

Contribution of ultrasonography to the prediction of the induction-delivery interval: The ECOLDIA prospective multicenter cohort study

Chloé Arthuis, Jérôme Potin, Norbert Winer, Elsa Tavernier, Julie Paternotte, Anna Ramos, Franck Perrotin, Caroline Diguisto

▶ To cite this version:

Chloé Arthuis, Jérôme Potin, Norbert Winer, Elsa Tavernier, Julie Paternotte, et al.. Contribution of ultrasonography to the prediction of the induction-delivery interval: The ECOLDIA prospective multicenter cohort study. Journal of Gynecology Obstetrics and Human Reproduction, 2021, 50 (10), pp.1-6. 10.1016/j.jogoh.2021.102196. hal-03790045

HAL Id: hal-03790045 https://hal.inrae.fr/hal-03790045

Submitted on 2 Aug 2023

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Title

Contribution of ultrasonography to the prediction of the induction-delivery interval:

The ECOLDIA prospective multicenter cohort study.

Authors

Chloé Arthuis^{1*} MD, PhD, Jérôme Potin² MD, Norbert Winer¹ MD, PhD, Elsa Tavernier⁴ PhD, Julie Paternotte² MD, Anna Ramos³ MD, Franck Perrotin² MD, PhD, Caroline Diguisto² MD, PhD.

- ¹ Department of Gynecology and Obstetrics, Centre Hospitalier Universitaire Nantes, Nantes, France
- ² Department of Gynecology and Obstetrics, Centre Hospitalier Régional Universitaire Tours, Tours, France
- ³ Department of Gynaecology and Obstetrics, Centre Hospitalier Régional d'Orléans, Orleans, France.
- ⁴ Inserm CIC 1415, Centre Hospitalier Régional Universitaire Tours, Tours, France

*Corresponding author

Chloé J Arthuis, MD, PhD

Department of Gynecology and Obstetric

University Hospital Center Nantes

38 Bd Jean Monnet- 44000 Nantes

+330244768308

chloearthuis@gmail.com

Highlights:

1

- Previous studies reported contradictory results that might be explained
 by heterogeneous populations
- We sought to evaluate a large population of women homogeneous for
 cervical status using a robust methodology. Thus, bishop score was an
 original inclusion criterion when selecting a population to study the
 prediction of induction-delivery interval.
- It is the largest cohort of women to evaluate the induction-delivery
 interval.
 - Moreover, women undergoing induction of labor with a harmonized single-agent protocol in order to reduce heterogeneity of study population.
 - Transvaginal ultrasound cervical length can significantly predict induction-delivery interval with parity.

15

16

10

11

12

13

14

ABSTRACT

- 17 Introduction: To evaluate the ability of preinduction ultrasonographic cervical
- length to predict the interval between induction and delivery in women at term
- with a Bishop score of 4 to 6 at induction.
- 20 Study design: This multicenter prospective observational cohort recruited 334
- women from April 2010 to March 2014. Inclusion criteria were women with
- 22 singleton pregnancies at a gestational age ≥37 weeks, with no previous
- caesarean, a medical indication for induction of labor, and a Bishop score of 4,
- 24 5, or 6. All women underwent cervical assessment by both transvaginal

- 25 ultrasound and digital examination (Bishop score). The induction protocol was
- standardized. The primary outcome measure was the induction-delivery interval.
- Hazard ratios (HR) and their 95% confidence intervals (95% CI) were used to
- assess potential predictors.
- 29 Results: Mean gestational age at induction was 40.1 weeks, 60.8% of the
- women were nulliparous, and the cesarean rate was 13.4%. The mean
- induction-delivery interval was 20.8 h (± 10.6). Delivery occurred within 24 h for
- 32 56.9% (n=190) of the women. An ultrasonographic cervical length measurement
- 33 less than 25 mm (HR=1.50, 95% CI 1.18-1.91, P<0.01) and parity (HR=1.41,
- 34 95% CI 1.21–1.65, P<0.01) appeared to predict induction-delivery interval. The
- cervical length cutoff to reduce the induction-delivery interval was 25 mm.
- 36 Conclusion: A cervical length cutoff of 25 mm was associated with shorter
- induction-delivery interval in women at term with a Bishop score of 4 to 6.

