs determination in common beans al-
lowed to annotate a SNP to a gene related to drought tol-
erance. This SNP is related to biosynthesis of proline, a 
well-known osmotic protector (Villordo-Pineda et al., 
2015). A most recent SNP analysis under drought con-
ditions also identified SNPs for processes responsive to 
drought stress. These processes included stomatal reg-
ulation, protein translocation across membranes, redox 
mechanisms, hormone as well as osmotic stress signalling 
(Leitão et al., 2021). A further more recent whole-genome 
resequencing-derived SNP dataset applied for a genome-
wide association analysis identified 12  loci. These loci 
were significantly associated with survival after drought 
stress at the seedling stage. They also confirmed the 
drought-related function of an aquaporin gene (PvXIP1;2) 
located at Locus_10 (Wu et al., 2021). Finally, a good ex-
ample of what can be achieved by applying the QTL tech-
nology in legumes has been recently shown for chickpea 
and cowpea. Genetic physical maps were developed and 
QTLs including “QTL-hotspot” regions containing QTLs 
for several drought tolerance traits were identified. This 
analysis has already resulted in 29 new cowpea varieties 
developed and the production of 20,353 t of certified seeds 
which have been planted on about 508,825 ha (Varshney 
et al., 2019).

5.1.2  |  QTLs for mineral (Fe) content

Studies about the genetic basis of common bean seed 
composition have so far mainly focused on minerals, such 
as phosphorus, Fe and Zn, due to their problems related 
to deficiency in human diets. Identification of QTLs was 
thereby based on the application of both inter and intra-
gene pool populations (Casañas et al., 2013). A recent 
genome-wide association studies (GWAS) resulted in the 
identification of quantitative trait nucleotides (QTNs) as-
sociated with seed content of nitrogen, phosphorus, Ca, 
Mn and Zn, while no significant associations were found 
for Fe content (Gunjača et al., 2021). In contrast, Blair, 
Galeano, et al. (2012) found numerous QTLs, also related 
to Fe, although usually found to be population or environ-
ment specific. QTLs associated to seed phosphate content 
have been identified in a RIL common bean population 
(intragene pool Andean x Andean) on chromosomes Pv02, 
Pv05, Pv06, Pv05 and Pv11, with additional PA-related 
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QTLs on Pv04 and Pv08 (Cichy et al., 2009). P-QTLs de-
rived from the analysis of intergene pool populations 
(Mesoamerican x Andean). Loci associated to seed phos-
phate and total phytates were identified on Pv02, Pv03, 
Pv04, Pv06, Pv10 and Pv11 (Blair, Galeano, et al., 2012). An 
intergene pool study based on a Mesoamerican × Andean 
cross further identified QTLs associated with both Fe and 
Zn content. QTLs were scattered along chromosomes 
Pv03, Pv04, Pv06, Pv07, Pv08, Pv09, with a cluster of 5 on 
Pv11 (Blair et al., 2010). Furthermore, overlapping Fe and 
Zn-QTLs were identified on a linkage group located on 
Pv06, alongside QTLs located on Pv03, Pv04, Pv07, Pv08 
and Pv11 (Blair et al., 2010). A recent meta-analysis, con-
ducted on the cited literature, finally reduced the origi-
nal set of detected QTLs into a set of 12 QTLs, with two 
QTLs specific for Fe and Zn, and 8 QTLs related to both 
(Izquierdo et al., 2018).

Interestingly, a recent study has presented the first 
common bean MAGIC population of the Mesoamerican 
gene pool (Diaz et al., 2020). The study allowed the iden-
tification of different genomic regions associated with 
yield, mineral accumulation, phenology and physiological 
traits under drought conditions. Moreover, major QTLs 
controlling more than one trait, even in different seasons, 
and candidate genes for major QTLs were identified. This 
study now provides interesting data for the development 
of advanced breeding tools. In a further recent develop-
ment, optimal contributions selection was applied to de-
sign common bean crossings within four market groups 
with relevance for East Africa. Genomic estimated breed-
ing values were thereby predicted for grain yield, cooking 
time, Fe, and Zn in an African bean panel of 358 genotypes 
in a two-stage analysis. Such genomic selection using 
optimal contributions selection will possibly accelerate 
breeding of high-yielding, biofortified, and rapid cooking 
African common bean cultivars (Saradadevi et al., 2021).

