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Abstract: This work is dedicated to the characterization by Atomic Force Microscopy (AFM) of
Pseudomonas fluorescens, bacteria having high potential in biotechnology. They were first studied
first in optimal conditions in terms of culture medium and temperature. AFM revealed a more-or-
less elongated morphology with typical dimensions in the micrometer range, and an organization
of the outer membrane characterized by the presence of long and randomly distributed ripples,
which are likely related to the organization of lipopolysaccharides (LPS). The outer membrane
also presents invaginations, some of them showing a reorganization of ripples, which could be
the first sign of a bacterial stress response. In a second step, bacteria grown under unfavorable
conditions were characterized. The choice of the medium appeared to be more critical in the case of
the second generation of cells, the less adapted medium inducing not only changes in the membrane
organization but also larger damages in bacteria. An increased growth temperature affected both
the usual “swollen” morphology and the organization of the outer membrane. Here also, LPS likely
contribute to membrane remodelling, which makes them potential markers to track cell state changes.

Keywords: Atomic Force Microscopy; Pseudomonas fluorescens; Gram-negative bacteria; morphology;
bacterial surface; membrane; Lipopolysaccharide; stress

1. Introduction

Pseudomonas, a Gram-negative bacteria adapted to different environments and ecosys-
tems, are, therefore, ubiquitous in many habitats such as soils, sediments, plants and
animals as well as fresh and marine waters [1,2]. Pseudomonas species can be divided into
two groups, depending on whether they are fluorescent or not. Fluorescent species include
P. aeruginosa, P. putida and P. fluorescens, which are characterized by the production of high
levels of siderophores, such as the water-soluble yellow-green fluorescent pyoverdines.

P. fluorescens belongs to the plant-growth-promoting rhizobacteria (PGPR) [3,4]. These
bacteria colonize specific rhizospheres, stimulate a plant’s growth and protect it against
pathogenic microorganisms [5], improving crop yield [1]. Some strains have also been
shown to regulate the population density of the nematode Pratylenchus penetrans responsi-
ble for root damages [6]. In addition, P. fluorescens has a bioremediation potential through
the bioaccumulation and the degradation of compounds toxic for plants (metals for in-
stance), by increasing metal absorption by the roots [4,7,8]. Under iron-limiting conditions,
pyoverdines also chelate iron very efficiently and are, therefore, essential for proper func-
tioning of bacterial metabolism [9,10]. In addition, this bacterium contributes significantly
to the reduction in nitrates and nitrites [11], which are common groundwater pollutants.
Another interesting feature relies on P. fluorescens capacity to synthesize muporicin, a com-
petitive inhibitor of bacterial isoleucyl-tRNA synthetase. This antibiotic is active mainly
against Gram-positive bacteria including methicillin-resistant Staphylococcus aureus [12].
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All these properties make P. fluorescens interesting in the field of biotechnology [13], with
multiple applications in food, agriculture, health and environment [14]. At the same time,
the status of P. fluorescens as a non-pathogenic bacterium can be questioned, with some
strains being able to act as pathogens under specific conditions [15] [16].

All these observations underline the urgency of better characterizing Pseudomonas
species on the genomic, biochemical, physiological and morphological levels. In bacteria,
morphology affects critical biological functions, including fitness and stress resistance.
Studying bacterial morphology, therefore, appears necessary to better understand how
these microorganisms can adapt to different environments. P. fluorescens is able to sur-
vive in a wide range of experimental conditions, thanks to its large metabolic capacities.
The most common growth media used at the laboratory scale are rich and non-selective
such as Lysogeny Broth (LB) medium [17–20] or Mueller–Hinton (MH) medium [21,22].
P. fluorescens can also withstand a wide range of temperatures from 4 ◦C to 42 ◦C. How-
ever, modifying the growth temperature induces variations in the molecular structure
of lipopolysaccharides (LPS) of its membrane [23]. An increase in temperature can also
modify the attachment properties of P. fluorescens to a substrate or a host [24] and, therefore,
its capacity to form biofilms or to colonize and invade hosts.

