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Abstract The purpose of this paper is to investigate the k-nearest neighbor
classification rule for spatially dependent data. Some spatial mixing conditions
are considered, and under such spatial structures, the well known k-nearest
neighbor rule is suggested to classify spatial data. We established consistency
and strong consistency of the classifier under mild assumptions. Our main
results extend the consistency result in the i.i.d. case to the spatial case.
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1 Introduction

Analysis of spatial data arises in various areas of research including agricul-
tural field trials, astronomy, econometrics, epidemiology, environmental sci-
ence, geology, hydrology, image analysis, meteorology, ecology, oceanography
and many others in which the data of interest are collected across space. One
of the most fundamental issues in spatial analysis is classification and pattern
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recognition. For example, in remote sensing technology or digital geography
information, we need somehow to classify spatial data into patterns or images
into types. Recently, [22] propose a novel probabilistic model for classification,
that incorporates a network’s structure into the classical logistic regression
model. This model is mostly used to classify data produced by social network
analysis taking into account the connection between nodes, but without any
influence of the spatial coordinates. [18,17,19,20,21] deal with kernel-based
rules to classify temporally and spatially dependent data, and study asymp-
totic properties of classifiers. The aim of the present paper is to investigate
whether the classical k-nearest neighbor classifier can be extended to classify
spatial data. To the best of our knowledge this work is the first one dealing
with spatial data. The k-nearest neighbor method for estimating density and
regression or data classification has been widely used and studied for many
years in the i.i.d. case. Key references on this topic are: [4], [3], [5], [6] and [2].
The use of the k-nearest neighbor method in the spatial case is due to [15] for
density estimation. The real interest in the k-nearest neighbor method comes
from the nature of the smoothing parameter. Indeed, in the traditional kernel
method, the smoothing parameter is the bandwidth, which is a real positive
number. Here, the number of neighbors k is the smoothing parameter and it
takes its values in a discrete set. As we said previously, the other very impor-
tant aspect of this method is that it allows the construction of a neighborhood
adapted to the local structure of the data. The main difficulties with the kernel
method appear when data are sparse; choosing the number of neighbors allows
to avoid this problem and is adapted to the concentration of the data. Consis-
tency of kernel-based rules on temporally or spatially dependent data has re-
cently been investigated by [18,17,19,20,21] in finite and infinite-dimensional
space. In this paper, we will establish the (strong) consistency of the k-nearest
neighbor classifier for spatially dependent data. Let {(Xi, Yi)}i∈ZN be a ran-
dom field defined on some probability space (Ω,F ,P) and taking values in
Rd ×{0, 1}. In the problem of classification, for each i ∈ ZN , Xi is a vector of
features and Yi is the label (class) of Xi. A point i = (i1, ..., iN ) ∈ ZN will be

referred to as a site. For n = (n1, ..., nN ) ∈ (N∗)
N
, we define the rectangular

region In by In = {i ∈ ZN : 1 ≤ il ≤ nl, ∀l = 1, ..., N}. We will write
n → ∞ if min1≤l≤N nl → ∞. Define n̂ = n1 × ... × nN = card (In) . We
wish to predict the label Yj of a new observation Xj. The pair (Xj, Yj) may
be described by µ, the probability measure for Xj, and η(x) = E (Yj/Xj = x),
the regression of Yj on Xj = x. Assume that for each i ∈ ZN , (Xi, Yi) has the
same distribution as the pair (X,Y ). We create a classifier g : Rd −→ {0, 1}
mapping Xj into the predicted label of Xj. The error rate, or risk, of a rule g
is L(g) = P{g(Xj) ̸= Yj}. This is minimized by the rule

g∗(x) =

{
0 if P{Yj = 0|Xj = x} ≥ P{Yj = 1|Xj = x}
1 otherwise,

whose error rate L∗ = L(g∗) is called the Bayes risk and g∗ is called the
Bayes rule. This optimal rule depends on the distribution of (Xj, Yj) which is
generally unknown. we use the data Dn = {(Xi, Yi) : i ∈ In} to construct a
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classifier gn(x). The set Dn is called training sample. The spatial version of
the classical k-nearest neighbor rule given by

