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Abstract :   
 
In fish, the gut microbiome plays a crucial role in homeostasis and health and is affected by several 
organic and inorganic environmental contaminants. Amphidromous fish are sentinel species, particularly 
exposed to these stressors. We used whole metagenome sequencing to characterize the gut microbiome 
of wild European eels (Anguilla anguilla) at a juvenile stage captured from three sites with contrasted 
pollution levels in term of heavy metals and persistent organic pollutants. The objectives were to identify 
what parameters could alter the gut microbiome of this catadromous fish and to explore the potential use 
of microbiota as bioindicators of environment quality.  
 
We identified a total of 1079 microbial genera. Overall, gut microbiome was dominated by Proteobacteria, 
Firmicutes and Actinobacteria. Alpha and beta diversity were different amongst sites and could be 
explained by a reduced number of environmental and biological factors, specifically the relative 
abundance of fish preys in eels’ diet, PCB101, γHCH (lindane), transnonachlor and arsenic. Furthermore, 
we identified a series of indicator taxa with differential abundance between the three sites. Changes in 
the microbial communities in the gut caused by environmental pollutants were previously undocumented 
in European eels. Our results indicate that microbiota might represent another route by which pollutants 
affect the health of these aquatic sentinel organisms. 
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Graphical abstract 
 
 

 
 
 

Highlights 

► The gut microbial diversity of wild European eels differed amongst sites of catching. ► POPs and 
metals levels showed strong associations with gut microbiota composition. ► The relative abundance of 
fish in eels' diet also impacted gut microbiota. ► 323 microbial genera were differentially abundant 
between the catching sites. 
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INTRODUCTION:36

In fish, as in mammals, the collection of commensal, symbiotic and pathogenic microorganisms 37 

(eukaryotes, bacteria, archaea, and viruses) that occupy a particular environment, like the internal 38 

and external epidermal surfaces of metazoans, has the ability to fulfil key functions in nutritional 39 

provisioning, metabolic homeostasis, and immune defence. These microbial partners are referred to 40 

often refers to the collection of genomes within 41 

this microbiota (Burokas et al., 2015). Owing to the ability of the microbiota to modulate the host 42 

physiology, an increasing number of studies have been carried out to characterize and determine the 43 

mechanisms of action of these microbes, particularly concerning the gut microbiota. This importance 44 

is highlighted by the fact that some authors consider (Feng et al., 45 

2018) (Grice and Segre, 2012). Though well behind mammalian models, 46 

teleost microbiome research is a quickly developing field (Llewellyn et al., 2014). Despite early works 47 

 recent expansion (for a review, see 48 

Egerton et al., 2018). More recently, next-generation sequencing techniques has represented a rapid 49 

and cost-effective method (i) to obtain data that provide more accurate information on the 50 

composition as well as the genetic and metabolic potential of a microbial community and (ii) to 51 

compare communities and test hypotheses. The microbiota associated with the fish intestine is 52 

supposedly dominated by Bacteria, mostly due to the caveat that they have been almost the only 53 

focus of research so far. The fish intestine may harbour 107 to 1011 bacteria per gram of intestinal 54 

content. In the different fish species studied, Proteobacteria, Bacteroidetes and Firmicutes, represent 55 

90% of the intestinal microbiota (Ghanbari et al., 2015). This composition shows substantial inter-56 

species and inter-individual variation depending on various factors such as life stage, trophic level, 57 

diet, season, habitat, sex and genetics of the host (Butt and Volkoff, 2019; Egerton et al., 2018; 58 

Tarnecki et al., 2017). Gut bacterial communities have been assessed in approximatively 150 fish 59 

species covering a diverse range of physiology and ecology. However, most of the research effort is 60 

being carried out on economically important species such as salmonids, carp or tilapia (Perry et al., 61 

2020), to meet the needs of the expanding aquaculture industry. 62 

The European eel Anguilla anguilla is a catadromous fish with a complex life cycle shared between 63 

marine (reproduction, larval growth, and sexual maturation) and continental (growth) environments. 64 

European eels spawn in the Sargasso Sea before larvae drift towards the continental shelf of Europe 65 

and North Africa where they first metamorphose into unpigmented juvenile (glass eel) before 66 

reaching the growth phase (yellow eel) in continental water bodies where they remain up to 15-20 67 

years, often moving across different habitat types. The yellow eel stage ends with a second 68 

metamorphosis into maturing eels (silver eels) that will migrate back to the Sargasso Sea to 69 

reproduce and die. This life cycle makes A. anguilla particularly vulnerable to pollution (Feunteun, 70 
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2002; Guimaraes et al., 2009). The species has been considered as critically endangered since 2008 71

and added to the IUCN red list (Jacoby and Gollock, 2014). Its catadromous migratory behaviour, long 72 

life, drastic habitat reduction, migration barriers, pollution, human-introduced diseases, overfishing, 73 

as well as climatic events may be amongst the causes of the catastrophic collapse of the European 74 

eel population observed over the past decades (Bevacqua et al., 2015; Knights, 2003; van den Thillart 75 

et al., 2009). Whereas the sensitivity of A. anguilla to metal and persistent organic pollutants is well 76 

documented (e.g. Baillon et al., 2015; Belpaire et al., 2008; Bertucci et al., 2019; Perrier et al., 2020; 77 

Pujolar et al., 2012), metagenomic studies in this species are scarce. Some were performed on the 78 

microbiome associated with skin mucosal surfaces (Carda-Dieguez et al., 2017; Carda-Diéguez et al., 79 

2014). They showed the dominance of Gammaproteobacteria, especially the genus Vibrio, in eels 80 

from estuary and wetland while a mixture of genera predominated in lake and river eels. Which 81 

evidenced the role of salinity in shaping microbiota in fish. To our knowledge, community 82 

composition of intestinal microbiota of European eels was only assessed in cultivated individuals 83 

(Huang et al., 2018). The results showed the dominance Proteobacteria and Fusobacteria. However, 84 

more recently, gut microbiota was studied in other Anguilla species like the giant mottled eel A. 85 

marmorata (Lin et al., 2019), the Indonesian shortfin eel A. bicolor (Kusumawaty et al., 2020), and 86 

the Japanese eel A. japonica (Zhu et al., 2021). 87 

The function of the gut microbiota and the subsequent physiological responses of the host 88 

depend on which microbes are present in the intestinal tractus and the interaction with the immune 89 

system. Then, the alteration of the microbiota composition and / or its metabolic functions might 90 