The development of high-resolution imaging techniques including Transmission Elec-
tron Microscopy (TEM), Scanning Electron Microscopy (SEM), and Atomic Force Mi-
croscopy (AFM) have allowed great progresses in the characterization of the morphology
of diverse bacteria, including the Pseudomonas species [25–33]. AFM presents several ad-
vantages compared to the other high-resolution imaging techniques. This is a powerful
technique for imaging surfaces in a large range from µm2 to nm2 with a high spatial
resolution, and it also provides access to the mechanical properties of the system at a
nanometric scale. Moreover, contrary to TEM and SEM, information obtained by AFM
is available in real time and under physiological conditions, explaining its increasing use
for the characterization of biological systems [34–39]. In the context of the Pseudomonas
species, AFM imaging studies were often focused on pathogenic species, such as P. putida
and P. aeruginosa [25]. Surprisingly, despite the potential interest for biotechnology and
pathogenic capacities, only a few reports concern the characterization of P. fluorescens
morphology [25–33].

The present work aims at characterizing, by AFM, the P. fluorescens ATCC 13525 type
strain grown on solid medium, under optimal and stressful conditions. Here, AFM will be
used as a powerful tool to reveal subtle morphological changes when growth conditions
vary in terms of culture medium, temperature and incubation time.

2. Results and Discussion

The first part of our work is dedicated to the definition of the best conditions in terms
of suspensions used to prepare bacteria deposits. The objective is to obtain, on the same
samples, small aggregates and even individual cells with morphological characteristics
that can be more easily deduced. In a second step, we present the characterization of
P. fluorescens after its culture in validated optimal conditions, i.e., in MH medium kept at
28 ◦C [15,16] for 15 h. This last parameter will be justified in the third part, where AFM
was used to reveal the bacterial stress due to less favourable culture conditions.

2.1. Determination of the Optimal Bacterial Concentration in Suspensions for AFM

Even if the preparation of bacterial suspensions in water is the last step before imaging,
we begin the description of our work by this final step, since the dilution of these suspen-
sions (and, thus, the retained O.D. value) is an essential parameter determining the quality
of samples. Indeed, the AFM study cannot be managed using samples made of bacteria
multilayers or at a too-low bacteria density, obtained from overly or insufficiently con-
centrated solutions, respectively. The corresponding solutions were deposited by “simple
deposition” on glass slides and bare mica substrates, dried and characterized by OM and
AFM. Representative results are shown in Figure 1. As expected, the cell density decreased
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with decreasing O.D. values. At the highest O.D. value (Figure 1A,B), dense colonies were
observed, covering a large part of the surface of the substrate with the presence, locally, of
multilayers (white arrow, Figure 1B).
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Figure 1. OM (A,C,E) and AFM height (B,D,F) images of P. fluorescens deposits made by simple
deposition from suspensions at different O.D. values (O.D. = 1.0, images (A,B); O.D. = 0.5, images
(C,D); O.D. = 0.3, images (E,F)).

At the intermediate O.D. value (Figure 1C,D), the surface was widely covered, with
the coexistence of more or less dense areas and individual bacteria, without a multilayer.

At the lowest O.D. value (Figure 1E,F), bacterial deposits were sparse, with cell
aggregates of less than 10 cells as well as many isolated bacteria.

An O.D. value of 0.3 was finally retained, since it enabled us to observe, in a single
sample, bacterial populations showing various organizations, from more or less dense
areas to isolated cells, with this last configuration being ideal for morphological study.

2.2. Characterization by AFM of P. fluorescens Grown under Optimal Conditions
2.2.1. Morphology and Dimensions

Representative results are shown in Figures 2 and 3. In the case of a simple deposit
(Figure 2, top row), the bacterial population was dense and very compact. Such an organi-
zation is relatively frequent in the context of simple deposits favouring aggregation [37].
The rinsing step, performed by aspirating the solvent, could also promote it.

Almost similar results were obtained by spin-coating deposition (Figure 2, bottom
row), except that cells were slightly more loosely organized. This lower density is likely
due to the fact that most of the solvent is expelled during the rotation of the sample, shifting
the bacteria and separating the aggregated cells at the same time.