38

39

Abbreviations

40 TVUS: transvaginal ultrasonography

41

42

INTRODUCTION

- 43 Induction of labor occurs in nearly 22% of pregnancies (1). An important
- 44 challenge in induction of labor is predicting which patients will have vaginal
- 45 deliveries and the time interval from induction to delivery. We believe that
- 46 information about delay is an important clinical feature that can affect women's
- 47 information and satisfaction when inducing labor. For this reason, we were
- 48 focused on delay rather than outcome of the delivery. The Bishop score is

currently the standard method for evaluating local cervical ripening before induction (2). A Bishop score of six or more is considered favorable for induction of labor, so that oxytocin can be recommended to start induction (3). An intermediate Bishop score is interpreted to mean that the cervix is unfavorable, in which case it is recommended that women undergo cervical ripening before oxytocin administration. Their management thus relies on digital cervical examination, known to have a subjective measurement with high inter- and intra-observer variability and a poor predictive value for delivery outcome (4). It may thus be of limited value, especially in women with intermediate Bishop scores (4 to 6). Accordingly, other types of preinduction cervical evaluations have been suggested, such as ultrasound assessment, because they might be reproducible and more objective as well as more acceptable to women (5). In women with a low Bishop score, it could also be a useful tool for predicting time to delivery. Previous studies comparing the Bishop score with transvaginal ultrasonography (TVUS) of the cervix to predict time to delivery or delivery outcome have reported contradictory results (6-17). Their differences might be explained by small samples (between 43 to 266 women included) and heterogeneous populations that further differ for their Bishop scores at inclusion, gestational age at induction, and main outcome. Moreover, induction methods were not standardized within studies and differed between them. Similarly, ultrasonographic measurements were not homogeneous and various parameters were evaluated: cervical length, width, dilatation, posterior cervical angle, and lower segment thickness. We sought to evaluate a large population

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

- of women homogeneous for cervical status and undergoing induction of labor
- with a harmonized single-agent protocol.
- 75 Accordingly, the aim of this study was to evaluate if preinduction
- 76 ultrasonographic cervical measurements is associated with the induction-
- 77 delivery interval in women at term.

MATERIALS AND METHODS

The prospective multicenter cohort study ECOLDIA (Echographie du COL dans l'évaluation du Délai Induction Accouchement) took place from April 2010 through March 2014, in three tertiary hospital centers in France. Screening took place among all women for who induction of delivery was indicated whatever the indication. The inclusion criteria required that women be pregnant with a singleton live fetus in cephalic presentation at 37 to 42 weeks of gestation, and have a medical indication for labor induction, a Bishop score of 4 to 6 during the hour before induction, and no contraindication for dinoprostone. The Bishop score was assessed by digital examination by a midwife and was calculated according to the position, consistency, shortening and dilation of the maternal cervix and the station of the fetal presenting part (2). The exclusion criteria were: a previous cesarean delivery, any indication for an elective cesarean, cervical cerclage for this pregnancy, congenital uterine malformation, a history of uterine surgery, fetal abnormality, or an age younger than 18 years.

The studied factor was the ultrasonographic cervical length assessed one hour before induction. TVUS was performed in all cases by an obstetrician blinded to the results of the clinical examination. All participants were blinded to the cervical length. A junior or senior ultrasound certified obstetrician used a 5-9 MHz transvaginal probe and a Voluson E8 (GE Healthcare, Milwaukee, WI, USA) for the TVUS. A standardized procedure was used for cervical measurement: the woman had to have an empty bladder and was placed in a supine position with legs abducted. The operator placed the probe in the anterior vaginal fornix to obtain a sagittal view of the cervix, avoiding undue pressure on it to avoid false elongation of the images. He or she then identified the internal and external os, using the endocervical mucosa to define the level of the internal os, and checked for and noted any funneling at the internal os. The cervical canal was magnified to obtain at least 75% of the image. Three measurements of the distance between the internal and external os were taken over a period of about 3 minutes, and the shortest measurement of the cervical length was recorded. Width and dilatation of internal os were also evaluated. The following data were also collected: age, body mass index, parity, term of pregnancy, weight gain, indication for induction, analgesia during labor, oxytocin, mode of delivery and, if a cesarean was performed, its indication, interval from the start of induction to delivery, Apgar score, arterial pH, and neonatal hospitalization in the intensive care unit.