5.2  |  Biotechnology

“Biotechnology” to improve common beans was already 
suggested in 2003 (Svetleva et al., 2003). Plant biotech-
nology generally allows precise genetic changes by in-
tegrating, for example, an identified and characterized 
gene providing a beneficial trait into the plant genome 
or to change a gene inside a plant by genome editing (Du 
et al., 2016). The process to obtain either a transgenic 
genetically modified plant (GMO) or gene-edited plants 
generally involves as tools application of plant trans-
formation to insert a gene sequence, in vitro culture of 
transformed plant tissues as well as whole plant regen-
eration. Although potential genes for transformation are 

known, due to an available sequenced common bean ge-
nome with 94% of genes functionally annotated (Vlasova 
et al., 2016) allowing to identify target genes for any de-
sirable trait modification, efficient bean transformation 
to obtain transformed modified plants has still technical 
limits. Common bean transformation is by far not a rou-
tine approach, as in other species (De Paolis et al., 2019). 
However, first examples of possible successful genetic 
modification of common beans include overexpression 
of a methionine-rich storage albumin from Brazil nut 
in transformed bean plants after particle bombardment 
of the apical meristematic region of embryos for gene 
transfer (Aragão et al., 1999). Expression of the barley 
(Hordeum vulgare) late embryogenesis abundant protein 
(HVA1) in transformed common beans is a further ex-
ample where the method of particle bombardment of the 
shoot meristem for transformation was applied (Kwapata 
et al., 2012). Produced transformed plants were more 
drought-tolerant due to longer roots. These examples 
provide overall evidence that plant transformation is, in-
deed, applicable for bean biofortification.

5.2.1  |  Genes and drought/heat 
stress tolerance

Blair et al. (2011) already characterized 4219 uni-
genes from cDNA libraries prepared from contrasting 
drought-treated common bean genotypes. By apply-
ing suppression subtractive hybridization (SSH) and 
a whole-genome protein database for target hits, tran-
scription factors (NAC and AP2-EREBP family) and 
genes involved cell metabolic processes and present in 
photosynthesis were further identified to be involved 
in the drought response of common bean (Müller et al., 
2014; Recchia et al., 2013; Wu et al., 2016). Table 2 shows 
a selection of genes which have been so far investigated 
regarding drought stress in common beans. When fur-
ther drought responsive genes in leaf and root tissue 
of common bean were investigated by RNA-Seq, genes 
were predominantly involved in oxidative stress. This 
suggests a tolerance mechanism based on reduction 
of damage from reactive oxygen species (Pereira et al., 
2020). Orthologues of the soybean Hsp20 genes are fur-
ther up-regulated in response to drought and salinity 
stress (Lopes-Caitar et al., 2013). López-Hernández and 
Cortés (2019) recently identified in common beans by 
coupling genome–environment associations with last-
generation genome wide association study algorithms 
candidate genes including HSP20, but also MED23, 
MED25, HSFB1 and HSP40 that are directly linked to 
heat-responsive pathways. Additional candidate genes 
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T A B L E  2   Stress responsive genes and their function in common beans

Study Function Description
Dry bean 
accession

Homologue 
accession/ species

Transcriptome analysis of differentially 
expressed genes in roots of BAT 447 
under drought stress during development 
(Recchia et al 2013)

NAC transcription 
factor (TF)

NAC domain protein, 
IPR003441

|75749297| |224088037| Populus 
trichocarpa

NAC4 protein |75748424| |62546189| Glycine max

NAC domain protein |75749318| |224088037| P. 
trichocarpa

NAC domain protein |75748418| |187940303| G. max

DREB TF Fe-S cluster assembly protein 
DRE2 homolog

|75749717| |292630743| G. max

DREB |75748469| |32480821| G. max

ERF TF Ethylene-responsive element 
binding factor 4

|75749028| |190361165| G. max

Transcription factor EIL2 |75749407| |18643339| Vigna radiate

bHLH TF Coiled-coil-helix-coiled-coil-
helix domain containing 
protein

|75749257| |66947630| Medicago 
truncatula

bZIP TF Transcription factor bZIP70 |75749123| |145652341| G. max

Leucine-rich repeat protein |75748580| |223452524| G. max

TGA-type basic leucine 
zipper protein

|75748298| |15148922| Phaseolus 
vulgaris

F-box/LRR-repeat protein, 
putative

|75748883| |255558466| Ricinus 
communis

MYB MYB transcription factor 
MYB185

|75748729| |110931684| G. max

GATA-factors GATA transcription factor, 
putative

|75748743| |255572876| R. 
communis

WRKY family WRKY36 |75748775| |151934195| G. max

Ubiquitous factors 
TFIIA e Sp1

Transcription initiation 
factor ia, putative

|75748702| |255566898| R. 
communis

IAA (auxin-
responsive)