We then analysed more than 100 aggregated or isolated cells from different samples.
The shape of the P. fluorescens single cells was rather diverse, depending on their

location, whether isolated, at the edges or more in the centre of the aggregates: some of
them were elongated and relatively narrow (Figure 3A,B), whereas other ones were more
oval (Figure 3C) and rounded (not shown). In the case of aggregated cells, their shape was
affected by contacts with their neighbours, leading to more “geometric” shapes because of
stronger constraints.
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In the case of isolated bacteria, flagella most often remain attached to the cells (Figure 3)
and are numerous, as already reported [40,41]. This point is interesting, since E. coli
bacteria studied using a similar protocol most often appeared to lack their flagella. These
appendages are probably lost in the solution during sample preparation and are found
subsequently scattered on the surface of the substrate for E. coli [39].

Cell width and length could be deduced from the height profiles made along their
two axes, as illustrated in Figure 3E. Results are summarized in Figure 4, the typical length
and width being around 1.5–2.0 µm and 0.6–0.9 µm, respectively, in agreement with those
already reported [42]. Here, the isolated or aggregated organizations also impact the
dimensions: aggregated and, consequently, compressed cells are shorter (and/or narrower),
with a greater height than individual cells. This height increase is understandable if we
assume that the overall cell volume does not change depending on whether cells are
aggregated or not [39].
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2.2.2. Membrane Organization

An overall observation revealed that the surface of P. fluorescens bacteria presented
more or less circular invaginations (Figures 2 and 3). These invaginations (from one to five
per cell) were observed in the vast majority of bacteria, most often located on the median
axis of the bacteria. Based on the height profiles, typical depths are in the range of 5–70 nm,
with a diameter around 240 ± 90 nm and centre to centre distances around 500 nm. Such
invaginations have been already observed in other Gram-negative bacteria such as P. putida,
with similarities in terms of number and depth [25], or Chromobacterium violaceum [30]. In
the latter, invaginations were more numerous (more than 10 per cell), with an average
depth around 30 nm.

Another characteristic of P. fluorescens is the structuration of the outer membrane
surface, showing the presence of “worm-like” undulations made of relatively sinuous
tubes separated by grooves (Figures 3D and 5, where tubes and grooves appear as light
and dark areas, respectively). The width of these tubes is in the range of 55 ± 6 nm, and
the corresponding maximum height is approximately 10 nm. We have already observed
this kind of organization leading to a contrast in AFM topography and phase images in
a previous study on E. coli, another Gram-negative bacteria [39]. Such organization was
assigned to the coexistence of two phases with different mechanical properties: undulations,
called “ripples”, appearing light in height images, are probably made of well-organized
molecules, which make them rather rigid [39,43], whereas the surrounding phase, ap-
pearing in dark, is softer or even viscous, made probably of more fluid and/or relatively
disorganized molecules [44]. As the outer membrane of these bacteria is made at 75% of
LPS, these molecules were proposed to be responsible for this membrane structuration in
ripples [39,45–48].
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As illustrated in Figure 5, different organizations of these structures were observed
according to the probed cell. Ripples can be more or less long and organized, randomly
oriented or aligned (for some of them). In some cases, their length can largely exceed a
hundred nanometers (Figure 5E,F) and even approach a micrometer, in particular in the
case of aggregated cells (results not shown). These observations underline the inherent
heterogeneity of biological samples.

This heterogeneity is also visible in Figure 6, where three bacteria are imaged, two of
them being numbered 1 and 2. These bacteria share the same overall elongated morphology,
even if they have different volumes, with two invaginations at their surface (Figure 6A).
However, the corresponding AFM phase image (Figure 6B) shows a clear difference in
contrast between cells 1 and 2, the phase of cell 1 being lower than that of cell 2 (appearing
in dark and light, respectively). This suggests different membrane mechanical properties in
cells 1 and 2, in terms of Young’s modulus and viscoelasticity, with cell 1 being softer than
cell 2 [39,43].

Another interesting point is the correlation between the membrane organization and
invaginations: in the invaginations observed in cell 1 (Figure 6C,E), the ripples seem to
be segmented, shorter and converging to the deepest central zone of the invagination
(white arrows). They can also appear as quasi-spherical domains with a diameter in the
same range than the width of tubes (around 50 nm) and a height between 4 and 10 nm.
Such changes are also observed in one of the two invaginations of cell 2, at a lesser extent
(Figure 6F, as compared to Figure 6D).
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Figure 6. Relationship between membrane organization and invagination, shown by AFM images
obtained in air and in tapping mode. (A) The 3D topographic images of three bacteria. Characteristics
of cells numbered 1 and 2 are described in the main text; (B) corresponding phase image; (C–F) phase
images of areas in the red, grey, green and yellow squares in figure (B), respectively. White arrows
indicate the bottom of the invagination.