(Claus et al., 2016). This phenomenon is called dysbiosis and its 91 

links with environmental stressors suggest that the microbiome has the potential to provide 92 

innovative biomarkers (Boutin et al., 2013; Webster et al., 2019) and the identification of dysbiosis 93 

might be informative regarding adverse outcomes. Still, processes that drive microbial community in 94 

fish are poorly understood. The incorporation of the microbiome in studies investigating the effects 95 

of chemical compounds could then be a promising approach in ecotoxicology (Adamovsky et al., 96 

2018; Duperron et al., 2020). In this study we investigated the impact of environmental pollutants, 97 

diet composition, and biometric parameters on the composition of intestinal microbiota of wild 98 

European eels sampled from three sites with contrasted anthropogenic pollution profiles. We 99 

measured a total of 15 metals in fish liver, and 28 persistent organic pollutants including 100 

polychlorinated biphenyls (PCBs), polybromodiphenylethers (PBDEs) and organochlorine pesticides in 101 

fish muscle. PCBs and PBDEs are widespread contaminants. PCBs are man-made chlorinated 102 

industrial chemicals that were used in electrical equipment hydraulic fluids, heat transfer fluids, 103 

lubricants, plasticizers, surface coatings and inks. PBDEs are used in plastics, electronics, building 104 

materials and textiles as flame retardants. Pesticides are used in agriculture and are rarely selective 105 
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enough to prevent effect on non-target organisms. Many studies have documented the accumulation 106

of these xenobiotics in aquatic organisms and more recently their toxicity for gut microbiota (see 107 

Evariste et al., 2019). Diet composition was assessed through DNA sequencing of the intestinal 108 

content. Our aim was not only to characterize the microbiota of these migratory fish but also to 109 

determine what factors can drive the taxonomy of their microbial partners. The results of this study 110 

allowed the identification of a limited number of pollutants and diet component that could explain 111 

dysbiosis in European eels. 112 

 113 

MATERIAL AND METHODS: 114 

Sample collection  Wild European eels (Anguilla anguilla) specimens were collected in Batejin 115 

(BAT: 44°55'53.87"N, 01°07'22.94"W; 12 individuals in July 2019), Pas-du-Bouc (PDB: 44°50'27.03"N, 116 

01°09'07.58"W; 20 individuals in July 2019) and Pauillac (PAU: 45°14'00.26"N, 00°44'01.80"W; 20 117 

individuals in September 2019). Immature yellow eels of a pre-defined size (20-40 cm) were targeted 118 

in order to have the same range for all sites. BAT and PDB samples were collected by electro-fishing 119 

according to the autho120 

May 22, 2019 and June 7, 2019. PAU samples were trapped by a professional 121 

fisherman. Fish were kept in tanks with aerated water from the site for few minutes after collection 122 

until being sacrificed and dissected at the proximity of the sampling site. Individuals were measured 123 

(cm) and weighted (g). Liver, spleen, and kidney were collected and weighted for organo-somatic 124 

indices calculation and stored at -20°C. The intestinal section located shortly down the stomach and 125 

up the colon was dissected, transferred in RNA-126 

at until DNA extraction. Otoliths were collected for age determination. For all sites, 127 

temperature, salinity, and dissolved oxygen concentrations were measured using a multi-parameter 128 

portable device or by using data coming from the automated observation network of the Gironde 129 

(MAGEST network). 130 

Biometric indices  Fulton index (K), hepato-somatic index (HSI) and spleno-somatic index (SSI) 131 

were calculated as K = (total weight / length3) x 100; HSI = (liver weight / total weight) x 100; and SSI 132 

= (spleen weight / total weight) x 100; where weight is in grams and length is in centimetres. 133 

Age determination  Age was determined according to the methods described in Annex 4 of the 134 

report of the ICES Workshop on Age Reading of European and American Eel (ICES, 2009). Briefly, 135 

sagittal otoliths were extracted, cleaned with distilled water, dried, and stored in plastic Eppendorf 136 

tubes at ambient room temperature until processing. Otoliths were embedded in epoxy resin; 137 

grinded on 1200-grit paper with water until the nucleus is reached and polished on 4000-grit paper; 138 

etched for 3 minutes with a 5% EDTA solution, washed with distilled water and stained with 0.01% 139 
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toluidine blue for 3 minutes. Otoliths were rinsed with distilled water and observed with a binocular 140

microscope under transmitted light. 141 

Trace metal analyses  Liver tissues were dried, weighted, and digested in polypropylene tubes 142 

using nitric acid (67%). Digesta were heated at 100 °C for three hours. After complete mineralization, 143 

samples were diluted with ultrapure water. In order to verify the accuracy of the method blank 144 

samples, Internationals Certified Reference Materials (CRM) for trace metals elements: DOLT-5 (fish 145 

liver), TORT-3 (lobster hepatopancreas), and IAEA-413 (algae) were prepared in similar conditions as 146 

the samples. A series of 15 elements were analysed simultaneously by Inductively Coupled Plasma 147 

Optical Emission Spectrometer (700 Series ICP-OES, Agilent): Silver (Ag), Aluminium (Al), Arsenic (As), 148 

Cadmium (Cd), Cobalt (Co), Chrome (Cr), Copper (Cu), Iron (Fe), Manganese (Mn), Molybdenum 149 

(Mo), Nickel (Ni), Lead (Pb), Selenium (Se), Vanadium (V), and Zinc (Zn). Metals concentrations in 150 
1 dry weight (dw). Average recovery rates were between 151 

97% and 102%. When not detectable, metal concentrations were replaced by the maximum 152 

theoretical detection limit (DLmax) to allow multivariate analysis. DLmax of a sample is calculated as (DL 153 

x W) / V; where DL is the detection limit for the metal in µg.L-1, W the mass of the sample in g, and V 154 

the volume of the sample in ml. DL values are given in supplementary file 1. The metal pollution 155 

index was calculated as in Khan et al. (2020). 156 

Organic pollutants analyses  Analysis of the seven polychlorinated biphenyls (CB28; CB52; 157 