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

Cervical ripening for all women was performed with the vaginal prostaglandin E2 slow-release system (Propess® 10 mg, Ferring, Gentilly, France), which releases the medication at 0.3 mg/h, for 24 hours. If labor had not started 24 hours after cervical ripening began, it was induced by artificial rupture of membranes and oxytocin administration, in accordance with French guidelines (18).

The primary outcome was the induction-delivery interval, defined as the period from the start of cervical ripening to delivery in hours.

Statistical analyses

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

It was difficult to formulate a quantitative hypothesis regarding the association between ultrasound variables and induction-delivery time because there were no data available in the literature. Based upon the rates of induction in the participating units, our aim was to include 400 women to be able to conduct the study with sufficient power and reasonable precision. Continuous data are presented as medians with their interguartile ranges (1st quartile-3rd quartile) or means and their standard deviations, and categorical data as counts and percentages (normal distribution was verified by histograms). Receiver operating characteristic (ROC) curves were generated to identify the best cutoff values with maximum efficiency for TVUS cervical length as categorical predictors of the induction-delivery interval. To construct the ROC curve, the binary outcome was the delivery within 24 hours. We conducted survival analysis of the data with the Kaplan-Meier method and the log rank test. Then, to take into account the competing risks between vaginal delivery and cesarean delivery occurs during labor, we used a Fine and Gray regression model. Indeed, a woman who had a C-section because she fails to progress at 6cm for example will delivery faster than a woman who starts labor quickly and had a vaginal delivery. The associations between the ultrasound measurement (functional cervical length and funnel width), parity, maternal age, gestational age at induction, BMI, indication for induction (PPROM versus other indications)

and induction-delivery interval are presented with hazard ratios (HR) and 95%

146 confidence intervals (95% CI).

147 Analyses were conducted with R version 3.1.3. Differences were defined as

significant when P<0.05.

149

150

152

153

154

Ethical approval

151 Written informed consent was obtained from all participants. The ethics

committee approved this study. This clinical trial was registered as

NCT02570620. The study follows the STROBE statement guidelines for

reporting observational studies (19).

155

156

158

159

160

161

163

164

165

166

167

168

RESULTS

157 This study included 342 women and analyzed 334 (Figure 1); their

characteristics and outcomes are shown in Table 1. Regarding neonatal

outcomes, the median Apgar score was 9.7 (± 0.7), the arterial pH was 7.2 (±

0.08), and the venous pH was 7.3 (\pm 0.07). There was no difference in perinatal

outcomes between women who delivered before or after 24 hours (p=0.846).