gn(x) =

0 if
∑
i∈In

wniYi ≤ 1/2

1 otherwise,
(1)

where wni = wni(x;Dn) is 1/k if Xi is one of the k-nearest neighbor of x in
Dn and wni is zero otherwise with k = k(n) is a sequence of positive integers
satisfying

k −→ ∞ and k/n̂ −→ 0 as n → ∞. (2)

Observe that the distance between two observations in Rd or two sites in ZN
will be computed by the Euclidean distance. We assume that µ is absolutely
continuous with respect to the Lebesgue measure λ on Rd, in other words, X
has a density f with respect to λ, so that we can avoid messy technicalities
necessary to handle distance ties. If we let ηn(x) =

∑
i∈In

wniYi be the k-
nearest neighbor estimator of η(x), (1.1) can be re-written as follows

gn(x) =

{
0 if ηn(x) ≤ 1/2
1 otherwise.

(3)

The best we can expect from gn(x) is to achieve the Bayes risk. Denote Ln =
L(gn) the error rate of gn. The classifier gn(x) is called consistent if ELn −→
L∗ as n → ∞ and it is strongly consistent if Ln −→ L∗ as n → ∞ with
probability one. In this paper, we investigate both the consistency and strong
consistency of gn under classical conditions.

2 Mixing conditions

Let us first recall the definitions of mixing coefficients α introduced by [14] and
β introduced by [13]. Let A and C be two sub σ-algebras of F . The α-mixing
coefficient between A and C is defined by

α = α(A, C) = sup
A∈A,C∈C

|P(A ∩ C)− P(A)P(C)|

and the β-mixing coefficient is defined by

β = β(A, C) = E sup
A∈A

|P(A|C)− P(A)]|.

Let {Zi}i∈ZN be a random field on (Ω,F ,P) and take values in some space
(Ω′,F ′). For any E,E′ ⊂ ZN with finite cardinals, we denote by B(E) and
B(E′) the Borel σ-algebras generated by {Zi}i∈E and {Zi}i∈E′ respectively.
The random field {Zi}i∈ZN is said to be α-mixing (strongly mixing) if

α(t) = sup
dist(E,E′)≥t

α
(
B(E),B(E′)

)
↓ 0 as t→ ∞,
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where

dist(E,E′) = inf
i∈E,j∈E′

∥i− j∥

and ∥.∥ denotes the Euclidean norm. The above α-mixing condition may be
satisfied by many spatial models and examples can be found in [9] and [12].
The random field {Zi}i∈ZN is said to be β-mixing ( absolutely regular) if

β(t) = sup
dist(E,E′)≥t

β
(
B(E),B(E′)

)
↓ 0 as t→ ∞.

The two mixing coefficients α and β are related by the inequality 2α ≤ β (see
[10]). Consequently, any β-mixing random field is α-mixing one. Throughout
the paper, it will be assumed that the random field {(Xi, Yi)}i∈ZN is strongly
mixing (absolutely regular) to establish consistency (strong consistency) of
the k-nearest neighbor rule. However, the training sample Dn is obtained by
observing the feature vector Xi with its label Yi in each site i ∈ In. Each one of
the above mixing coefficient describes a spatial interdependence between the
observations (Xi, Yi) based on their locations on the lattice points. According
to the above mixing conditions, observations in sites that are close together
tend to be more correlated than that are in sites being far apart.

3 Preliminary lemmas and main results

The following lemmas will be needed to establish consistency and strong con-
sistency. The proof of the following lemma is found in [10].

Lemma 1 Let Z1 and Z2 be two R-valued bounded random variables. Then,
we have

|cov(Z1, Z2)| ≤ 4∥Z1∥∞∥Z2||∞α(σ(Z1), σ(Z2)),

where ∥.∥∞ is the supremum norm and σ(Zi) is the σ-algebra generated by Zi
for i = 1, 2.