CB101; CB118; CB138; CB153 and CB180), thirteen organochlorine pesticides (hexachlorobenzene or 158 

-HCH; heptachlor; heptachlor epoxide; cis-chlordane; trans-nonachlor; mirex; 159 

160 

BDE47, BDE99, BDE100, BDE153, BDE154, BDE183 and BDE209) were performed on individual 161 

muscle samples by liquid / liquid extraction followed by purification by adsorption chromatography 162 

as described previously (Tartu et al., 2015). PCB and OCP were analysed by gas chromatography 163 

coupled to an electron capture detector (GC-ECD), while PBDEs were determined by GC hyphenated 164 

with mass spectrometry (GC-MS). Results were expressed in ng.g-1. When not detectable, 165 

concentrations were replaced by the quantification limit of the compound to allow multivariate 166 

analysis (supplementary file 1). 167 

DNA extraction, sequencing and filtering  In order to capture the widest microbial diversity, 168 

three gut sections of approximatively 5 millimetres each were cut out at the beginning, the middle 169 

and the end of the intestine sample dissected previously. These three pieces were sliced open and 170 

minced with a sterile blade, then mixed and processed with the QIAamp PowerFecal Pro DNA Kit 171 

 172 

DNAseq was performed at the GeT-PlaGe core facility, INRAE Toulouse. DNA-seq libraries were 173 

p Kit. 174 
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Briefly, DNA was fragmented by sonication, size selection was performed using SPB beads (kit beads) 175

and adaptors were ligated to be sequenced. Library quality was assessed using an Advanced 176 

Analytical Fragment Analyzer and libraries were quantified by qPCR using the Kapa Library 177 

Quantification Kit. DNA-seq experiments have been performed on an Illumina NovaSeq6000 using a 178 

paired-end read length of 2x150 pb with the Illumina NovaSeq6000 Reagent Kits. 179 

Each sample was sequenced twice on separate lanes of the same flowcell and the two paired files 180 

were merged. Raw data were cleaned as follows by using first step of metagWGS v1.1 available at: 181 

https://forgemia.inra.fr/genotoul-bioinfo/metagwgs/-/tree/master (Fourquet et al., 2020): (i) we 182 

checked quality of raw reads by fastQC v0.11.9, (ii) we remove adaptors with cutadapt v2.10, (iii) 183 

trimmed paired reads if nucleotide quality is lesser than 20 with sickle v1.33, (iv) we used bwa mem 184 

v0.7.17-r1188 to map trimmed reads against Anguilla anguilla genome (GCA_013347855.1), 185 

samtools view v1.10 and bam2fastq from bedtools v2.29.2 were used to obtain cleaned paired reads 186 

fastq files without host reads, (v) finally we used fastQC again on cleaned reads to obtain quality 187 

metrics. 188 

Taxonomic profiling  Because we used gut sections, we anticipated that bacteria and other 189 

microbial partners would represent a small portion of our libraries. For each sample, taxonomic 190 

classification of quality trimmed and filtered metagenomic paired-end reads was performed using 191 

Kaiju (v.1.7.4 -e 3), with the NCBI nr database (release dated May 192 

25th, 2020; containing all proteins belonging to Archaea, Bacteria and Viruses and proteins from 193 

fungal and microbial eukaryotes) as reference. We used kaiju2table to build taxonomy table at each 194 

taxonomy levels (superkingdom, phylum, class, order, family, genus, species). To obtain one unique 195 

matrix for all samples we used the home-made script merge_kaiju_results.py available in metagWGS 196 

(https://forgemia.inra.fr/genotoul-bioinfo/metagwgs/-/tree/master/bin). Counts of sequences 197 

successfully assigned and taxonomic information were imported into RStudio (v. 1.2.5019), based on 198 

R (v. 3.6.1), for further processing with the phyloseq (v. 1.30.0) and vegan (v. 2.5.5) packages. 199 

Filtering of the most abundant Genera were based on a minimum abundance threshold of 100 cpm 200 

(counts per million reads). Taxa not exceeding these thresholds in at least half the samples of one 201 

site (50% prevalence) were removed. The core microbiota was determined with a 0.10% relative 202 

frequency threshold and a prevalence of at least 80%. This was performed using the core function in 203 

microbiome R package version 1.17.42 (Leo and Sudarshan, 2017). In order to assess the diet of the 204 

fish, taxonomic classification of quality trimmed and filtered metagenomic paired-end reads was 205 

performed using Kraken2 (v. 2.0.8-beta) --  against the entire NCBI nt 206 

database downloaded on January 24, 2022. Metazoan sequences were classified at the Class level 207 

and taxa not exceeding 1% of the reads in half of the samples from at least one site were removed. 208 
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The numbers of reads used in both kaiju and kraken analysis for each sample are presented in 209

supplementary file 2. 210 

Statistics and data analysis  Alpha diversity was calculated using the R package vegan  211 

(Oksanen et al., 2020) based on observed, Shannon, Chao1  indices calculated 212 

from non-normalized genus-level read counts. Beta diversity between the sites were visualized using 213 

nonmetric multidimensional scaling (NMDS) and Principal Coordinates Analysis (PCoA) plots based on 214 

the Bray-Curtis dissimilarity. Beta diversity analysis were performed on cpm-transformed counts at 215 

the genus level to control for sequencing depth between libraries. Pairwise differences were tested 216 

using PERMANOVA (n=1000 permutations) based on Bray-Curtis dissimilarity and adjusted P values 217 

(FDR  0.05 were considered as statistically significant. Beta dispersion was assessed by an ANOVA-218 

like permutation test (n=1000 permutations) on the Bray-Curtis distance matrix. A Linear 219 

discriminant analysis Effect Size (LEfSe) was used to identify bacterial taxa responsible for differences 220 

between sampling sites at the genus level (Segata et al., 2011) with a LDA score threshold of 2.0 and 221 

a FDR of 0.01. 222 

The statistical analysis of morphometric data and pollutant levels were performed using RStudio 223 