This correlation between invaginations and ripples organization has been observed in
other samples. Figure 7 shows three typical isolated bacteria having the same morphological
characteristics but differing in terms of invaginations. Cell 1 in Figure 7A–C did not show
any invagination on its surface, and its membrane is characterized by the presence of
“standard” long ripples, previously described on all its surface (Figure 7B,C). Cells 2
(Figure 7D–F) and 3 (Figure 7G–J) presented invaginations on their surfaces, where the
organization of membrane is modified with shortened and converging ripples. A last
important point has to be mentioned: cell 1 in Figure 6A and cell 3 in Figure 7H were
surrounded by material that likely corresponds to excreted vesicles. Such vesicles are the
sign of a stressed or not-healthy bacterium [49–51].

Our results, in parallel to previous studies, lead us to propose the following hypotheses.
The main part of P. fluorescens bacteria observed in our study presents invaginations at

their surface, except in rare cases (Figure 7A–C). As previously mentioned, such invagi-
nations have been already observed in other Gram-negative bacteria such as P. putida [25]
or Chromobacterium violaceum [30]. In this last case, the invaginations were assigned to a
bacterial stress and considered as a sign of a self-defence procedure induced in bacteria.
Following the same idea, Kang and co-workers showed, by SEM and TEM, an irregular
morphology and an inhomogeneity on the outer surface of P. fluorescens when it is stressed
in the presence of lactobionic acid [33].

At the single-cell level, the membrane organization differs according to the observed
area. In an area devoid of invagination, ripples are long and randomly oriented. In invagi-
nations, this organization can be maintained or modified with shorter ripples converging
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towards the centre of the invaginations. We have already observed such a reorganiza-
tion in the case of E. coli bacteria, when they are aged or stressed by their exposure to
nanoparticles [39]. These observations suggest that shorter ripples converging in the in-
vaginations could be a sign of a stressed state in P. fluorescens, whereas long and randomly
oriented ripples and the absence of any invaginations could be a distinctive feature of
unstressed bacteria.

Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 8 of 18 
 

 

in the case of E. coli bacteria, when they are aged or stressed by their exposure to nano-
particles [39]. These observations suggest that shorter ripples converging in the invagina-
tions could be a sign of a stressed state in P. fluorescens, whereas long and randomly ori-
ented ripples and the absence of any invaginations could be a distinctive feature of un-
stressed bacteria. 

When the converging organization of ripples is observed, it is often correlated to the 
presence of debris or vesicles around the cell. This suggests a process by degrees, where 
changes in ripples could be the first step of a membrane reorganization leading, finally, 
to the formation of vesicles. 

As in the case of E. coli, a different organization of membrane LPS molecules is prob-
ably the cause of this membrane restructuring. Such an effect could indeed be related to 
their capacity to form a more or less extended brush-like structure at the cell surface, with 
their polymeric behaviour being shown, for instance, by surface-pressure measurements 
[52]. 

Finally, a last question remains: if the invaginations are a sign of stressed bacteria, 
why do they appear when favourable culture conditions were applied? In our case, such 
an effect could be due to a dehydration induced by the protocol used to image bacteria in 
the air. 

 
Figure 7. Relationship between membrane organization and invaginations. (A,D,G) AFM 3D topo-
graphic images of three bacteria; (B,E,F) corresponding phase images; AFM images shown in (C,F,I) 
Figure 7. Relationship between membrane organization and invaginations. (A,D,G) AFM 3D
topographic images of three bacteria; (B,E,F) corresponding phase images; AFM images shown in
(C,F,I) correspond to the areas in the squares indicated in (B,E,H), respectively. White arrows indicate
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When the converging organization of ripples is observed, it is often correlated to the
presence of debris or vesicles around the cell. This suggests a process by degrees, where
changes in ripples could be the first step of a membrane reorganization leading, finally, to
the formation of vesicles.

