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SUMMARY  

 
 The 1st international modelling challenge in animal health aimed to improve the collective 

capacity to predict large-scale pathogen spread between livestock and wildlife and to support 
public decision during health crises. It provided an inspiring platform for exchanging 
knowledge and expertise. Comparing approaches allowed to assess the predictive capacity of 
models and identify areas for improving modellers’ responsiveness facing a real crisis. 

 
INTRODUCTION 

 
Raising livestock in a sustainable and welfare perspective requires to manage animal health, 

especially infectious diseases which spread at large scale between animal populations (Ezanno 
et al., 2020). Health crises highlight the need for robust epidemiological knowledge and 
predictive tools to better cope with uncertainty, especially at the livestock-wildlife interface 
(Gortázar et al., 2007). Developing models that forecast disease spread is pivotal to better 
understand epidemics and to assess ex ante the efficacy of control measures (Grassly and 
Fraser, 2008), but doing so during an epidemic is extremely difficult. Modelling challenges, 
which are relatively short competitions, enhance cooperation between actors and modellers’ 
ability to timely advise policy makers, improve the accuracy of model predictions and 
modellers’ readiness when facing emerging threats, and promote international collaborations. 
After the first modelling challenge on seasonal influenza (Friedberg et al., 2015), annually 
renewed (Reich et al., 2019; Viboud and Vespignani, 2019), others were organized on Ebola 
(Viboud et al., 2018), Chikungunya (Del Valle et al., 2018) and Dengue (Johansson et al., 
2019). However, none concerned an animal disease so far, while animal epidemiology has 
specific features which may induce different conclusions on the most suitable approaches and 
also require specific preparedness.  

African swine fever (ASF) is an emerging disease currently spreading at the interface 
between wild boar and pig farms in Europe and Asia (Sánchez-Cordón et al., 2019). This viral 
disease is associated to a tremendous impact on swine production, livestock economy and 
international trade and neither a vaccine nor a treatment is available (Dixon et al., 2020). It is 
one of the most major livestock infectious disease threats for most countries as the virus can 
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spread internationally via geographical proximity or due to movements of persons, swine and 
swine products (Vergne et al., 2017). To enhance the global preparedness to better face ASF 
epidemics, there is a need to consider explicitly the interface between livestock and wildlife, 
and to be able to assess various and combined control measures. 

The objective of this paper is to present ASF Challenge, the first modelling challenge in 
animal health, the comparison of approaches mobilised by the five international teams 
involved, and to discuss lessons learnt throughout this process. 

MATERIALS AND METHODS 

Challenge organization 

During the preparation step (July 2019-August 2020), a source model (called “M0”) was 
built to generate the synthetic data mimicking a ASF-like outbreak in a realistic west-European 
context. The challenge itself took place between August 27, 2020 and January 13, 2021. Three 
situation reports and synthetic epidemiological data corresponding to days 50, 80 and 110 after 
the detection of a first case, were released successively to the participants. These data were 
produced by the original model described below and represented detection events on pig farms 
or wild boar, with the location and cause of detection. Finally, the predictions of the 
participants’ models were compared and analysed.  

Model M0 and simulated epidemics 

The simulated outbreak was located on a hypothetical island built by aggregating the two 
French regions Auvergne-Rhône-Alpes and Occitanie, using three types of land use based on 
public GIS data† (agricultural, forest and urban) to define the location of individual wild boar 
and domestic pig farms. Assuming that a the wild boar population was reduced by half during 
a hunting season, we used hunting bags per department provided by the Office Français de la 
Biodiversité (OFB) to determine the initial wild boar population (500,366) and distributed the 
centres of their home range randomly (80% in forest areas, 18% in agricultural areas, 2% in 
urban areas). The coordinates of the 4,775 pig farms registered in the two French regions were 
also randomly distributed as follows: 33% in Auvergne-Rhône-Alpes and 67% in Occitanie, 
and within each region 85% in agricultural areas, 10% in forests, 5% in urban areas. Besides, 
we endowed each farm with variable characteristics (size; commercial or backyard status; 
farrow, finisher, or farrow-to-finish; access to an outdoor area) which were used to generate a 
biosecurity score and simulate commercial movements between farms. 