(v.1.2.5019). Metal concentrations and morphologic variables were expressed as mean ± SE. The 224 

comparison among sites was performed using a linear model after checking for normality and 225 

homoscedasticity of residuals. When necessary, post-hoc analysis was performed by the Tukey test. 226 

A p-value  0.05 was considered significant. 227 

-diversity were identified by performing linear correlations to 228 

calculate the association between pollutant content, diet, morphometry and genus-level community 229 

-package. Then, in order to identify non-230 

redundant determinants of microbiota variation, covariates selected by envfit() function were sub-231 

selected by forward stepwise redundancy analysis on genus-level community ordination calculated 232 

by Bray-Curtis distance with the ordiR2step() -package. 233 

Data availability  The molecular data set generated and analyzed for this study were deposited 234 

in NCBI repository under the BioProject accession number PRJNA825732. 235 

 236 

RESULTS: 237 

Differences among sampling sites  Three sites located along the Gironde estuarian ecosystem were 238 

selected. Batejin (BAT) and Pas-du-239 

between the Lacanau lake and the Arcachon lagoon, while Pauillac (PAU) was located in the Gironde 240 

estuary. The major difference was salinity, but variability also exists in term of dissolved oxygen level 241 

and temperature on the date of sampling (Table 1). According to one-way ANOVAs followed by 242 

0.05), differences were observed in  morphologic features even though fish 243 
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were initially selected according to their size range (20-40 cm). PDB and PAU individuals were 244

significantly longer and heavier than BAT individuals. PDB eels were older and exhibited a higher 245 

Fulton index. These individuals also had lower HSI, and higher SSI values compared to BAT and PAU. 246 

 Fifteen trace metal concentration were measured in hepatic 247 

tissue. Co was the only element for which no difference was observed between the 3 sites (p 0.05). 248 

BAT eels are characterized by the highest levels of Cr (0.426 ± 0.094 µg.mg-1) and the lowest levels of 249 

Cu, Mn and Zn compared to eels from the other sites (p 0.05). PDB eels are characterized by the 250 

highest level of Fe (2,936.914 ± 298.146 µg.mg-1), Mo (1.581 ± 0.082 µg.mg-1), Se (39.264 ± 6.647 251 

µg.mg-1) and V (2.01 ± 0.198 µg.mg-1) and the lowest levels of Pb (0.05 ± 0.003 µg.mg-1) in their livers 252 

(p 0.05). PAU individuals showed the highest levels of Ag (0.968 ± 0.104 µg.mg-1), As (4.444 ± 0.438 253 

µg.mg-1) and Cd (1.729 ± 0.184 µg.mg-1) and the lowest levels of Al (13.489 ± 1.373 µg.mg-1) and Ni 254 

(0.052 ± 0.019 µg.mg-1) compared to BAT and PDB (P 0.05). Moreover, PAU samples (3.014 ± 0.178 255 

µg.mg-1) showed a significantly higher MPI value than BAT (1.689 ± 0.217 µg.mg-1) and PDB (2.022 ± 256 

0.193 µg.mg-1), suggesting a higher total content of metals in their livers. Details are given in Table 2. 257 

 258 

mirex) and five BDEs (BDE100; BDE153; BDE154; BDE183 and BDE209) were not detected in any 259 

sample and were then removed from the analysis. Except for -HCH (0.551 ± 0.058 ng.g-1) and BDE28 260 

(0.353 ± 0.055 ng.g-1) that are significantly more present in BAT eels, all organic pollutants showed 261 

the highest levels in PAU fish (p 0.05). With a mean ± SE of 678.480 ± 93.419 ng.g-1, - and 262 

25-times higher in PAU than in PDB and BAT, respectively  in PAU (56.997 ± 8.13 ng.g-1) is 16- 263 

and 22- .g-1) is 4- 264 

and 3-times higher than in PDB and BAT, respectively (Table 2). 265 

A Principal Component Analysis (PCA) was  266 

Eigenvalues in components one and two represent 51% and 10% of the variation in the data, 267 

respectively and the site of origin appears as the major explanatory variable. The first component is 268 

associated with POPs levels and separates the more contaminated estuarian samples (Pauillac) from 269 

the freshwater samples (Batejin and Pas-du-Bouc). The second component is rather associated with 270 

metals and discriminates Batejin samples and Pas-du-Bouc samples within the freshwater cluster. 271 

 Following quality trimming, filtering, taxonomic classification with 272 

Kraken2 (v. 2.0.8), and removal of unclassified sequences we analysed a total of 18,182,766 273 

metazoan sequences more than 90% of which were classified within five Classes: 274 

Insecta, Actinopteri (referred to as Fish thereafter), Mammalia, Aves (referred to as Birds thereafter), 275 

Bivalvia, Gastropoda, and Malacostraca. Based on individual percentages, 3 groups were created 276 

through k-mean clustering 277 

with the Elbow method, supplementary file 3). Group A contained only 3 individuals that were 278 
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characterized by a higher percentage of Malacostraca. Group B contained 15 individuals with higher 279

percentages of insects, bivalves and gastropods. Group C contained 27 individuals whose intestines 280 

contained more fish, mammals, and birds as preys (Table 3). 281 

Differences in microbial community structure between sampling sites  Following quality 282 

trimming, filtering, taxonomic classification with Kaiju (v.1.7.4), and removal of unclassified 283 

sequences we analysed a total of 7,416,386 microbial sequences. Library sizes ranged from 28,877 to 284 

726,035 with an average size of 151,354 (details are given in supplementary file 2). After removal of 285 

unassigned reads, rarefaction curves at the species-level indicated that the sequencing depth was 286 

sufficient to capture microbial complexity in each library (supplementary file 4). The gut microbial 287 

community was mainly composed of Bacteria, accounting for an average of 69% of the sequences, 288 

while the Eukaryota, Archaea and viruses accounted for 26%, 1.3% and 2.7% of the sequences, 289 

respectively (Figure 2A and Supplementary file 5).  290 

A total of 1,079 taxa were identified at the genus level. Among which 645 bacterial genera from 291 