Let A and C be two sub σ-algebras of F , we denote by A∨C the σ-algebra gen-
erated by A∪C. The following lemmas will be used to prove strong consistency
of the classifier.

Lemma 2 Let Z be a random variable defined on (Ω,F ,P) and taking values
in some Polish space Ω′ and M be a sub σ-algebra of F . Assume that there
exists a random variable U uniformly distributed over [0, 1], independent of
σ(Z) ∨ M. Then, there exists a random variable Z∗ measurable with respect
to σ(U) ∨ σ(Z) ∨M, distributed as Z and independent of M, such that

P(Z ̸= Z∗) = β(M, σ(Z)).

For the proof of Lemma 2 (Berbee’s lemma), we refer the reader to [1]. Denote
Sx,r the closed ball centered at x with radius r > 0.
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Lemma 3 Let

Ba(x
′) = {x ∈ Rd : µ

(
Sx,∥x−x′∥

)
< a}.

Then, for all x′ ∈ Rd,
µ (Ba(x

′)) ≤ γda

with γd is the minimal number of cones centered at the origin of angle π/6
that cover Rd.

We refer the reader to [6] for the proof of Lemma 3. The number γd defined
in Lemma 3 exists according to ([6], Lemma 5.5). Now, we state the main
results of this paper. In the following theorem, we investigate consistency of
the k-nearest neighbor rule.

Theorem 1 Suppose that Dn are observations of α-mixing random field such
that α(t) = O(t−θ) with θ > N. Suppose in addition that (1.2) is satisfied and
that as n → ∞,

k/
√
n̂ −→ ∞. (4)

Then, as n → ∞,
ELn −→ L∗.

Theorem 1 extends Stone’s consistency theorem (see [11]) to the spatial case
when the probability measure µ is absolutely continuous under a slight mod-
ification of Stone’s condition on the smoothing parameter k. Condition (3.1)
is weaker than that used by ([3], Theorem II.3) in the i.i.d. case (see also ([4],
theorem 1)). In the following theorem, we investigate strong consistency of the
k-nearest neighbor rule.

Theorem 2 Suppose that Dn are observations of strictly stationary β-mixing
random field such that β(t) = O(t−θ) with θ > N and that (1.2) and (3.1) are
satisfied. Suppose in addition that there is an integer p = p(n) with p(n) ∈
[1,min1≤l≤N nl/2] such that as n → ∞,

n̂

pN log n̂
−→ ∞ (5)

and ∑
n̂∈(N∗)N

k−1n̂β(p) <∞. (6)

Then, as n → ∞,

Ln −→ L∗ with probability one.

Theorem 2 extends the strong consistency of ([6], Theorem 11.1) to the spatial
case under some mild additional condition on the smoothing parameter k.
Observe that if β(t) = O(t−θ), then α(t) = O(t−θ) since 2α(t) ≤ β(t), so that
α(t) and β(t) tend to zero as t → ∞ with polynomial rate. In addition, if we
take for example p = n̂1/2N , (5) and (6) are satisfied for some θ > 4N.
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4 Numerical results

In this section, some numerical results are proposed towards some simulations.
We consider a two-dimensional space (N = 2) with the random field{

(X
(i,j)

, Y
(i,j)

), (i, j) ∈ Z2
}

simulated on a rectangular region

I(n1,n2) = {(i, j), 1 ≤ i ≤ n1, 1 ≤ j ≤ n2}

of n1 × n2 sites. Without loss of generality, we take n1 = n2 = n. We fo-
cus on the case where (X

(i,j)
, Y

(i,j)
) takes values in R2 × {0, 1} with X

(i,j)
=

(X
1,(i,j)

, X
2,(i,j)

) where X
1,(i,j)

are dependent normal variables with mean 0,

variance 0.5 and covariance function c(u) = 0.5 exp(−∥u∥) for all u ∈ R2 with
u ̸= 0, and X

2,(i,j)
are independent normal variables with mean 0 and vari-

ance 0.5. We let Y
(i,j)

= 1 if sin(X
1,(i,j)

−X
2,(i,j)

) > sin(X
1,(i,j)

+X
2,(i,j)

) and
Y

(i,j)
= 0 otherwise. The R statistical programming environment is used to

run simulations. First of all, we give a typical example by using the above
scenario for n = 25 and we get the following figure.