Among primiparous women, 43.8% (n=89) gave birth within 24 hours. The

average functional cervical length before induction was 18 mm (±11 mm) for

women who delivered before 24 hours and 24 mm (±12mm) for those who

delivered with an interval of more than 24 hours. The results of ultrasound

cervical length measurement compared with clinical assessment are shown in

Table 2. There was a good correlation between the two measurements. Among

women who gave birth within >24 hours, 96.5% received oxytocine after

169 dinoprostone. The mean induction-delivery interval for the entire population was 170 20.8 hours (± 10.6). Delivery occurred within 24 hours for 56.9% of the women 171 (n=190) with a mean induction-delivery interval of 13.3 hours. For the remaining 172 43.1% of women (n=144) who gave birth more than 24 hours after induction 173 began, the mean induction-delivery interval was 31.2 (±7.6) hours. This mean interval was 20.5 hours (± 10.6) for women who had a vaginal delivery, 25.4 174 175 hours (± 10.2) for those with a cesarean delivery (P=0.004; reference group 176 "vaginal delivery"), and 31.2 hours (±8.9) for the cesareans indicated for "failure 177 to progress" or "failed induction". 178 First, we evaluated the parity and TVUS cervical length to predict the induction-179 delivery interval. Cutoff values for cervical length were obtained from the ROC curve (Figure 2). The AUC of the ROC curve was 0.65 for predicting induction-180 181 delivery interval based on functional cervical length. We found no difference between a Bishop score of 4, 5, or 6 and the induction-delivery interval 182 183 (P=0.119). This result confirms the homogeneity of the study population. A 184 cervical length less than 25 mm at induction was associated with a shorter 185 induction-delivery interval (Log rank test, P<0.001) (Figure 3). We evaluated 186 some others ultrasonographic measurements such as width and dilatation of 187 internal os. Multiparity was also associated with a shorter induction-delivery 188 interval (Figure 4). 189 Second, we evaluated the induction-delivery interval in a multivariable regression model, taking cesarean delivery into account as a competing risk, 190 191 adjusted for TVUS cervical length, funnel width, parity, maternal age, 192 gestational age at induction, BMI and indication for induction (PPROM versus

other indications). The cervical length and funnel width as measured by ultrasonographically, parity and induction for PPROM were the factors that were significant predictors of the induction-delivery interval (respectively, HR=1.32, 95% CI 1.03–1.69, P=0.03; 1.02 [1.01;1.04] p=0.01; HR=1.50, 95% CI 1.27–1.77, P<0.01; 2.02 [1.43;2.86] p<0.01) (Table 3).

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

193

194

195

196

197

COMMENT

Our results showed that measuring cervical length by ultrasound before induction improved the prediction of the induction-delivery interval in a large prospective cohort of women at term with a Bishop score of 4-6. The cervical length cutoff associated with a shorter induction-delivery interval was 25 mm. Funnel length was also associated with a reduced delay. Multiparity and PPROM were also predictive of a shorter induction-delivery interval. These results are consistent with data from the literature, which find a significant association between the ultrasonographic measurement of the cervix and the induction-delivery interval, or the success of labor induction (6-12). Other studies, however, have not found that cervical ultrasound is more useful than the Bishop score for predicting time to delivery (13-17). Conflicting data from the literature can be explained by numerous biases in the studies. First, the numbers included are generally small. Among the seven studies that calculated the required sample size and included more than 100 women, three showed that the Bishop score was more useful than TVUS. The main outcome criteria differed and were difficult to compare. Few studies considered the

Bishop score (which was not initially created to predict issues of induction) as

an inclusion criterion, as we did. In addition, the populations are heterogeneous for gestational age, parity, and method of induction. All of this could lead to an underestimation of the value of TVUS in decisions about labor induction. A meta-analysis including two small randomized controlled trials of 234 women that compared the Bishop score and TVUS for assessing preinduction cervical ripening (20) did not demonstrate that either method was superior to the other for determining the induction-delivery interval. In the first trial, this interval was 11.2 hours (IQR 7.8 to 15.9) for the Bishop score arm versus 9.5 hours (IQR 5.6 to 14.7) in the TVUS arm (21). In the second randomized controlled trial, the median induction-delivery interval reported was 10.3 hours (95% CI 7.0-13.5) in the Bishop score group, and 10.9 hours (95% CI 9.4-12.3) in the TVUS group (22). These differences were not significant. The median interval in the two randomized controlled trials was half of our interval (i.e., a mean inductiondelivery interval of 20.5 hours (SD 10.6)), likely explained by the heterogeneous populations in those trials; 20% of the women had a Bishop score greater than 6. Our study included only women with a Bishop score of 4, 5, or 6; they were both nulliparous and parous, and received prostaglandins for no more than 24 hours before oxytocin infusion. On the other hand, these two trials reported that cervical length cutoff values of 30 mm (21) and 28 mm by TVUS could reduce the need for intracervical prostaglandin treatment by 35% and 50% respectively, without affecting the success rate for induction. Thus, TVUS might change practices by identifying women who despite an intermediate cervix can undergo oxytocin administration to avoid unnecessary exposure to cervical ripening by prostaglandins. That is