Auxin-responsive protein 
IAA1, putative

|75748737| |255552973| R. 
communis

Auxin-responsive family 
protein

|75748789| |15226425| Arabidopsis 
thaliana

GRAS GRAS family transcription 
factor

|75748648| |224106445| P. 
trichocarpa

GRAS family transcription 
factor

|75749650| |224106445| P. 
trichocarpa

Heteromeric 
factors

Transcription factor CCAAT |75748712| |193237557| Lotus 
japonicas

eIF2—alpha 
family

Translation initiation factor 
EIF-2b

|75748325| |255544025| R. 
communis

Eukaryotic translation 
initiation factor 5A

|75748617| |20138704| Manihot 
esculenta

Zinc finger C2-H2 zinc finger protein |75749674| |161087182| G. max

( Continues)
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Study Function Description
Dry bean 
accession

Homologue 
accession/ species

Transcriptome analysis of differentially 
expressed genes in BAT 447 under drought 
stress during flowering (Müller et al. 2014)

Uncharacterized protein 
LOC100305788

|351721030| G. max

Oxygen-evolving enhancer 
protein

|358344003| M. 
truncatula

Chlorophyll a/b binding 
protein type II

|16805332| G. max

Hypersensitive induced 
reaction protein 1

|354683205| G. max

Invertase/pectin 
methylesterase inhibitor 
family protein

|297310623| Arabidopsis 
lyrata

Auxin-repressed protein |357446689| M. 
truncatula

Predicted: 40S ribosomal 
protein S17-4

|356521554| G. max

Transcriptome analysis of differentially 
expressed genes in BAT 447 under 
drought stress during grain filling 
(Müller et al. 2014)

Predicted: 40S ribosomal 
protein S16-like

|356524632| G. max

Leucine zipper protein |357491217| M. 
truncatula

Unknown |388517649| L. japonicus

Predicted: cell wall/vacuolar 
inhibitor of fructosidase 
1-like

|502150782|Cicer 
arietinum

NAD-dependent isocitrate 
dehydrogenase

|3790188| Nicotiana 
tabacum

Predicted: RING-H2 finger 
protein ATL66-like

|356539989| G. max

Transcriptional analysis of drought induced 
genes in the roots of BAT 477 (Recchia 
et al. 2013)

Cellular 
metabolism

Pyruvate decarboxylase, 
putative

|255579310| R. 
communis

Malate dehydrogenase-like 
protein

|83283965| Solanum 
tuberosum

Glyceraldehyde-3-phosphate 
dehydrogenase

|255638912| G. max

Glutaredoxin-1, grx1, 
putative

|255540625| R. 
communis

Biological 
processes

Spliceosomal complex |224094081| P. 
trichocarpa

Methionine 
adenosyltransferase

|75304713| Phaseolus 
lunatus

S-adenosylmethionine 
decarboxylase

|156181612| P. vulgaris

Methionine 
adenosyltransferase

|75304713| P. lunatus

Abiotic stress 
response

Interferon-related 
developmental regulator 
family protein

|42571665| A. thaliana

Light-inducible protein 
ATLS1,

|192910730| Elaeis 
guineensis

T A B L E  2   (Continued)
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involved in the response of common bean to water defi-
cit (drought) conditions were very recently identified 
from a collection of more than 150 Portuguese common 
bean accessions (Leitão et al., 2021).