Fig. 1 Labeled feature vectors at left-hand side and labeled sites at right-hand side with
red color for the class (0) and blue color for the class (1).

Figure 1 shows the labels of 625 feature vectors X
(i,j)

with their labeled sites
on the region I(20,20). Now, for each n ∈ {20, 30, 40, 50}, we simulate a sample
of size n2 on the rectangular region I(n,n). Then, each sample is splitted into
two sets. The first set contains n2−100 elements of the sample for training and
the other contains 100 elements of the samples for testing. Figure 2 displays
the labeled samples for n = 20, 30, 40, 50.
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Fig. 2 Four labeled samples corresponding to n = 20, 30, 40, 50 with red color for the class
(0) and blue color for the class (1).

We apply the cross-validation criterion (CV) to the training samples to choose
values of the smoothing parameter k by altering k with various values and
choose that corresponding to the lowest CV (k) given by

CV (k) =
∑
i

(Yi − g−i
(n,n)(Xi))

2,

where g−i
(n,n)(Xi) indicates the k-nearest neighbor rule based on leaving out the

pair (Xi, Yi) and the summation is taken over all sites of a training sample.
It is desirable for k to be odd to make ties less likely. Then, for each n, we
estimate the misclassification error rate (ER) using the associated test sample,
i.e,

ER =
1

100

∑
i

1I{Yi ̸=g(n,n)(Xi)},
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where the summation is taken over all sites of a test sample and 1IA denotes the
indicator ofA. Table 1 includes the optimal chosen values of k together with the
corresponding estimated misclassification error rates for one replication of each
n. To check the robustness of the proposed classifier, the above simulation is

n STS k ER
20 300 21 0.05
30 800 33 0.03
40 1500 41 0.03
50 2400 51 0.04

Table 1 Misclassification error rates

replicated 100 times, and the average error rate (AER) is obtained by averaging
the error rates associated with the corresponding 100 test samples of each
value of n. We keep the chosen values of k listed in Table 1 for each replication.
Finally, we get the following table of average misclassification error rates. Table

n STS k AER
20 300 21 0.0495
30 800 33 0.0410
40 1500 41 0.0330
50 2400 51 0.0310

Table 2 Average misclassification error rates

2 displays the average error rates corresponding to n ∈ {20, 30, 40, 50}. It shows
that the AER decreases when the size of training sample increases which make
the results of this simulation study in line with the theoretical results.

5 Proofs

Define ρn = ρn(x) as the solution of the equation

k

n̂
= µ(Sx,ρn). (7)

Note that the solution always exists since X has a density by assumption. Also
define

η̂n(x) =
1

k

∑
i∈In

Yi1I{Xi∈Sx,ρn}.

Proof of Theorem 1 By Theorem 2.2 in [6], we have

Ln − L∗ ≤ 2

∫
Rd

|η(x)− ηn(x)|µ(dx). (8)
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Hence, it suffices to prove that

E
∫
Rd

|η(x)− ηn(x)|µ(dx) → 0. (9)

But
|η(x)− ηn(x)| ≤ |η(x)− Eη̂n(x)|+ |Eη̂n(x)− ηn(x)|. (10)

Clearly, by (7), condition (2) implies that ρn → 0 as n → ∞. By Lebesgue’s
density theorem together with (7), we have as n → ∞,

Eη̂n(x) =
1

µ(Sx,ρn)