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

the reason why the trial was designed to evaluate the delay and none the success of the delivery as a primary outcome. In our population, the cutoff to predict a shorter induction-delivery interval was 25 mm. Our results were consistent those of with other studies: Gabriel et al. found that women with an unfavorable Bishop score had a shorter duration of labor when their cervical length was less than 26 mm (8). A cutoff value at 28 or 30 mm may more precisely define a Bishop score less than 4 (21,22). The transvaginal cervical length measurement may be superior to the Bishop score in evaluating the ripened cervix. Several parameters TVUS could thus be useful supplementary information for obstetricians to evaluate the benefit of cervical ripening. One strength of this study is its homogeneous population, defined by an

253 254

inclusion criterion based on the Bishop score, intended to limit selection bias. Another is the standardization of the induction protocol for all women, and the large size of the cohort. The study's principal limitation is its observational nature. The cutoff value of sonographically measured cervical length to

determine the value of cervical ripening must be validated.

257

258

259

260

261

262

263

264

255

256

241

242

243

244

245

246

247

248

249

250

251

252

CONCLUSION

A cervical length cutoff of 25 mm may help clinicians to predict the inductiondelivery interval in women with an unripe cervix. We postulate that knowledge of this interval is a useful tool for clinicians to allow them to adapt management to the degree of urgency in obstetric care and to economic considerations. Further studies are needed to assess whether cervical ripening is necessary in this population.

265 Conflicts of interest

266 None

267

268 Funding

- 269 The trial was funded by the French National Ministry of Health (Programme
- 270 Hospitalier de Recherche Clinique Interrégional 2009).

271

272 Acknowledgment

- We would like to acknowledge Jo Ann Cahn for proofreading English, all
- 274 hospital center and all women who participated in this study.

275

276 References

- Blanc-Petitjean P, Salomé M, Dupont C, Crenn-Hebert C, Gaudineau A,
 Perrotte F, et al. État des lieux des pratiques de déclenchement en France.
 Gynécologie Obstétrique Fertil Sénologie. 2019 Jul;47(7–8):555–61.
- 280 2. Bishop EH. PELVIC SCORING FOR ELECTIVE INDUCTION. Obstet Gynecol. 1964 Aug;24:266–8.
- 282 3. Eggebø TM, Økland I, Heien C, Gjessing LK, Romundstad P, Salvesen KÅ. Can ultrasound measurements replace digitally assessed elements of the Bishop score? Acta Obstet Gynecol Scand. 2009 Jan;88(3):325–31.
- Hendrix NW, Chauhan SP, Morrison JC, Magann EF, Martin JN, Devoe
 LD. Bishop Score: A Poor Diagnostic Test To Predict Failed Induction
 Versus Vaginal Delivery: South Med J. 1998 Mar;91(3):248–52.
- 5. Tan PC, Vallikkannu N, Suguna S, Quek KF, Hassan J. Transvaginal sonographic measurement of cervical length vs. Bishop score in labor induction at term: tolerability and prediction of Cesarean delivery. Ultrasound Obstet Gynecol. 2007 May;29(5):568–73.
- 292 6. Boozarjomehri F, Timor-Tritsch I, Chao CR, Fox HE. Transvaginal ultrasonographic evaluation of the cervix before labor: Presence of cervical wedging is associated with shorter duration of induced labor. Am J Obstet Gynecol. 1994 Oct;171(4):1081–7.