The synthetic epidemiological data were simulated using a stochastic, spatially-explicit 
agent-based model, with three kinds of agents: pig herds (compartmental sub-model), 
individual wild boar, and the whole island (as a metapopulation). A recent modelling software, 
EMULSION (Picault et al., 2019), was used for making model components explicit and more 
revisable.  

In pig farms, we neglected natural mortality, thus driving the population only by pre-
calculated commercial movements, sold animals being replaced with new ones. Wild boar were 
subject to hunting and natural mortality only. As the epidemic was taking place during the 
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hunting season (8 months), we indeed assumed no birth during the simulated period (Vetter et 
al., 2020).     

Pigs and wild boar were categorised into mutually exclusive health states: susceptible (S), 
exposed i.e. asymptomatic but starting being infectious (E), fully infectious and symptomatic 
(I). All infected animals were assumed to die, resulting in an infectious carcass (C). Wild boar 
dying from natural causes produced either an infectious (C) or a healthy (D) carcass when E/I 
or S at death, respectively. In pig farms, carcasses were removed the next day, whereas wild 
boar carcasses could stay in the environment up to several months until fully decayed or 
removed by humans. The force of infection in pig farms was assumed density-dependent, with 
a higher transmission rate in backyard farms than in commercial farms.  

We modelled several transmission pathways between epidemiological units. For pig farms, 
we considered: the movement of an infected pig from an infected farm, the contact with an 
infectious wild boar, and indirect contacts with infectious farms in the neighbourhood. For wild 
boar, we assumed contacts with infectious wild boar, with infectious carcasses, or with an 
infectious pig farm. Apart from pre-computed trade movements, all other transmission 
pathways were spatially explicit (based on transmission kernels) and, when farms were 
involved, depended on their biosecurity level and outdoor access. 

Detection of ASF cases initially relied on passive surveillance: wild boar carcasses could be 
found and tested each day with a low probability, whereas each pig could be detected and tested 
each day and at death, with a probability that depended on the farm type (high in commercial 
farms, low in backyard farms). The detection of the primary outbreak resulted in increased 
detection probabilities. Current European regulatory measures were triggered immediately 
after the first detection, and applied to all confirmed pig farms: 1) the slaughter of all animals, 
2) the installation of protection and surveillance zones subject to trade ban and increased 
vigilance, 3) the tracing of farms with recent trade contacts (same effect). Culled farms were 
repopulated after several weeks. Any infected wild boar carcass found was removed without 
delay and triggered an active search in the immediate neighbourhood, with a higher probability 
to find new carcasses. Also, a proportion of hunted wild boar were tested. 

Several additional control measures were implemented successively in the simulation. First, 
assuming the forest near the primary case was a major threat, 300 km of fences were installed 
and became operational 60 days after the first detection. An increased hunting pressure started 
in the fenced area and in a buffer area around the fences, with systematic tests on hunted wild 
boar, the suspension of active search, and an increased probability of finding carcasses by 
passive surveillance. Then, 90 days after the first case, the detection of dead or alive infected 
wild boar led to the preventive culling (and testing) of all pigs from nearby farms.  

Selection of synthetic data for the challenge 

An exposed wild boar was introduced near a forest at the center of the island, a few weeks 
before the start of the hunting season. We ran 500 stochastic repetitions of the model to identify 
trajectories that were realistic enough and well suited for the challenge. After discarding those 
without any detection or detections later than 200 days after ASF introduction, we chose at 
random one of the trajectories that met five selection criteria: more than 250 infected wild boar 
before primary case detection to ensure disease installation in wildlife; primary case found in 
pig farm; less than 500 wild boar infected outside the fences at installation; more than 250 
infected wild boar 110 days after primary case; and less than 30 infected wild boar 230 days 
after primary case (Fig. 1). 