∫
Sx,ρn

E (Y/X = x′)µ(dx′) → E (Y/X = x) = η(x)

for all x mod µ (µ-almost for all x ∈ Rd). Since |Y | ≤ 1, the dominated
convergence theorem implies that as n → ∞,∫

Rd
|η(x)− Eη̂n(x)|µ(dx) → 0. (11)

Therefore, by (10)-(11), it suffices to prove that as n → ∞,

E
∫
Rd

|Eη̂n(x)− ηn(x)|µ(dx) → 0. (12)

We have the following inequality

E
∫
Rd

|Eη̂n(x)− ηn(x)|µ(dx)

≤ E
∫
Rd

|Eη̂n(x)− η̂n(x))|µ(dx) + E
∫
Rd

|η̂n(x)− ηn(x)|µ(dx). (13)

Thus, we prove that the two terms in the right-hand side of (13) tend to zero
as n → ∞. For the first term, by Cauchy-Schwartz inequality, we get

E
∫
Rd
|Eη̂n(x)− η̂n(x)|µ(dx)

≤
∫
Rd

√
E(Eη̂n(x)− η̂n(x))2µ(dx)

=

∫
Rd

√
var(η̂n(x))µ(dx)

≤
∫
Rd

√
n̂

k2
var
(
Y 1IX∈Sx,ρn

)
+ Cn(x)µ(dx) (14)

with

Cn(x) =
1

k2

∑
i̸=j

∣∣cov(Yi1IXi∈Sx,ρn , Yj1IXj∈Sx,ρn )
∣∣ .

On the one hand, we have by (7)

n̂

k2
var
(
Y 1IX∈Sx,ρn

)
≤ n̂

k2
E(1IX∈Sx,ρn ) =

n̂

k2
µ(Sx,ρn) =

1

k
. (15)
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On the other hand, by Lemma 1, we have

Cn(x) ≤
4

k2

∑
i̸=j

α(∥i− j∥) ≤ 4n̂

k2

∑
∥i∥≥1

α(∥i∥)

≤ 4n̂

k2

∞∑
i=1

iN−1α(i) ≤ Cn̂

k2

∞∑
i=1

iN−1−θ ≤ Cn̂

k2

∫ ∞

1/2

uN−1−θdu

for some generic constant C > 0. Therefore

Cn(x) ≤
Cn̂

k2

∫ ∞

1/2

uN−1−θdu ≤ Cn̂

k2
(16)

since
∫∞
1/2

uN−1−θdu < ∞ for θ > N. By (4) and (14)-(16) together with the

dominated convergence theorem, we get

E
∫
Rd

|Eη̂n(x)− η̂n(x)|µ(dx) → 0. (17)

It remains to prove that the second term in the right-hand side of (13) tends
to zero as as n → ∞. To do that, let X(k)(x) be the k-nearest neighbor of x
and denote rn = rn(x) = ∥X(k)(x)− x∥. Clearly

|η̂n(x)− ηn(x)| =

∣∣∣∣∣1k ∑
i∈In

Yi1I{Xi∈Sx,ρn} −
1

k

∑
i∈In

Yi1I{Xi∈Sx,rn}

∣∣∣∣∣
≤ 1

k

∑
i∈In

∣∣1I{Xi∈Sx,ρn} − 1I{Xi∈Sx,rn}
∣∣

≤

∣∣∣∣∣1k ∑
i∈In

1I{Xi∈Sx,ρn} − 1

∣∣∣∣∣ = |η̄n(x)− Eη̄n(x)| (18)

with

η̄n(x) =
1

k

∑
i∈In

1I{Xi∈Sx,ρn}.