24 phyla were detected. The most dominant bacterial phyla in the eel gut samples, averaged for all 292 

samples, were Proteobacteria (36.97% of the Bacteria), Firmicutes (30%) and Actinobacteria (16.17%) 293 

followed by Bacteroidetes, Fusobacteria, and Cyanobacteria. The remaining 18 phyla combined 294 

represented only 10% of the relative abundance of Bacteria. Amongst microbial eukaryotic 295 

sequences, a total of 335 fungal genera from 8 phyla were detected. Fungi represented most of the 296 

microbial Eukaryotes (58%). The most abundant fungal phyla were Ascomycota (48%) and 297 

Basidiomycota (35%) followed by Mucoromycota (6%) and Chytridiomycota (5%). The remaining 298 

microbes belonged to viruses (2.75%) and Archaea (1%). The A. anguilla core microbiota is made of 299 

33 bacterial genera that were identified at an 80% prevalence threshold (Figure 2B and 300 

Supplementary file 5) from the Phyla Actinobacteria (10 genera), Proteobacteria (9 genera) and 301 

Firmicutes (6 genera). Streptomyces (Actinobacteria); Clostridium and Bacillus (Firmicutes); and Vibrio 302 

and Pseudomonas (Proteobacteria) were the only genera found in all the samples. This core 303 

microbiota was completed by Fungi from the phylum Ascomycota, other Eukaryotes and Viruses. 304 

Differences in microbial community structures were observed between sites (Figure 2 and 305 

Supplementary file 5). BAT samples were dominated by Firmicutes (58%) with Clostridiales being the 306 

major Order (88.5% of Firmicutes). Actinobacteria were dominant in PDB samples (34%) with 307 

Streptomycetales being the major Order (36.8%) and Proteobacteria dominated PAU samples (52%) 308 

with a majority of Vibrionales (63.3%). We also observed large differences in Fungi abundance that 309 

represents an average of 6.5%, 12.4% and 24% of sequences in BAT, PAU and PDB, respectively.  310 

We calculated four within-sample (alpha) diversity indices: number of observed OTUs, Shannon 311 

index, Chao1  (Figure 3). Significant differences at the genus level were 312 

observed among sites. BAT eels had significantly higher observed number of OTUs and Chao1 index, 313 
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while PDB eels had significantly higher Shannon index and Evenness values. This suggests that 314

species richness was higher in BAT samples while relative taxonomic abundance was more 315 

homogeneous in PDB samples, with less dominant genera. 316 

A Principal Coordinate Analysis (PCoA) was used to study the genus composition and the effect of 317 

-diversity of microbial communities (Figure 4). The site of origin of the fish 318 

-diversity of the gut microbiome at the genus level 319 

(PERMANOVA R2 = 0.429, p = 0.001). This effect was detected at all taxonomic levels (Supplementary 320 

file 6 and Supplementary file 7). Moreover, the microbial composition of PDB appeared more 321 

homogeneous since these samples showed a significantly lower beta dispersion compared to BAT 322 

(permuted p-value = 0.009) and PAU (permuted p-value = 0.001). BAT and PAU showed a similar beta 323 

dispersion (permuted p-value = 0.175). Following site, diet also -324 

diversity (PERMANOVA R2 = 0.277, p = 0.001) as the microbiome of fish harbouring Diet B 325 

significantly differed from those with Diet C (p = 0.003). Salinity (i.e. BAT and PDB = freshwater and 326 

-diversity (PERMANOVA R2 = 0.150, p = 0.001).  327 

Identification of covariates impacting gut microbiota in European eels  Site of origin (42.9%) 328 

and diet (27.7%) were identified to be the main factors impacting microbial diversity. A univariate 329 

analysis revealed that amongst all the covariates associated to these parameters (15 metals, MPI, 9 330 

biometric values and indices, 19 POPs, 3 sums of POPs, and proportion of 7 classes of preys), 32 were 331 

significantly associated with microbiome composition (FDR 0.01) (Figure 4). POPs levels (18 332 

covariates) showed strong associations with gut microbiota especially PCBs, followed by metals (9 333 

covariates). The Hepato-334 

somatic index was the only morphometric variable to associate with gut microbiota of eels. Some 335 

variables showed overlapping directionalities for the ordination of gut microbiota composition 336 

suggesting a redundancy amongst covariates. Five non-redundant covariates with a cumulative effect 337 

size (r2) of 0.534 were identified by a forward stepwise redundancy analysis. The relative abundance 338 

was the main non-redundant factor impacting gut microbiota (p-value = 0.002) 339 

with an effect size of 0.220, followed by the levels of PCB101 (r2 = 0.154, p-value = 0.002)  (r2 = 340 

0.090, p-value = 0.002), transnonachlor (r2 = 0.044, p-value = 0.004) and Arsenic (r2 = 0.023, p-value = 341 

0.014). 342 

Differential abundance of microbial genera between sites  Here we focused on differences 343 

344 

intestines. Within the 1079 genera we identified previously, a LEfSe analysis identified 726 345 

discriminant features (p-value  323 at the Genus level (details 346 

in Supplementary file 8). As previously suggested by evenness values (Figure 3), a 347 

limited number of dominant taxa were identified in BAT and PAU samples. Most of the 32 348 
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significantly enriched genera in BAT samples belonged to the Phylum Firmicutes (25 genera), class 349

Clostridia (17 genera). Amongst the 8 significantly enriched genera in PAU samples, 7 were the class 350 

Gammaproteobacteria with the order Vibrionales accounting for most of them (5 out of 7). Dominant 351 

taxa were harder to identify in PDB samples which had 283 enriched genera. Most of those (132 352 

genera) are Fungi with 50.0% of Ascomycota and 33.3% of Basidiomycota. Bacteria enriched in PDB 353 

(135 genera) were in majority from the phyla Actinobacteria (42 genera) and Proteobacteria (63 354 

genera). These results are in agreement with what was previously suggested by the taxonomic 355 

composition in Figure 2 (and Supplementary file 5). No enrichment was observed in relation to the 356 

diet group. The most differentially abundant taxa (LDA > 4.0) enriched in each site are presented in 357 

Figure 5. A Spearman correlation analysis based on the most abundant genera in each site showed 358 

significant associations with pollution- and diet-related covariates (Figure 6).  359 