- Daskalakis G, Thomakos N, Hatziioannou L, Mesogitis S, Papantoniou N,
 Antsaklis A. Sonographic Cervical Length Measurement before Labor
 Induction in Term Nulliparous Women. Fetal Diagn Ther. 2006;21(1):34–8.
- 8. Gabriel R, Darnaud T, Chalot F, Gonzalez N, Leymarie F, Quereux C. Transvaginal sonography of the uterine cervix prior to labor induction: Uterine cervix prior to labor induction. Ultrasound Obstet Gynecol. 2002 Mar;19(3):254–7.
- 9. Pandis GK, Papageorghiou AT, Ramanathan VG, Thompson MO, Nicolaides KH. Preinduction sonographic measurement of cervical length in the prediction of successful induction of labor: Cervical length and successful induction. Ultrasound Obstet Gynecol. 2001 Dec;18(6):623–8.
- 10. Rane SM, Guirgis RR, Higgins B, Nicolaides KH. The value of ultrasound in the prediction of successful induction of labor: Ultrasound and induction of labor. Ultrasound Obstet Gynecol. 2004 Oct;24(5):538–49.
- 310 11. Verhoeven CJM, Opmeer BC, Oei SG, Latour V, van der Post JAM, Mol BWJ. Transvaginal sonographic assessment of cervical length and wedging for predicting outcome of labor induction at term: a systematic review and meta-analysis: Cervical length in induction of labor. Ultrasound Obstet Gynecol. 2013 Nov;42(5):500–8.
- 315 12. Ware V, Raynor BD. Transvaginal ultrasonographic cervical measurement as a predictor of successful labor induction. Am J Obstet Gynecol. 2000 May;182(5):1030–2.
- 318 13. Jwatson W, Stevens D, Welter S, Day D. Factors predicting successful labor induction. Obstet Gynecol. 1996 Dec;88(6):990–2.
- 320 14. Chandra S. Transvaginal ultrasound and digital examination in predicting successful labor induction. Obstet Gynecol. 2001 Jul;98(1):2–6.
- 322 15. Gonen R, Degani S, Ron A. Prediction of successful induction of labor: 323 comparison of transvaginal ultrasonography and the Bishop score. Eur J Ultrasound. 1998 Aug;7(3):183–7.
- 16. Rozenberg P, Chevret S, Chastang C, Ville Y. Comparison of digital and ultrasonographic examination of the cervix in predicting time interval from induction to delivery in women with a low Bishop score. BJOG Int J Obstet Gynaecol. 2005 Feb;112(2):192–6.
- 329 17. Rozenberg P, Goffinet F, Hessabi M. Comparison of the Bishop score, 330 ultrasonographically measured cervical length, and fetal fibronectin assay in predicting time until delivery and type of delivery at term. Am J Obstet 332 Gynecol. 2000 Jan;182(1):108–13.
- 18. HAs. Les recommandations pour la pratique clinique. Déclenchement artificiel du travail à partir de 37 semaines d'aménorrhée. Available:

335 336		https://www.has-sante.fr/jcms/c_666473/fr/declenchement-artificiel-dutravail-à-partir-de-37-semaines-d'aménorrhée.	
337	19.	Cuschieri S. The STROBE guidelines. Saudi J Anaesth. 2019;13(5):31.	
338 339 340 341 342	20.	Ezebialu IU, Eke AC, Eleje GU, Nwachukwu CE. Methods for assessing pre-induction cervical ripening. Cochrane Pregnancy and Childbirth Group, editor. Cochrane Database Syst Rev [Internet]. 2015 Jun 12 [cited 2020 Feb 14]; Available from: http://doi.wiley.com/10.1002/14651858.CD010762.pub2	
343 344 345 346 347	21.	Bartha JL, Romero-Carmona R, Martínez-del-Fresno P, Comino-Delgado R. Bishop score and transvaginal ultrasound for preinduction cervical assessment: a randomized clinical trial: Bishop score and TVS for preinduction cervical assessment. Ultrasound Obstet Gynecol. 2005 Feb;25(2):155–9.	
348 349 350 351	22.	Park KH, Kim SN, Lee SY, Jeong EH, Jung HJ, Oh KJ. Comparison between sonographic cervical length and Bishop score in preinduction cervical assessment: a randomized trial. Ultrasound Obstet Gynecol. 2011 Aug;38(2):198–204.	
352			
353			
354			
355			
356	Leg	ends of figures and tables	
357	Figure 1: Flow chart of the study		
358	Figure 2: ROC curve of cervical length as a function of induction-delivery		
359	interval (< or >24h).		
360	Figu	ure 3: Kaplan-Meier survival curves of induction-delivery interval according	
361	to	TVUS cervical length measurement before induction. The solid line	
362	repr	resents a cervical length < 25 mm. The dotted line represents a cervical	
363	lenç	yth ≥ 25 mm. Log rank test p<0.01.	