Hence, we prove that as n → ∞,

E
∫
Rd

|η̄n(x)− Eη̄n(x)|µ(dx) → 0. (19)

Observe that η̄n(x) = η̂n(x) if we let Yi = 1 for all i ∈ In. Consequently,
the proof of (19) is the same as that of (17). Finally, combining (10)-(13) and
(17)-(19), we get (9) and the proof is completed. □
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Proof of Theorem 2 By (8), the proof is established if we prove that as
n → ∞, ∫

Rd
|η(x)− ηn(x)|µ(dx) → 0 with probability one. (20)

By (10)-(11), it suffices to prove that∫
Rd

|Eη̂n(x)− ηn(x)|µ(dx) → 0 with probability one. (21)

Since ∫
Rd

|Eη̂n(x)− ηn(x)|µ(dx) ≤
∫
Rd

|η̂n(x)− Eη̂n(x)|µ(dx)

+

∫
Rd

|η̂n(x)− ηn(x)|µ(dx),

the proof of (21) is established if we prove that∫
Rd

|η̂n(x)− Eη̂n(x)(x)|µ(dx) → 0 with probability one. (22)

and ∫
Rd

|η̂n(x)− ηn(x))|µ(dx) → 0 with probability one. (23)

We first prove (22). To this aim, we use the blocks decomposition introduced by
[7] (see also [16]) which will be useful afterwards. Without loss of generality,
suppose for each l = 1, ..., N , nl = 2pql where p = p(n) and q = ql(n) are
strictly positive integers with p(n) ∈ [1,min1≤l≤N nl/2] such that (5) and (6).
Let

Jq = {j = (j1, ..., jN ) ∈ NN : 0 ≤ jl ≤ ql − 1, ∀l = 1, ..., N}.

We have card(Jq) =
∏N
l=1 ql := r. We define blocks as follow, for each j ∈ Jq,

S(1)
j = {i ∈ In : 2jkp+ 1 ≤ ik ≤ (2jk + 1)p, k = 1, . . . , N}

S(2)
j = {i ∈ In : 2jkp+ 1 ≤ ik ≤ (2jk + 1)p, k = 1, . . . , N − 1

and (2jN + 1)p+ 1 ≤ iN ≤ 2(jN + 1)p}
. . .

S(2N−1)
j = {i ∈ In : (2jk + 1)p+ 1 ≤ ik ≤ 2(jk + 1)p, k = 1, . . . , N − 1

and 2jNp+ 1 ≤ iN ≤ (2jN + 1)p}

S(2N )
j = {i ∈ In : (2jk + 1)p+ 1 ≤ ik ≤ 2(jk + 1)p, k = 1, . . . , N}.

We have

In =

2N⋃
i=1

⋃
j∈Jq

S(i)
j . (24)
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One can easily prove that for all j ∈ Jq, card
(
S(i)
j

)
= pN and for all j ̸= j′,

dist
(
S(i)
j ,S(i)

j′

)
≥ p. LetW

(i)
j =

(
(Xi, Yi), i ∈ S(i)

j

)
, for each i = 1, ..., 2N and

j ∈ Jq, and let ψ : {1, ..., r} → Jq be a bijection. We can define a lexicographic
order relation ≤lex on Jq as follows: ψ(m) ≤lex ψ(m

′) if m ≤ m′. For any j ∈
Jq, we can find m ∈ {1, ..., r} with ψ(m) = j. Now, we use Lemma 2 together
with a decomposition in blocks similar to that introduced by [7] (see also

[16]) on the family of vectors
{
W

(i)
ψ(m), m = 1, ..., r

}
to generate independent

copies
{
W̃

(i)
ψ(m), m = 1, ..., r

}
such that: they are mutually independent, for

all m ∈ {1, ..., r}, W̃ (i)
ψ(m) =

(
(X̃i, Ỹi)), i ∈ S(i)

ψ(m)

)
has the same distribution

as W
(i)
ψ(m) =

(
(Xi, Yi), i ∈ S(i)

ψ(m)

)
and P

(
W

(i)
ψ(m) ̸= W̃

(i)
ψ(m)

)
≤ β(p) because

dist
(
S(i)
ψ(m),S

(i)
ψ(m′)