 360 

DISCUSSION: 361 

Gut microbiomes of fish are complex, dynamic communities influenced by a wide variety of 362 

extrinsic factors such as environmental parameters, and intrinsic factors such as physiology or 363 

genetic background of the host (Butt and Volkoff, 2019). The characterization of the microbial 364 

communities that are present in fish and the comprehension of what factors influence that 365 

composition are equally important and may contribute to the diagnostic of habitat health condition, 366 

especially in sentinel organisms. Micropollutants of the environment are now recognized as strong 367 

and pivotal factors shaping the gastrointestinal microbiome (Adamovsky et al., 2018; Claus et al., 368 

2016; Duperron et al., 2020). Altogether, our results indicate that environmental parameters, 369 

particularly pollutants, may alter microbial community in the gut of eels and that microbial taxa may 370 

represent innovative biomarkers of environmental quality. Moreover, as gut microbiota may differ 371 

between wild and captured / cultured fish (Egerton et al., 2018; Uren Webster et al., 2018), the use 372 

of wild specimens increases the degree of ecological relevance. One should note that our work was 373 

based on observations of both the gut digesta and mucosa of fish and that both resident and 374 

transient microbial communities (also referred to as autochtonous and allochthonous, respectively) 375 

were studied simultaneously. Most of the current literature on teleost microbiomes was obtained 376 

through 16S rRNA barcoding (Llewellyn et al., 2014). In this study, we used whole metagenome 377 

sequencing (WMS) that has revealed an effective method for analysing both the feeding habits and 378 

gut microbiomes of fish (Pan et al., 2021). In addition to taxa information down to species and even 379 

strain levels that are not restricted to procaryotes, the use of WMS can allow analysis of functional 380 

potentials of microbiomes. Unfortunately, the sequencing depth here was not sufficient to assemble 381 

a metagenome and we were able to annotate only a small proportion of kaiju reads (Supplementary 382 

files 9 and 10). Sample preparation and DNA extraction methods should be improved toward this 383 
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objective in the future. However, shallow whole-metagenome shotgun sequencing may still provide 384

highly similar data to WMS and more accurate taxonomic assignments than rRNA targeted 385 

sequencing (Xu et al., 2021). 386 

We identified 1,079 taxa at the genus level. Unsurprisingly, Bacteria were the main component of 387 

 intestinal microbiota. This result is similar to other fish species that received more interest from 388 

the microbiome research community in which the phyla Proteobacteria, Firmicutes, Actinobacteria, 389 

Bacteroidetes, Fusobacteria, and Tenericutes are commonly reported to be amongst the most 390 

dominant members present in the gastrointestinal tracts of fish species (Ghanbari et al., 2015; 391 

Tarnecki et al., 2017). A small proportion of the microbiome was made of Archaea and viruses. 392 

Though they is scarce, 393 

either in terms of composition or functionality. Finally, amongst eukaryotes, Ascomycota and 394 

Basidiomycota have been previously identified in several marine and freshwater fish. Various yeasts 395 

have been identified in the normal intestinal microbiota of fish in aquaculture. Their presence is 396 

generally considered as commensalism, even though opportunistic strains may reveal pathogenic in 397 

some case (Gatesoupe, 2007). In our results, Fungi were particularly abundant in eels collected from 398 

Pas-du-Bouc (Figures 2 and 5). This result is a first hint on the potential bioindicative role that some 399 

microbial taxa could play regarding  and/or ecosystem 400 

quality. 401 

Our results showed similarities with previous studies in European eel such as the dominance of 402 

Proteobacteria (Huang et al., 2018) in all the samples or the abundance of Fusobacteria and 403 

Firmicutes in larger individuals (Shi et al., 2020). However, we must remain careful before we 404 

extrapolate from previous literature since we used wild animals and a larger number of individuals 405 

compared to previous literature. In addition, this discrepancy may come from the much larger use of 406 

bacterial 16S rRNA gene amplicon targeted sequencing in fish literature to date (Talwar et al., 2018). 407 

PCR-based sequencing, unlike WMS, may indeed bias results toward certain bacterial phyla 408 

depending on the primer that were used (Hansen et al., 1998). 409 

Numerous drivers of gut microbiome diversity have been reported, amongst which external 410 

environment and diet (Johny et al., 2021; Legrand et al., 2020; Sullam et al., 2012; Tarnecki et al., 411 

2017). In our study, differences in alpha-diversity were observed between sites (Figure 3). This first 412 

result seems in accordance with Kim et al. (2021) who showed that the gut microbiota is primarily 413 

determined by host habitat, rather than by genetic factors. Fish from Batejin, that were less 414 

contaminated by micropollutants (Table 2 and Figure 1), exhibited a significantly higher microbial 415 

richness as indicated by higher numbers of observed OTUs and Chao1 values. As Chao1 evaluate the 416 

total richness, the fact that these two values were similar confirm that we were able to capture most 417 

of the microbial diversity in all our samples. This was also evidenced by saturation curves 418 
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(Supplementary file 4). Pas-du-Bouc samples exhibited a higher microbial diversity demonstrated by 419

a higher value of Shannon index and more indicator taxa identified by LEfSE in this group of fish. The 420 

site of origin was also the main factor impacting beta diversity. We observed a larger dissimilarity in 421 

beta-diversity of PAU samples (Figure 4) that were characterized by higher pollution levels (i.e. 422 