Figure 4: Kaplan-Meier survival curves of induction-delivery interval according 364 365 to TVUS cervical length measurement before induction. The solid line 366 represents nulliparous women. The dotted line represents parous women. Log 367 rank test p<0.01. 368 369 370 Table 1: Characteristics of 334 women analyzed. 371 Table 2: Clinical cervical length in comparison to the cervical length measured 372 by transvaginal ultrasound without and with uterus pressure. 373 Table 3: Evaluation of induction-delivery interval in multivariable regression 374 model taking cesarean delivery into account as a competing risk, adjusted for 375 Bishop score, ultrasound cervical length, and parity

376

n = 334 women with ultrasonographicmeasurement of cervical length anddinoprostone induction of labor

Cervical length as a function of induction-delivery interval (< or >24h)

Table 1: Means prenatal characteristics of 334 women analyzed.

	Women (n=334)
Age (years)	29.0 (± 5.5)
Gestation at delivery (weeks' gestation)	40.1 (± 1.5)
ВМІ	25.5 (± 6.3)
BMI >30	37 (11.1)
BMI >35	29 (8.7)
Weight gain (kg)	13.7 (± 5.6)
Parity	
Nulliparous	203 (60.8)
Parous	131 (39.2)
Indication for induction of labor	
Prolonged pregnancy	87 (26)
Premature rupture of membranes	69 (20.6)
Gestational diabetes mellitus	44 (13.2)
Oligoamnios	37 (11)
Polyhydramnios	7 (2.1)
Decreased fetal movement activity	19 (5.6)
Maternal indication*	26 (7.8)
Fetal indication**	13 (3.9)
Hypertensive disease in	33 (9.9)
pregnancy, preeclampsia, or IUGR	
Bishop score	
4	133 (39.8)
5	146 (43.7)
6	55 (16.5)
Mode of delivery	
Spontaneous vaginal delivery	220 (65.9)
Instrumental delivery	59 (17.7)
Cesarean delivery	55 (16.5)
Ultrasonography	
Functional cervical length	20.4 (± 12.3)
Funnel length	4.7 (± 7.5)

Table 2: Clinical cervical length in comparison to the cervical length measured by transvaginal ultrasound without and with uterus pressure.

Bishop	Cervical length measurement (in	Cervical length measurement (in	
score	mm), without uterus pressure	mm), with uterus pressure	
Long	32 (± 8.5) [20-52]	30.9 (± 8.8) [21-53]	
Half-long	29.3 (± 8.7) [9-54]	26.7 (± 8.5) [7-52]	
short	23.3 (± 8.1) [8-45]	21.1 (± 7.6) [7-41]	
Wipe out	19.5 (± 4.9) [14-25]	17.5 (± 3.1) [13-20]	

Mean ± satndard-deviation [min-max]

Table 3: Evaluation of induction-delivery interval in multivariable regression model taking cesarean delivery into account as a competing risk, adjusted for ultrasound measurement of cervical length and funnel width, and clinical characteristics that have been identified as potentially modifying the time to delivery.

Outcome	induction-delivery	P value
	interval HR (95% IC)	
Functional cervical length	1.32 [1.03;1.69]	0.03
Funnel length	1.02 [1.01;1.04]	0.01
Parity	1.50 [1.27;1.77]	<0.01
Maternal age	0.98 [0.96;1.01]	0.35
Gestational age at induction	1.05 [0.96;1.14]	0.25
ВМІ	0.98 [0.96;1]	0.14
Indication for induction PPROM or other	2.02 [1.43;2.86]	<0.01