)
≥ p for any m ̸= m′. As a consequence, for each i ∈ In,

there exist i = 1, ..., 2N and m = 1, ..., r such that

P
(
(Xi, Yi) ̸= (X̃i, Ỹi)

)
≤ P

(
W

(i)
ψ(m) ̸= W̃

(i)
ψ(m)

)
≤ β(p) (25)

Define

η̃n(x) =
1

k

∑
i∈In

Ỹi1I{X̃i∈Sx,ρn} (26)

Then, for any ϵ > 0, we have

P
(∫

Rd
|η̂n(x)− Eη̂n(x)(x)|µ(dx) > ϵ

)
≤ P

(∣∣∣ ∫
Rd

|η̂n(x)− Eη̂n(x)|µ(dx)−
∫
Rd

|η̃n(x)− Eη̃n(x)|µ(dx)
∣∣∣ > ϵ/2

)
+ P

(∫
Rd

|η̃n(x)− Eη̃n(x)|µ(dx) > ϵ/2

)
:= An +Bn. (27)



Consistency of the k-nearest neighbor classifier for spatially dependent data 13

We first find an upper bound for An. We have by Markov’s inequality

An ≤ 2ϵ−1E
∣∣∣ ∫

Rd
|η̂n(x)− Eη̂n(x)|µ(dx)−

∫
Rd

|η̃n(x)− Eη̃n(x)|µ(dx)
∣∣∣

≤ 2ϵ−1E
∫
Rd

∣∣∣|η̂n(x)− Eη̂n(x)| − |η̃n(x)− Eη̃n(x)|
∣∣∣µ(dx)

≤ 2ϵ−1E
(∫

Rd
|η̃n(x)− η̂n(x)|µ(dx) + E

∫
Rd

|η̃n(x)− η̂n(x)|µ(dx)
)

= 4ϵ−1E
∫
Rd

|η̃n(x)− η̂n(x)|µ(dx)

= 4ϵ−1E
∫
Rd

∣∣∣∣∣1k ∑
i∈In

Ỹi1I{X̃i∈Sx,ρn} −
1

k

∑
i∈In

Yi1I{Xi∈Sx,ρn}

∣∣∣∣∣µ(dx)|
≤ 4ϵ−1k−1

∑
i∈In

E1I(Xi,Yi) ̸=(X̃i,Ỹi)

∫
Rd

∣∣∣Ỹi1I{X̃i∈Sx,ρn} − Yi1I{Xi∈Sx,ρn}

∣∣∣µ(dx)
≤ 8ϵ−1k−1n̂β(p).

Consequently, by (6), we get ∑
n∈(N∗)N

An <∞. (28)

Let us now find an upper bound for Bn. We have

Bn = P
(∫

Rd
|η̃n(x)− Eη̃n(x)|µ(dx) > ϵ/2

)
= P

(
1

k

∫
Rd

∣∣∣∣∣∑
i∈In

Ỹi1I{X̃i∈Sx,ρn} −
1

k

∑
i∈In

EỸi1I{X̃i∈Sx,ρn}

∣∣∣∣∣µ(dx) > ϵ/2

)

Consequently, (24) yields

Bn ≤
2N∑
i=1

P

1

k

∫
Rd

∣∣∣∣∣∣∣
∑
j∈Jq

∑
i∈S(i)

j

(
Ỹi1I{X̃i∈Sx,ρn} − EỸi1I{X̃i∈Sx,ρn}

)∣∣∣∣∣∣∣µ(dx) > ϵ/2N+1


Hence, it suffices to find an upper bound for example for

P

1

k

∫
Rd

∣∣∣∣∣∣∣
∑
j∈Jq

∑
i∈S(1)

j

(
Ỹi1I{X̃i∈Sx,ρn} − EỸi1I{X̃i∈Sx,ρn}

)∣∣∣∣∣∣∣µ(dx) > ϵ/2N+1

 .