5.2.2  |  Genes and mineral (Fe) content

“Omics” tools have also been applied in order to increase 
the mineral content and bioavailability of common 

Study Function Description
Dry bean 
accession

Homologue 
accession/ species

Group 3 late embryogenesis 
abundant protein

|75708857| P. vulgaris

Proline-rich protein |806310| G. max

LEA5 |1732556| G. max

LEA protein |1350522| Picea glauca

LEA5 |1732556| G. max

Biotic stress 
response

Isoflavone synthase 1 |184202203| Vigna 
unguiculate

Isoflavone synthase 1 |184202203| V. 
unguiculata

PvPR2 |130835| P. vulgaris

Transport Plastidic phosphate 
translocator-like protein1

|61651606| 
Mesembryanthemum 
crystallinum

Cation:cation antiporter |255587991| R. 
communis

ATP binding protein, |255552798| R. 
communis

Calcium ion binding |255637247| G. max

Transcriptional response to drought stress in 
roots and leaves of drought-susceptible 
and drought tolerant common bean 
genotypes (Pereira et al. 2020)

Aquaporin NIP Phvul.006G171000

Peripheral-type 
benzodiazepine receptor 
and related proteins

Phvul.001G205900

DNAj homolog subfamily c 
member

Phvul.006G060700

Beta-fructofuranosidase Phvul.005G158500

Class IV chitinase, 
insoluble isoenzyme 
WINV1-related

Phvul.005G155800

Protein phosphatase 2C Phvul.001G075400

Glutathione S-transferase Phvul.008G113700

Heat shock transcription 
factor

Phvul.007G061800

Late embryogenesis 
abundant (LEA) group 1

Phvul.007G259400

Linoleate 13S-lipoxygenase. Phvul.002G228700

MYB-like DNA-binding 
domain

Phvul.002G184600

No apical meristem (NAM) 
protein

Phvul.005G084500

NADH 
oxidoreductase-related

Phvul.003G131500

Peroxidase Phvul.009G140700

Glycosyl hydrolase family 10 Phvul.009G120500

T A B L E  2   (Continued)
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beans. The first important step in lowering the pro-
duction of PA in common beans has been the isolation 
and sequencing of genes involved in PA biosynthesis 
and transport (Fileppi et al., 2010; Panzeri et al., 2011). 
Recently, additional putative biosynthesis and transport 
genes have been further identified (Cominelli et al., 2017; 
Cominelli, Pilu, et al., 2020). The availability of this data 
will now allow new cutting-edge innovative research, 
including epi-genomics and translatome analysis. Two 
identified allelic common bean mutants, affecting the 
PvMRP1 PA transporter, caused a 75–90% reduction in 
the PA content (Campion et al., 2009; Cominelli et al., 
2018; Panzeri et al., 2011). Particularly, the mutant bean 
line, lpa1, has a 25% reduction in raffinosaccharides, the 
sugars causing flatulence. The biosynthesis of these sug-
ars is strictly linked to the biosynthesis of PA. A study 
with human volunteers further found that seeds from 
the lpa1 mutant line provides better Fe absorption, com-
pared to a non-mutant line (Petry et al., 2014). When ap-
plied in common household recipes, lpa1 mutant seeds 
had, however, a lower retention of Zn. Due to a hard-
to-cook phenotype, associated with the increased ther-
mal stability of lectins in the lpa1 mutant lines, adverse 
gastrointestinal symptoms occurred (Petry et al., 2016). 
The effect of the lpa1 mutation on thermal stability of 
seed lectins is, however, only problematic in a genetic 
background which contains phyto-hemagglutinin L. In 
contrast, no significant effect on thermal stability has 
been found when the genetic background contains both 
phyto-hemagglutinin-L and phyto-hemagglutinin E, 
which most common bean genotypes have (Cominelli, 
Galimberti, et al., 2020; Cominelli, Pilu, et al., 2020).

When developing lpa mutants, the essential role of 
PA as regulator of cellular processes in plant vegetative 
tissues has to be considered in order to avoid important 
undesirable pleiotropic effects (Sparvoli & Cominelli, 
2015). Importantly, the common bean lpa1 mutant has 
no reduced germination or any reduced plant growth 
and fertility. Still lacking is, however, a much more de-
tailed morphological/physiological evaluation of such 
common bean lpa1 mutants. Cereal lpa mutants, the 
first lpa mutants isolated, have received so far very little 
interest. They are affected in the transporter orthologues 
of PvMRP1 (Colombo et al., 2020; Sparvoli & Cominelli, 
2015). These cereal mutants have further a reduced yield 
(5–10% decrease) and non-optimal field performance 
(Raboy, 2020). In contrast, the lpa1 common bean mu-
tant has no such negative agronomic effects under field 
conditions (Campion et al., 2009; Chiozzotto et al., 
2018). However, field studies are urgently required to 
assess the potential of this mutant particularly under 
field conditions in much more depth. They would be 
also interesting for breeding programmes aimed to 