423 

Karenina principle (AKP) (Zaneveld et al., 2017). The AKP predicts that stressors have stochastic 424 

rather than deterministic effects on community composition and that healthy microbiomes are 425 

similar whereas each dysbiotic microbiome is dysbiotic in its own way. To explain these differences, 426 

we performed linear correlations that identified a series of persistent organic pollutants, metals, as 427 

well as diet components that are drivers of this beta diversity (Figure 4). Amongst those, we 428 

identified five non-redundant determinants with a relatively high cumulative effect size on 429 

community variation (53.4%).  430 

The proportion of fish preys in eels diet showed the largest effect (22.0%). Fish can employ a large 431 

variety of feeding strategies, and numerous studies have shown diet can influence intraspecies 432 

differences in fish gut microbiota (e.g. Desai et al., 2012). For instance, the guts of carnivorous fish 433 

was dominated by protease producing bacteria whereas herbivorous fish guts by cellulose degrading 434 

bacteria (Liu et al., 2016). In A. anguilla at the yellow eel stage, dietary differences may result in two 435 

morphotypes amongst individuals from the same population and of similar size. Eels feeding on hard 436 

food developed broader heads than soft feeders with narrow-heads (De Meyer et al., 2016; Proman 437 

and Reynolds, 2000), with consequences on growth rate (De Meyer et al., 2017). According to its 438 

physiological role, it would then be interesting to test whether these phenotypic differences could be 439 

linked with alterations of the microbiome. The intestinal microbial diversity usually increases 440 

sequentially from carnivores to herbivores and to omnivores (Kashinskaya et al., 2018). A. anguilla is 441 

a generalist predator. Though it feeds mainly on invertebrates and fish, some individuals exhibit 442 

scavenger behaviour feeding on dead animals (Sporta Caputi et al., 2020). Our results meet this 443 

assumption since eels from Pas-du-Bouc, which have a microbiome composition influenced by the 444 

proportion of fish, mammals and bird preys in their diet, also showed a lower microbial alpha-445 

diversity (Observed and Chao1). However, cautions must be taken regarding the impact of diet on 446 

microbiota in wild individuals. First, most studies linking diet and microbiome composition were 447 

performed in culture or controlled conditions (Perry et al., 2020; Tarnecki et al., 2017). Then, in fish, 448 

gut microbiome composition and its predicted metabolic function may vary shortly after a feeding 449 

event and/or during the digestion cycle (Parris et al., 2019), and finally, the DNA detected in the 450 

dietary material can either come from the environment (eDNA), from the food eaten by the eels, or 451 

 However, many authors reported a nocturnal 452 

feeding activity in A. anguilla (Tesch and Thorpe, 2003) suggesting that, since sampling was 453 
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performed during daytime, the differences in microbiota composition observed here unlikely 454

resulted from a recent food intake. 455 

If chemicals can alter microbial communities, the microbiota also has the ability to biotransform a 456 

wide variety of chemicals, hence influencing fundamental properties of toxicants (Claus et al., 2016). 457 

The comprehension of how chemicals may perturb the host-microbiome relationship is crucial to 458 

establish links between chemical exposures and adverse effects. This can have long-term implications 459 

for adaptation of organisms in highly contaminated environments (Adamovsky et al., 2018). In the 460 

present study arsenic showed a cumulative 461 

effect size of 31.3%. Recent studies have investigated the impact of POPs exposure on the gut 462 

microbiota in mammals and the potential consequences on health and disease (Chiu et al., 2020; Tian 463 

et al., 2020). But in fish, even though POPs are known to impair endocrine functions, early 464 

development, growth / condition / energy reserves, reproduction, immunity, and behaviour (Johnson 465 

et al., 2013), links with the microbiome are still poorly investigated. The fact that, in the present 466 

study, the level of many POPs showed strong association with gut microbiota should encourage 467 

research toward this direction. Amongst all the environmental and biological parameters that we 468 

measured in each individual eel; our work allowed the identification of a reduced number of factors 469 

that drive microbial communities in this particular context. Those should be further investigated in 470 

controlled conditions to better characterize their mode of action and specific consequences on fish 471 

microbiome and health. 472 

Migratory amphidromous fish experience extreme modifications of environmental conditions, 473 

especially salinity (Sullam et al., 2012), during transit from freshwater to seawater, along with 474 

physiological changes associated with metamorphosis that may impact gut microbiota (e.g. Dehler et 475 

al., 2017; Llewellyn et al., 2016; Zhao et al., 2020). This suggests that gut microbial community 476 

adaptations allow fish to cope with changing environmental conditions, even though differences may 477 

exist between species. In our study, PERMANOVA analysis revealed that salinity had a smaller effect 478 

on microbiota structure (10.5 %) than site of origin (42.9 %) and diet composition (27.7 %). At yellow 479 

stage, A. anguilla has the ability to move back and forth between seawater, estuaries and freshwater 480 

mostly for feeding purposes. Some individuals may even never live in freshwater (Daverat et al., 481 

2006). This phenotypic plasticity could partly result from the limited impact of salinity on gut 482 

microbial composition that we observed here. The effects of salinity and metamorphosis on gut 483 

microbiota should certainly be further investigated in mature individuals (silver eels) prior or during 484 

their catadromous migration. 485 

Owing to their involvement in crucial processes in all environmental compartments such as 486 

wastewaters, continental and coastal surface water, groundwater, and sediments, along with their 487 

sensitivity to alterations, their quick and early responses, microorganisms are now commonly used as 488 
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early-warning bioindicators in ecotoxicological studies (Ghiglione et al., 2016; Pesce et al., 2020). The 489

recent coupling of host-associated microbiome research with ecotoxicology in multicellular 490 

organisms is a promising approach (Duperron et al., 2020). Here, 323 genera showed differential 491 

abundance amongst sites (Figure 5). Due to a larger variability in their beta-diversity (see above), 492 

Vibrionales was the only enriched taxon (LDA = 5.14, p-  identified in the fish from the 493 

Gironde estuary (Pauillac). Vibrionales bacteria are abundant in marine fish (e.g. Egerton et al., 2018; 494 

Sullam et al., 2012) and contain beneficial and pathogenic representatives. In chinook salmon 495 

(Oncorhynchus tshawytscha), juveniles exposed to organic chemical pollutants in a contaminated 496 

urban estuary were immunosuppressed and more susceptible to pathogenic strains, such as Vibrio 497 

anguillarum (Arkoosh et al., 1998). In Teleosts, the spleen is the major organ of immunity and fish 498 

with smaller spleen-somatic index show lower immune response and disease resistance (Hadidi et 499 

al., 2008). SSI values were smaller (0.08 ± 0.01) in PAU eels (Table 1) and micropollutants, particularly 500 

POPs, had an important effect on the abundance of Vibrionales (e.g. Transnonachlor, Figure 6). Thus, 501 

we cannot exclude the hypothesis that these compounds may increase the risk of infection by 502 

pathogenic members of Vibrionales by impairing the immune system of European eels. 503 