To do that, we re-consider blocks decomposition and the lexicographic relation
defined above. Denote for each m = 1, ..., r,

W̃m := W̃
(1)
ψ(m) =

(
(X̃i, Ỹi)), i ∈ S(1)

ψ(m)

)
.
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Define

F :

((
Rd × {0, 1}

)pN)r → R

such that

F (W̃1, ..., W̃r) =
1

k

∫
Rd

∣∣∣∣∣∣∣
r∑

m=1

∑
i∈S(1)

ψ(m)

(
Ỹi1I{X̃i∈Sx,ρn} − EỸi1I{X̃i∈Sx,ρn}

)∣∣∣∣∣∣∣µ(dx).
With the same method that was used to prove (17), we can easily prove that

EF (W̃1, ..., W̃r) → 0.

As a consequence, we have for n̂ is enough large, we can write

P

1

k

∫
Rd

∣∣∣∣∣∣∣
r∑

m=1

∑
i∈S(1)

ψ(m)

(
Ỹi1I{X̃i∈Sx,ρn} − EỸi1I{X̃i∈Sx,ρn}

)∣∣∣∣∣∣∣µ(dx) > ϵ/2N+1


≤ P

(∣∣∣F (W̃1, ..., W̃r)− EF (W̃1, ..., W̃r) > ϵ/2N+2
∣∣∣) . (29)

Let us fix the data and denote w̃∗
m =

(
(x̃∗i , ỹ

∗
i )), i ∈ S(1)

ψ(m)

)
. Thus, we have

|F (w̃1, ..., w̃m, ..., w̃r)− F (w̃1, ..., w̃
∗
m, ..., w̃r)|

≤ 1

k

∫
Rd

∣∣∣∣∣∣∣
∑

i∈S(1)

ψ(m)

(
ỹi1I{x̃i∈Sx,ρn} − ỹ∗i 1I{x̃∗

i ∈Sx,ρn}

)∣∣∣∣∣∣∣µ(dx)
≤

∑
i∈S(1)

ψ(m)

1

k

∫
Rd

∣∣∣ỹi1I{x̃i∈Sx,ρn} − ỹ∗i 1I{x̃∗
i ∈Sx,ρn}

∣∣∣µ(dx).
But

∣∣∣ỹi1I{x̃i∈Sx,ρn} − ỹ∗i 1I{x̃∗
i ∈Sx,ρn}

∣∣∣ ≤ 2 and it can be different from zero if and

only if ∥x̃i − x∥ ≤ ρn or ∥x̃∗i − x∥ ≤ ρn. Observe that by (7), ∥x̃i − x∥ ≤ ρn
if and only if µ

(
Sx,∥x̃i−x∥

)
≤ k/n̂. But the measure of such x’s is bounded by

γdk/n̂ by Lemma 3 and card
(
S(1)
ψ(m)

)
= pN . Therefore,

sup
w̃1,...,w̃r,w̃∗

m

|F (w̃1, ..., w̃m, ..., w̃r)− F (w̃1, ..., w̃
∗
m, ..., w̃r)| ≤

2pN

k

γdk

n̂
=

2pNγd
n̂

.

As a consequence, according to McDiarmid’s inequality (see [8]), we have

P
(∣∣∣F (W̃1, ..., W̃r)− EF (W̃1, ..., W̃r) > ϵ/2N+2

∣∣∣)
≤ 2 exp

(
− ϵ2n̂2

22N+4rp2Nγ2d

)
= 2 exp

(
− ϵ2n̂

22N+3pNγ2d

)
. (30)
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Combining (28)-(29) together with (5), we get∑
n∈(N∗)N

Bn <∞. (31)

By (27), (28) and (31) together with Borel-Cantelli lemma, we have (22). To
complete the proof, it remains to prove (23). As we show above η̄n(x) = η̂n(x)
if we let Yi = 1 for all i ∈ In with

η̄n(x) =
1

k

∑
i∈In

1I{Xi∈Sx,ρn}.

Consequently, if we proceed similarly to (18), we can easily show that the proof
of (23) is the same as that of (22) and the proof is completed. □
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