develop beans with increased mineral bioavailability 
and mineral content as well as lower concentrations of 
certain polyphenolic compounds (Hummel et al., 2020). 
Molecular markers for the lpa1 and also lpa12 bean mu-
tants have been already developed. Such markers can 
now be applied in marker-assisted selection of common 
bean breeding lines as well as the evaluation of the per-
formance of such lines with either individual or com-
bined traits (Cominelli et al., 2018; Panzeri et al., 2011). 
However, some concern with the use of lpa beans still 
exists. PA, as a broad-spectrum antineoplastic agent, can 
act in cancer development and progression (Vucenik, 
2019), despite the fact that no phytate has been detected 
in human biofluids (Wilson et al., 2015). Consequently, 
lpa beans may be particularly useful in areas where mi-
cronutrient deficiencies are prevalent. In contrast, crops 
with high amounts of phytates can also be beneficial for 
health in societies that have in their diet sufficient Fe 
available, but where both obesity and cancer are on the 
rise (Blair, 2013).

The exact role and function of PA in drought/heat 
tolerance is, however, still unclear. So far only known 
is that some low phytic acid (lpa) mutants are more 
drought sensitive (Cerino Badone et al., 2012). An 
Arabidopsis thaliana mrp5 mutant (an lpa mutant; Nagy 
et al., 2009) and common bean lpa1 mutants, affected in 
the AtMRP5 and PvMRP1 orthologous genes, have so far 
found to have some better drought tolerance (Chiozzotto 
et al., 2018; Colombo et al., 2020; Klein et al., 2003). 
Arabidopsis mrp5-1 mutant rosette leaves have, in this 
regard, closer stomata to prevent water loss, and have 
a reduced transpiration rate and improved water use 
efficiency (Klein et al., 2003).. More drought tolerance 
of the common bean lpa1 mutant is also evident under 
symbiosis. Transcriptional data provide evidence of 
higher expression of stress-related genes in the nodules 
and bacteroids of lpa1 mutants when compared to nod-
ules from non-mutant plants (Chiozzotto et al., 2018).

Finally, results with the lpa1 mutant plants now open 
a new perspective in obtaining mineral improved com-
mon bean varieties. These varieties should not only bet-
ter cope with drought/heat stress but also provide beans 
with a low PA content (Raboy, 2020). Introgression of 
these mutations into cultivated bean varieties is, conse-
quently, a current major research task (Campion et al., 
2009; Cominelli et al., 2018; Mulambu et al., 2017). This 
task also includes the evaluation of the performance of 
such lines, with either individual or combined traits, 
under environmental stress conditions. Common beans 
cooking and nutritional properties will also be evalu-
ated in more depth in a quest to develop bio-fortified 
common bean lines devoid of negative traits (Cominelli, 
Galimberti, et al., 2020).
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5.2.3  |  Gene editing

Genome editing (GE) applying the clustered regula-
tory interspaced short palindromic repeats editing 
(CRISPR)/Cas system have already been applied to edit 
certain target genes in legumes (Bhowmik et al., 2021; 
Ji et al., 2019; Liu et al., 2019). GE is currently an ef-
fective “omics”-based tool in the manipulation of traits 
in crops (Du et al., 2016; Tiwari et al., 2020). While 
CRISPR is usually considered as a tool to generate dou-
ble strand breaks, and consequently generate knock-out 
mutations, the modular nature of the CRISPR technol-
ogy allows alteration of transcriptional activity, or epi-
genetic status, at a chosen target site (Lee et al., 2019). 
This can be achieved with a nuclease-deficient version 
system (dCas9), which can be tied to a diverse array of 
epigenetic effector domains for site-specific epigenetic 
modifications (Pulecio et al., 2017). The current ad-
vancements and limitations of GE, particularly in or-
phan crops, have been recently discussed by Venezia 
and Creasey Krainer (2021). Innovative techniques, 
such as GE and speed breeding, might effectively also 
shorten the time to develop drought-resilient common 
beans and consequently limit any risk of global food in-
security (Bhowmik et al., 2021). In particular, the de-
velopment of alternative lpa common bean mutant lines 
by applying GE could prove valuable in the pursuit of 
improving specifically the nutritional value of common 
beans. Mutations in the rice OsSULTR3;3 gene, encod-
ing type-3 sulphate transporters, have already resulted 
in rice lpa mutants that, in addition to reduced levels 
of PA, had changes in the amount of a broad spectrum 
of compounds such as amino acids, organic acids (e.g. 
citric acid) and other nutritionally relevant compounds 
including γ-aminobutyric acid (Zhou et al., 2018).