As in the case of E. coli, a different organization of membrane LPS molecules is probably
the cause of this membrane restructuring. Such an effect could indeed be related to their
capacity to form a more or less extended brush-like structure at the cell surface, with their
polymeric behaviour being shown, for instance, by surface-pressure measurements [52].
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Finally, a last question remains: if the invaginations are a sign of stressed bacteria,
why do they appear when favourable culture conditions were applied? In our case, such
an effect could be due to a dehydration induced by the protocol used to image bacteria in
the air.

2.3. Impact of Less Favourable Culture Conditions on P. fluorescens Morphology
2.3.1. Influence of the Culture Medium

Keeping culture temperature and time at 28 ◦C and 15 h, respectively, we then tested
two different culture media, LB and MH. We followed two successive generations (with
the first generation from stock culture). The most representative AFM images are shown in
Figures 8 and 9 for the first and second generations, respectively.
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Figure 8. AFM amplitude images of P. fluorescens bacteria of first generation deposited by simple
deposition from a culture in LB (A,B) and MH (C,D) media (15 h, 28 ◦C).

In both cases, first-generation bacteria were organized in homogenous colonies, glued
together in a compact arrangement, more or less spread depending on the areas (Figure 8).
They had elongated shapes, with rather homogenous dimensions, in the same range
as those given previously. A large number of bacteria exhibited invaginations on their
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membranes, in particular in the case of bacteria grown in MH medium. At this step, it is
however difficult to see any real impact of the culture medium on the cell state.

However, a difference appeared with second-generation bacteria: Figure 9A,B (LB
medium) revealed a high amount of damaged bacteria, some of them being even collapsed
or lysed, their content being spread around “cell ghosts”. The membrane organization was
also modified in some cases with the presence of nodules, which were not observed with
first-generation bacteria. Figure 9C,D (MH medium) revealed second-generation bacteria
that were similar in morphology and dimensions to first-generation ones, organized in
relatively dense colonies. Moreover, the structure of the membrane was unchanged as
compared to first-generation bacteria.
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Figure 9. AFM amplitude images of P. fluorescens bacteria of second generation deposited by simple
deposition from a culture in LB (A,B) and MH (C,D) media (15 h, 28 ◦C).

According to our results, for the first-generation cells, there is no clear difference in
terms of cell morphology between the two media. The choice of the medium appears
to be more critical in the case of the second-generation cells, with a clear advantage for
MH medium, already validated as the most favourable medium for the culture of the
P. fluorescens strain studied here.
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In the two last part of this study (effect of culture temperature and time), we finally
kept LB medium for two reasons: we studied only bacteria of first generation, and LB
medium could reinforce constraints induced potentially in bacteria by less appropriate
culture temperature and time.

2.3.2. Influence of the Culture Temperature

Figure 10 shows the most representative AFM images of simple deposits after incuba-
tion of bacteria at 37 ◦C and 28 ◦C. Their comparison shows the following points.

The coverage of the substrate was almost the same for the two kinds of samples. In
both cases, the bacterial population was gathered in more-or-less large and dense aggregates
(Figure 10A,B,E,F), presenting some gaps or empty areas (Figure 10A,B). As previously, the
overall shape of bacteria depended on their location, at the edges or more in the centre of
aggregates, with bacteria at the edges suffering weaker constraints.
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Figure 10. AFM images of P. fluorescens bacteria incubated for 15 h in LB medium at 37 ◦C (A–D) and
28 ◦C (E–H). AFM images are 3D height or topographic ones (A,C,E,G) and amplitude ones (B,D,F,H).

The average length and width of the bacteria did not seem to be affected by the
incubation temperature, with typical values shown in Figure 4. However, cells incubated at
higher temperature were deflated (Figure 10A–D), as compared to bacteria incubated at
28 ◦C (Figure 10E–H), and some of them were even lysed, spreading their inner content
around them (Figure S1). This observation was confirmed by height profiles showing that
bacteria are twice as thick at 28 ◦C (140–180 nm) than at 37 ◦C (60–100 nm) (Figure S2).

As illustrated by the comparison of Figure 10D,H, the cell outer membrane of bacteria
incubated at 37 ◦C was relatively smooth, while it exhibited a more heterogeneous structure
after incubation at 28 ◦C.