 
 

 

Figure 1. Temporal dynamics of the number of live infected wild boars (exposed + 
infectious) for the selected trajectory (black) and the stochastic repetitions where detection 
occurred before 200 days (gray), with the three prediction phases that followed the initial 

situation report. Vertical dashed lines: changes in control interventions. 

Participants and their methods 

Five modeller teams participated in the whole challenge (see Acknowledgements). In the 
narrative of the synthetic epidemics, phase 1 started 50 days after the dectection of a first case 
in a pig farm near a forest. Participants were provided with a first situation reports and asked 
1) to predict the number and location of wild boar and pig farm cases expected in the following 
30 days, 2) to assess the effectiveness of surrounding the infected zone with fences, and 3) to 
advise on increasing hunting pressure in the fenced zone. At the end of phase 2 (110 days after 
first case), they were asked 1) to update their predictions on fences, now including a buffer 
zone and an increased hunting pressure, and 2) to advise on the effectiveness of five alternative 
control measures: culling all pigs from farms a) located within 3 km of a positive wild boar 
carcass, b) located in the protection zone, c) with a trade contact with an infected farm in the 
three preceding weeks; d) increasing the size of active search area around wild boar carcasses 
(from 1 km to 2 km); e) increasing the surveillance zone (from 10 to 15 km). At end of phase 
3, teams were asked to update their predictions and estimate the fade-out probability for the 
next four months. Six weeks were left to the participants for answering each phase.  

 
The participants were free to choose their own approach, hence developed either one single 

model or two separate models for wild boar/pig farm interactions, with a diversity of modelling 
paradigms and granularity regarding both the epidemiological and spatial units. Stochastic 
compartmental models were used almost for all epidemiological units (except “CIRAD” team 
which built a probabilistic model for pig farms). Wild boar were mostly modelled at individual 
scale (except “WUR” team which used a spatial area) and pigs at farm scale (except for “UK” 
team which used individual scale). Predictions were made at several spatial scales (discretized 
in squares, rectangles or hexagons) ranging from 1 to 195 km2. 



 
 

We compared their predictions regarding the temporal dynamics of ASF spread in pig farms 
and wild boar with the possible outcomes of model M0 in the same conditions, i.e. keeping the 
challenge trajectory up to the beginning of the prediction period, then simulating M0 from that 
point with the appropriate settings and new random seeds. For spatial predictions, we compared 
1) the predicted probability for each pig farm to be infected with the locations of positive farms 
in model M0 with the same conditions, 2) the probability that each spatial unit contained an 
infected and detected wild boar with the locations of wild boar cases in M0. 

  
RESULTS 

Temporal model predictions 

The temporal forecasts for pig farm cases were very good in most teams (Fig. 2A), whereas 
wild boar dynamics appeared much more difficult to capture (Fig. 2B). The installation of 
fences and increased hunting pressure was highlighted by most teams as difficult to integrate 
in their models.  

 

Figure 2. Median of the predicted numbers of detected pig farms (A) and detected wild boar 
(B) by each team during the second period of the challenge (days 80 to 110). Acceptable 

range of output variations is shown (10th to 90th percentiles obtained when running model M0 
during the prediction period).  



 
 

Spatial model predictions 

Spatial predictions for pig farms (Fig. 3) were quite good (including one team, CIRAD, 
which successfully predicted the occurrence of a distant case due to trade contacts). Besides, 
the regulatory measures based on protection and surveillance zones do not require to predict 
the exact location of infected farms, since an increased vigilance may be sufficient to ensure 
reactivity on detection and culling.   

 

Figure 3. Detected pig farms between days 50 and 80 as predicted by each team  (black 
circles: farms that would have been detected in model M0 with the selected trajectory in the 

absence of additional control measures). A: CIRAD; B: UK; C: Massey Univ.; D: WUR. 