6   |   AREAS FOR FUTURE 
EXPLORATION

To achieve the overall goal of higher common bean yield 
and dietary quality under changing climatic conditions 
will certainly require the establishment and application of 
an integrated research framework. This framework should 
consist of genomics, systems biology, physiology, as well 
as modelling and breeding (Palit et al., 2020). Recent ad-
vances in sequencing and phenotyping methodologies, the 
rapidly emerging genetic and genomic resources as well as 
integrated crop modelling and predictions of climate im-
pacts, supports the establishment of a framework also for 
common beans. Exploring in more depth how landraces 
cope with drought/heat stress and why they seemingly 
have a higher mineral content (especially Fe and Zn) and 

protein than modern varieties (Celmeli et al., 2018) and 
how to produce more efficiently GMOs should also be part 
of the research activities. In addition, production of more 
annotated genomes will be very helpful to support any 
future transcriptomic, proteomic as well as epi-genomic 
data-mining efforts (Li et al., 2017). Finally, exploring the 
interesting idea of common bean rewilding, which is the 
reintroduction of specific traits from wild lines into the 
genetic background of commercial cultivars, should be 
part of the activities. Although whole-genome sequence 
data exist for numerous legume species, including com-
mon bean, next-generation sequencing (NGS)-driven im-
provements have not kept pace with that of cereal crops 
(Rehman et al., 2019). NGS would, for example, support 
the rewilding idea. Rewilding will specifically address the 
loss of diversity during the bean's domestication process 
and will possibly allow improving the bean's nutritional 
value and tolerance to stresses (Cowling et al., 2015).

6.1  |  Exploring drought/heat 
stress tolerance

For most grain legumes, breeders mainly investigated in 
the past consequences of drought/heat stress on above-
ground traits. However, investigating the relationship be-
tween below and above-ground traits by studying in the 
future in more depth will be an important aspect (Sofi 
et al., 2021). The application, specifically of proteomics as 
an “omics tool”, will particularly allow to explore proteins 
involved in drought/heat tolerance and mineral produc-
tion. Such proteomics studies will allow us to also investi-
gate how these proteins are regulated (Zargar et al., 2017). 
Furthermore, specific target genes require more in depth 
investigation. Genes include the orthologous forms of 
the Arabidopsis thaliana and Vitis vinifera MYB60 genes. 
These genes, not well characterized in common beans, 
have been already extensively characterized for their 
specific role in the modulation of stomatal movement 
(Cominelli et al., 2005; Galbiati et al., 2011). Other possi-
ble target genes to explore are regulatory genes controlling 
the expression of DREB genes and that are activated by 
drought stress (Marcolino-Gomes et al., 2014).

6.2  |  Improving mineral availability

An important future research priority is increasing min-
eral (Fe)-bioavailability in common beans. Fe biofortifi-
cation in common beans requires, however, adequate Fe 
partitioning between plant tissues. The Fe, and also Zn, 
uptake mechanism as well as mobilization to allocate 
more Fe and Zn into bean seeds is, therefore, an area to 
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be explored in more depth, particularly under drought/
heat stress conditions. Specifically, IRT-like transport-
ers involved in the mineral uptake can be thereby in-
vestigated. Since these transporters are also under the 
control of two transcriptional networks, these networks 
can be specifically characterized for how drought/heat 
stress affects these networks. Furthermore, isolation and 
characterization of the protein OPT3, a component of the 
shoot-to-root signalling network passing on the Fe status 
in leaves to roots, is a worthwhile target for more in depth 
investigation.

Different possible bio-fortification strategies to increase 
amounts of minerals have been already reviewed by White 
and Broadley (2009). Fe biofortication might also include 
the future isolation of common bean genotypes low in 
PA content. To our knowledge, no extensive variability 
for the PA trait, as found in mung beans (Dhole & Reddy, 
2015), has been so far described for common beans. Only 
two lpa mutants have been isolated and characterized in 
common beans (Campion et al., 2009; Chiozzotto et al., 
2018; Cominelli et al., 2018; Panzeri et al., 2011). Selection 
of more low PA bean mutant lines would, therefore, be 
a promising strategy to increase bioavailability of Fe, and 
also Zn (Petry et al., 2016; Raboy, 2020).