In summary, bacteria were deflated as compared to the usual “swollen” morphology,
when grown at 37 ◦C. The organization of the outer membrane is also affected, being
smoother. These changes could be an effect of the growth temperature, since this tempera-
ture influences the composition of LPS and, thus, their physicochemical properties. Finally,
a high culture temperature is clearly a cause of stress for P. fluorescens bacteria, in agreement
with previous studies showing an optimal growth of P. fluorescens at 28 ◦C and a decreased
cellular growth at higher temperature, which finally stopped at 42 ◦C [53–55].
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2.3.3. Influence of the Growth Incubation Time

Figures 11 and 12 show typical AFM images of bacteria incubated during 12, 15 and
24 h at 28 ◦C.
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Figure 11. Effect of the incubation time on the morphology of aggregated P. fluorescens bacteria
deposited by simple deposition. The bacteria were cultured in LB medium at 28 ◦C during different
culture times: 12 h (A,B), 15h (C,D) and 24 h (E,F). AFM images are 3D height or topographic ones
(A,C,E) and amplitude ones (B,D,F).

Their comparison shows the following points. In the case of samples obtained af-
ter the shortest incubation time (12 h), bacterial colonies were quite dense and compact
(Figure 11A,B). Bacteria were heterogeneous in size and shape (elongated or rather round),
and some of them appeared sagged, presenting deeper invaginations than those previously
described (Figure 12A,B) or even nodules at their rough surface.

At the intermediate time (15 h), AFM images of aggregated (Figure 11C,D) and isolated
(Figure 12C,D) cells were typical from healthy bacteria, with the usual dimensions and
shape, and the heterogeneous membrane structure mentioned previously.

After 24 h, bacteria colonies are clearly impacted (Figure 11E,F): cells in close contact
with others were collapsed and even emptied of their cellular content, some of them being
lysed. Similar observations can be made in the case of individual bacteria (Figure 12E,F),
showing for instance that the cellular height is divided by four between samples shown in
Figure 12C–F. We also note the presence of nodules on the bacterial surface, with typical
diameter and height around 200 nm and 50 nm, respectively.

Our results, consistent with those obtained in other works [53–55], show that a growth
time of 15 h on solid medium is optimal to observe bacteria morphology typical from
healthy cells. This justifies, finally, the time condition used in Section 3.2.
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Figure 12. Effect of the culture time on the morphology of isolated P. fluorescens bacteria deposited
by simple deposition. The bacteria were cultured in LB medium at 28 ◦C during different incuba-
tion times: 12 h (A,B), 15 h (C,D) and 24 h (E,F). AFM images are 3D height or topographic ones
(A,C,E) and amplitude ones (B,D,F).

3. Materials and Methods
3.1. Bacterial Strain, Reagents and Growth Conditions

P. fluorescens (ATCC 13,525) was kept aerobically at −80 ◦C in Mueller–Hinton (MH)
nutritive broth (Sigma Aldrich; Saint-Quentin-Fallavier, France), reference 70,192, contain-
ing beef infusion solids 2.0 g/L, starch 1.5 g/L and casein hydrolysate 17.5 g/L, at a final
pH of 7.4 ± 0.2, and 25% glycerol. Stock solutions were used to inoculate either a LB liquid
medium (tryptone 10 g, yeast extract 5 g, sodium chloride 10 g, pH 7.2 at 25 ◦ C) or a MH
medium, all purchased from Sigma Aldrich (France), as a ready-to-use powder reconsti-
tuted using ultrapure water (Milli-Q water, pH 5.5, resistivity > 18.2 MΩ.cm). Overnight
liquid cultures (28 ◦C under shaking at 180 rpm) were then spread at the surface of the
same medium containing 15 g/L of agar (Sigma Aldrich, France) in Petri dishes, for an
incubation at 28 or 37 ◦C, during 12, 15 or 24 h. These cells will be called first generation
hereafter. In some experiments, we also studied the second generation (corresponding to a
second culture of bacteria from Petri dishes under the same conditions).

Bacteria were then stripped off the agar surface and, finally, suspended in ultra-
pure water. These suspensions were diluted at a concentration equivalent to an optical
density (O.D.) of 1.0, 0.5 and 0.3, measured at a wavelength of 600 nm with a UV3600
Shimadzu spectrophotometer. An O.D. of 1.0 is equivalent to a bacterial concentration of
1.2 × 109 CFU/mL [56,57].
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3.2. Preparation of Samples for Imaging Experiments

Suspensions in ultrapure water were then deposited on different substrates depending
on the imaging method. Nude mica (Electron Microscopy Sciences, France) was used for
AFM experiments, as freshly cleaved mica presents a highly hydrophilic, perfectly clean and
homogeneous surface with a low average roughness of 0.3 nm/m2, suitable for AFM. Glass
slides (Thermo Scientific, France) were used as substrates for optical microscopy (OM).