In Batejin, that could be considered the less contaminated of our three study sites, taxa of the 504 

class Clostridia (Phylum Firmicutes) were significantly more abundant. Within Clostridia, the order 505 

Clostridiales is associated with the enhanced production of the short chain fatty acids acetate, 506 

butyrate, and propionate and with the degradation and metabolism of sugars in animals. In the 507 

common carp (Cyprinus carpio L.), a greater proportion of Clostridiales was associated with higher 508 

food intake and growth rate (Li et al., 2013) suggesting the good health of eels there. This hypothesis 509 

was partly confirmed by the higher values of Hepatosomatic Index (HSI) in BAT eels. In fisheries 510 

science, this index is used as an indicator of energy reserves in the liver. Correlation studies showed 511 

that, in our eels, the abundance of Clostridiales was negatively impacted by heavy metals (Mo and 512 

Zn) and diet composition (Fish and Mammal preys). The physiological role of these bacteria and the 513 

impact of pollutants should be further investigated by functional studies. 514 

Basidiomycota and Ascomycota phyla were enriched in our fish from Pas-du-Bouc (Figure 5 and 515 

Supplementary file 5). Fungi colonizing animal gut, also referred to as mycobiota, is an important, yet 516 

largely neglected component of animal microbiome (Lavrinienko et al., 2021), partly because in wild 517 

animals, resident gut mycobiota is often overwhelmed by the large proportion of food-borne Fungi. 518 

However, strong and consistent covariation between fungal and bacterial communities were 519 

identified across animal kingdom by Harrison et al. (2021) suggesting an important role in host 520 

physiology through metabolic interactions with Bacteria. For instance, In Actinopterygii, these 521 

authors found that Basidiomycota and Ascomycota showed positive co-occurrence with Firmicutes 522 

and Proteobacteria. In PDB fish, genus Aspergillus was the indicator taxon with the larger LDA score, 523 
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and was positively correlated to Mo, Zn and the proportion of fish in diet. Aspergillus sp. is a 524

saprophyte fungus occurring on decaying vegetation that could have been more abundant in the PDB 525 

area facilitating ingestion by the fish. Likewise, the free-living soil bacteria Streptomyces sp. was 526 

significantly more present in the gut of PDB eels. The presence of this genus as symbiont in gut 527 

microbiota has been previously reported in animals (Seipke et al., 2012), including freshwater fish 528 

(Jami et al., 2015) where they could help in the digestion of insoluble organic polymers, like chitin or 529 

cellulose but their precise role remains unclear. The class Actinobacteria are known to produce many 530 

secondary metabolites, including anti-inflammatory cytokines. Actinobacteria, that were more 531 

abundant in PDB (LDA = 4.85, p-  are usually found on the bottom mud of lakes and 532 

water streams. In bighead carp (Aristichthys nobilis), they were more abundant in the gut of 533 

omnivorous juvenile fish living in lower water layers than in adult filter feeders that live in middle to 534 

upper water layers (Lu et al., 2022). In European eels also, these modifications could hence reflect a 535 

difference in feeding habits.  536 

 537 

CONCLUSION: 538 

Microbiome response to pollutants is crucial but remains an underestimated element to better 539 

understand the toxicity of environmental contaminants on aquatic organisms (Duperron et al., 2020; 540 

Evariste et al., 2019). The sensitivity of microbiomes to environmental stressors suggests that 541 

microbial communities could represent novel ecological indicators for biomonitoring of ecosystem or 542 

host health (Sehnal et al., 2021). In the present study, we were able to associate environmental 543 

contamination and biologic variables with modifications in taxonomic composition of intestinal gut 544 

microbiome of European eels from three contrasted sites. The comprehension of how this species 545 

responds to contamination is crucial for environmental risk assessment. We also identify microbial 546 

genera specifically enriched in each of these sites. That suggests that changes in the structure of 547 

microbial communities associated with the gut of European eels could be an underestimated route 548 

by which the health of this endangered species is threatened by pollutants present in the 549 

environment. To the best of our knowledge, this work constitutes the first example trying to link gut 550 

microbiome modifications with the ecotoxicological landscape in wild fish. Due to the conservation 551 

status of A. anguilla, the use of gut microbial modifications as novel environmental biomarkers of 552 

contamination shall be coupled to non invasive sampling methods.  553 

In the future, it will be necessary to complement the description of microbiome changes with the 554 

measurement of other endpoints of toxicological relevance in the host such as markers of the 555 

immune status or histology, as well as with functional studies of host-microbiota interactions. 556 

 557 
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Table 1: Summary of environmental and morphologic measurements on each sampling site. 
Values are means ± SE. Letters indicate significant differences between groups (p-value < 
0.05). 
 
 

    BAT PDB PAU 
  Location 44°55'53.87"N 44°50'27.03"N 45°14'00.26"N 
  (GPS coordinates) 01°07'22.94"W 01°09'07.58"W 00°44'01.80"W 
  Sampling date 04-JUL-2019 22-JUL-2019 16-SEP-2019 
          

Environmental Temperature (°C) 28.00 23.80 22.36 
   0.12 0.12 10.36 
  pH 8.19 6.42 nd 
  Dissolved O2 (mg/l) 8.24 7.67 5.84 
          

Eels characteristics n samples 11 16 18 
  Age 4.75 ± 0.55 (a) 5.25 ± 0.29 (b) 3.89 ± 0.22 (a) 
  Length (cm) 26.57 ± 1.92 (a) 29.44 ± 0.90 (b) 31.54 ± 0.83 (b) 
  Mass (g) 31.16 ± 8.74 (a) 44.70 ± 4.20 (b) 46.89 ± 3.97 (b) 
  Fulton K 0.16 ± 0.01 (ab) 0.16 ± 0.01 (b) 0.14 ± 0.01 (a) 
  HSI 1.36 ± 0.08 (b) 0.93 ± 0.05 (a) 1.20 ± 0.07 (b) 
  SSI 0.19 ± 0.04 (b) 0.25 ± 0.03 (c) 0.08 ± 0.01 (a) 
          

 
 





Table 3: Mean percentage (± SD) of metazoan sequences in the 5 classes used to assess diet for each 
group of eels created by k-mean clustering. 
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