Efficient Fe accumulation in a bioavailable form is an 
interesting area to explore. Biofortification of edible plants 
by overexpression of a native ferritin gene applying the 
GMO technology is an interesting strategy to increase the 
Fe content in bean seeds. But, as shown in banana, a high 
ferritin concentration has to be achieved sufficient for food 
fortification (Yadav et al., 2017). In vacuoles, small Fe and 
Zn binding molecules, such as nicotianamine and organic 
acids (malate and citrate), have been further found as pos-
sible further targets for mineral biofortification (Hoppler 
et al., 2014). Mineral (Fe) bioavailability can, however, also 
be enhanced through improved processing procedures in-
cluding soaking, thermal treatments, fermentation and/
or germination. Combining popular traditions with inno-
vative treatments, such as germination, is, therefore, an 
interesting alternative strategy to pursue. Germination 
and fermentation are thereby useful for increasing the ac-
tivity of polyphenol-degrading enzymes and endogenous 
phytases, which limit the PA content (Carbonaro et al., 
2001). Heating promotes, for example, denaturation and 
hydrolysis of proteins, influencing chelating capacity and 
significantly modifies the bio-accessibility of minerals (de 
Oliveira et al., 2018). More research is, however, needed 
to establish the effect of such processing procedures on 
mineral (Fe) bioavailability.

Modification in protein solubility and digestibility is a 
further process which can be explored. Such modification 
will affect mineral bioavailability (Carbonaro et al., 2005; 
Iddir et al., 2019). Diet modelling would, likewise, be an 

excellent approach to also capture the complexity of a diet 
as a whole (Mertens et al., 2017). Another important com-
ponent is evaluating the effect of traditional cooking prac-
tices on the chemical- and nutritional composition of any 
selected bean lines. Further, evaluating how ingredients 
of traditional recipes can contribute to the composition 
of a balanced and a high nutritional-quality dish with a 
particular emphasis on minerals would be interesting to 
explore (Durazzo et al., 2019; López et al., 2013).

6.3  |  Controlling antinutrients

A future challenge is to explore how to obtain more Fe 
without affecting the amount of antinutrients and of non-
essential toxic elements, e.g. cadmium and nickel. These 
toxic elements, naturally present in trace amounts in the 
soil, enter the roots via the Fe-regulated transporter-1 me-
diated Fe/Zn uptake mechanism (Khan, Bouraine, et al., 
2014). If any possible increases in the Fe content will also 
affect the PA content, particularly under abiotic stress con-
ditions, has to be answered. Very few studies have so far 
investigated this aspect (Campos-Vega et al., 2010; Carbas 
et al., 2020). In addition, breeding material with specific 
polyphenol and tannin profiles should be developed with 
the aim to reduce their negative effect on Fe bioavailabil-
ity and to more clearly define their function in Fe bioavail-
ability. Also explored should be if antinutritional proteins, 
such as protease inhibitors, which are expressed as a re-
sponse to environmental stress, will influence the Fe con-
tent of common bean seeds (Farooq et al., 2018). Giuberti 
et al. (2019) already found that absence of phaseolin, the 
main reserve globulin in seeds, with presence of the α-
amylase inhibitor is a potential determinant for raising 
Fe, and also Zn, concentrations in common bean seeds. 
Introgression of the lpa mutation into the above genetic 
background is thereby an interesting idea to even allow 
greater improvement of Fe availability.

In summary, any mineral (Fe) optimized beans, which 
are developed in future bio-fortification programmes, 
should ultimately also resilient to stresses associated with 
climatic changes currently threatening future common 
bean production. Such newly developed common bean 
varieties should ideally maintain high yields but also have 
high amounts of minerals while having low amounts of 
antinutrients, such as PA, under drought/heat stress con-
ditions. So far, the impact of drought/heat stress on com-
mon bean yield in combination with the effect of stress 
also on the mineral content of beans has, unfortunately, 
not been extensively investigated, particularly not under 
any field conditions. Lack of such field investigations is 
a major hurdle in the development of common bean va-
rieties improved in drought/heat stress tolerance as well 
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mineral content. Such field investigations are, therefore, 
urgently required.
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