In each case, 5 µL droplets of the bacterial solution were deposited using two methods:
a simple deposition or a deposition assisted by spin-coating at a speed of 200 rpm for 45 s.

Weakly attached bacteria were removed by a gentle rinsing with ultra-pure water, and
substrates were then dried in a desiccator for 2 h before imaging in air. Four independent
samples were prepared and analysed systematically.

3.3. Optical Microscopy (OM)

We used a fixed stage vertical microscope (BX51WI from Olympus) equipped with a
100W mercury lamp (U-LH100HG), a BX-RFA illuminator and two LMPF1 objectives: ×50
(image of 234 µm × 146 µm) and ×100 (image of 117 µm × 73 µm). The microscope was
coupled to a high-resolution ORCA-Flash 2.8 camera equipped with the HC Image Live
V3.0 software (Hamamatsu Photonics, Massy, France).

Several areas of each sample were systematically observed to ensure their homogeneity.
This technique was used for all samples to verify their quality before AFM experiments.

3.4. Atomic Force Microscopy

AFM experiments were performed using a Bioscope II device mounted on an Olympus
IX71 inverted optical microscope operating with the NanoScope V controller (Veeco-Brucker,
Santa Barbara, CA, USA). Displacement of the samples was ensured by a piezo scanner
(maximum XYZ scanning range of 150 µm × 150 µm × 12 µm), AFM measurements being
carried out in air, in tapping mode using commercial silicon cantilevers (NCLV, Bruker),
with a stiffness of 48 N/m and at a working frequency of 178 kHz. The scanning speed was
between 0.5 and 1.0 Hz, and the resolution of the collected images was 512 × 512 pixels.

Several areas of the samples were systematically observed, first in a large scan (max-
imum dimensions of 150 µm × 150 µm), then reduced to the area of interest (minimal
dimensions of 500 nm × 500 nm). Several signals were collected at the same time and
resulting (and complementary) images are shown below.

Height images were obtained at a relatively high oscillating amplitude of the cantilever,
with the contrast corresponding to the topography of the sample [39,43,58].

Phase images were built from the phase difference between the piezo excitation signal
(probe’s vibration) and that of the cantilever response, when the tip is in contact with the
sample surface. Consequently, the contrast in phase images is related to changes in the
nanomechanical properties of the surface of the sample.

Amplitude images were built from the error signal, due to the difference between
the oscillation amplitude signal of the cantilever and that of the set point value via the
regulation loop. Such images most often provide information complementing height
images by highlighting all the topographic variations (small or large) and giving a three-
dimensional effect.

4. Conclusions

This work was dedicated to the comparative characterization, by Atomic Force Mi-
croscopy, of P. fluorescens, grown under optimal and stressful conditions. These bacteria
having a high potential in biotechnologies, so this study can help to better understand the
processes leading to their adaptation to changing environments. Under optimal growth
conditions, AFM revealed a more-or-less elongated morphology, with typical dimensions
in the micrometer range, and a particular organization of the outer membrane charac-
terized by the presence of long and randomly organized ripples, as also shown in other
Gram-negative bacteria presenting LPS at their surface. The outer membrane presents
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also invaginations, some of them being characterized by a reorganization of ripples, which
could be the first sign of a stress in bacteria, as precursors of excreted vesicles. A culture in
stressful conditions impacts bacteria at different levels, inducing a high number of damaged
bacteria and changes in the membrane organization.

Finally, this work also confirms AFM as a powerful tool to reveal subtle changes, at
the nanometer scale, at the surface of bacteria.

As a possible extension of this work, AFM could be used to probe the effect of heavy
metals on this species, which is known in particular for its soil bioremediation potential. It
would be also useful to extend this study to biofilms of P. fluorescens, with a relatively dense
organization that is also known to be more resistant to stressful environmental conditions.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/ijms23179579/s1.
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