 
Spatial predictions regarding wild boar cases were much more heterogeneous, both in their 

granularity (e.g. from 1 km2 to 195 km2 tiles) and in the spread patterns (Fig. 4), reflecting the 
diversity of assumptions made by each team on wildlife and making the comparisons quite 
difficult.  



 
 

 

Figure 4. Predicted probability to detect infected wild boars between days 80 and 110, 
without additional control measures after day 80, as calculated by two teams: INRAE 

(A, 195 km² tiles), Massey Univ. (B, 1 km² tiles), and CIRAD (C, 86.8 km2 tiles) compared 
to wild boar cases found in model M0 (D, 25 km2 tiles). 



 
 

DISCUSSION 

Modelling challenges organized in human health over the last decade demonstrated their 
considerable value for the development and assessment of modelling and forecasting methods 
(Ajelli et al., 2018). The ASF Challenge, that ran between August 2020 and January 2021, was 
the first modelling challenge in animal health. Using a new mechanistic and stochastic 
metapopulation and multi-host model of ASF spread, we generated synthetic data mimicking 
an ASF-like epidemic detected at the interface between pig farms and wild boar in a typical 
European context. Land use, size and location of farms, as well as wild boar hunting bags per 
administrative units were derived from real data in the southern quarter of France. ASF 
incidence data (detected cases) were provided to the modelling teams while the epidemic 
developed. The objectives for the teams involved in the challenge were to reproduce the 
synthetic epidemic assuming a set of control strategies, predict its expansion and prioritize a 
finite number of alternative interventions. We compared 5 independent modelling approaches 
and their qualitative and quantitative spatio-temporal predictions over the three one-month 
periods of the challenge.  

To make this challenge interesting and useful, the model that generated the synthetic 
epidemiological data needed to be more detailed than the different models that could be 
developed by participants to make their predictions. Hence, data generation were 
computationally intensive and calibrating the model to generate interesting and realistic “ASF-
like” epidemic trajectories was extremely time-consuming, especially because of the lack of 
data on wild boar population dynamics and mobility patterns and their expected impact on 
fences’ efficacy.  

 
The context of ASF provided an opportunity to address the specificities of infectious 

livestock diseases at the interface between wildlife and domestic farms. Still poorly observed 
(Vicente et al., 2021), this interface is key to increasing our effectiveness in controlling 
emerging animal diseases. All participants acknowledged the interest of explicitly modelling 
interactions at the interface between domestic and wild fauna to accurately predict the course 
and extent of the epidemics and account for the impact of control measures. The temporal and 
spatial predictions on domestic pigs were more accurate than for wild boar, which highlights 
the diversity on assumptions made on wild boar population dynamics and contact patterns due 
to the lack of knowledge on wildlife. Also, intensive hunting, a key control measure against 
ASF, was one of the most problematic feature to introduce in models (for participants and 
organisers), and their potential impact on wild boar ecology, possibly including increased 
contacts (Lange, 2015), was not modelled. 

 
No specific modelling approach was better than all others on every prediction, and the 

added-value of their complementarity for policy makers will be addressed in further studies 
through ensemble models both for the temporal and spatial dynamics. This diversity, which 
was intentional in the challenge, also led to heterogeneous output formats, which made 
comparisons difficult and suggested stricter specifications for further challenges.  

 
The choice of producing fictitious data as in the Ebola challenge (Viboud et al., 2018), rather 

than using historical records, required much work but provided the organisers with a total 
control and knowledge on the situation, on the noise level in the synthetic data (e.g. a proportion 
of small farms were not known from the beginning and discovered by participants as they 
became infected), and on the “representativity” of the selected trajectory compared to possible 
model outcomes. Such open international challenges are a privileged framework to anticipate 
emerging infectious diseases, including zoonotic threats at the interface between wildlife, 



 
 

livestock and human activity, and to improve the readiness of modelling teams to face future 
epidemics. 
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