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ABSTRACT 

Climate influence on grapevine physiology is prevalent and this influence is expected to 
increase with climate change. Climate influence on grapevine physiology can vary depending 
on the terroir. A better understanding of these local terroir variations is likely to be achieved 
with analyses that use local data; i.e., farm/vineyard data. Thus, the challenge lies in exploiting 
farm data to enable grape growers to understand their own terroir and consequently adapt their 
practices to the local conditions. In such a context, this article proposes an analytical process 
to site-specifically study climate influence on grapevine physiology by focusing on time series 
of the weather data often contained in farm data sets. This article focuses on temperature and 
precipitation influence on yield in the form of a case study. The analytical process includes 
the Extended Growing Degree Days (eGDD) and the Bayesian functional Linear regression 
with Sparse Steps functions (BLiSS) methods in order to detect site-specific periods of strong 
climate influence on grapevine yield. It uses data from three commercial vineyards situated in 
the Bordeaux region (France), California (USA) and Israel. In general, the periods of climate 
influence on grapevine yield detected for the three vineyards identified the same stages of 
yield development, which have already been studied in the scientific literature. However, some 
vineyard differences were observed, including: i) different periods of influence associated with 
a given stage of yield development between the vineyards, ii) different influential weather 
variables between the three vineyards for a given period, and iii) differing duration of the period 
of influence associated with a given stage of yield development between the vineyards. These 
results show the potential of the proposed analytical process for analysing the time series of 
farm weather data in order to extract site-specific climate indicators of grapevine yield.
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INTRODUCTION

Climate influence on grapevine physiology is prevalent 
and is expected to increase with climate change (Lobell  
et al., 2006; van Leeuwen and Darriet, 2016; Naulleau et al., 
2020; Naulleau et al., 2022). Climate influence on grapevine 
physiology can vary depending on the terroir (Matese et al., 
2014; Fraga et al., 2016; Neethling et al., 2019; de Rességuier 
et al., 2020; Laurent et al., 2020; Ohana-Levi et al., 2022). A 
better understanding of these local terroir variations is likely 
to be achieved with analyses that use local data; i.e., farm/
vineyard data. Thus, a real challenge lies in exploiting these 
farm data to enable grape growers to better understand their 
own terroir and consequently adapt their practices to the local 
conditions (Laurent et al., 2021). 

This challenge is particularly true when addressing climate 
influence on yield. Temperature plays an important role 
in defining yield potential and precipitation, through 
water availability, is one of the main yield limiting factors  
(Van Ittersum et al., 2013); although this influence decreases 
when the vineyard is irrigated. In addition, both temperature 
and precipitation can have a reducing influence on yield 
development during extreme events. Finally, temperature and 
water availability are known to be particularly influential on 
yield during specific phenological periods (Ojeda et al., 2001; 
Petrie and Clingeleffer, 2005; Keller et al., 2010; Guilpart 
et al., 2014; Pagay and Collins, 2017; Triolo et al., 2019). 
These periods of sensitivity are related to the successive 
implementation of yield components (Laurent et al., 2021) 
and their timing and duration is hypothesised to vary 
depending on the terroir, including vineyard management 
factors. 

Farm data include, and will be enhanced by, data collected 
on-farm for management purposes. Farm data sets generally 
contain time series of weather data that can be analysed 
against yield. However, when analysing time series of farm 
data three issues are encountered. 

Firstly, time series data expressed according to the Gregorian 
calendar are not necessarily consistent with grapevine 
phenology for different blocks within the same year or 
different years for the same block. In other words, the same 
date may not correspond to the same phenological stage for 
different blocks or years. Therefore, the time series cannot 
be directly compared according to the Gregorian calendar 
timeline. To overcome this limitation, this paper proposes 
to synchronise the time series of farm data according to 
extended Growing Degree Days (eGDD) thermal index to 
account for grape site-specific phenology (Laurent, 2021). 

Secondly, time series data are defined as a set of observations 
sequentially organised in time as a realisation of a stochastic 
process; i.e., the observations are considered as outputs of 
a succession of random variables (Brockwell and Davis, 
2009). Consequently, temporally (and potentially spatially) 
neighbouring observations are correlated (i.e., they are not 
independent data points), which leads to a violation of the 
assumptions around classical methods of analysis, such as 

multivariate linear regression. To circumvent this issue, most 
literature studies have focused on using weather variables at a 
few known key phenological stages (Buttrose, 1974; Pouget, 
1981; Pagay and Collins, 2017) or time steps (Guilpart et al., 
2014; Molitor and Keller, 2017), which can be considered 
as independent. However, these classical approaches have 
limitations: i) they depend on choices of climate variables 
and timing, and ii) it is often necessary to suppress data or 
to analyse only parts of a time series. Therefore, information 
about climate influence on grapevine may potentially be 
missed. In this article, it is assumed that i) time series of 
weather data can reveal further information to advance the 
understanding of grapevine physiology if they are analysed 
with adapted methods and ii) a site-specific analysis of 
these time series data can detect local climate covariates 
that will even better explain yield variability than general 
ones. However, although time series do need to be explored 
in a more comprehensive way, their use as covariates, for 
example in a yield model, will still require some reduction in 
the dimensionality of the information they contain. Thus, this 
paper proposes to use a Bayesian functional Linear regression 
with Sparse Step functions (BLiSS, Grollemund et al., 2019) 
to identify parsimonious and site-specific climate indicators 
in the form of periods of influence within time series of 
weather data (Laurent et al., 2019).

Thirdly, the use of (operational) farm data, rather than the 
use of research-collected data, presents some limitations:  
i) these data are characterised by heterogeneous measurement 
quality, ii) their sampling design is often intended for other 
purposes, especially management purposes, rather than the 
current analysis and iii) data sets present overlapping and 
missing data issues. It is therefore assumed that the volume 
of farm data available and the use of proper statistics can 
compensate for these limitations and still lead to the detection 
of relevant results; i.e., in terms of climate influence on yield 
here.

Therefore, this paper aims at validating the ability of an 
analytical process, which includes the eGDD and the BLiSS 
methods, to explore and reduce the information contained in 
time series of farm weather data. To achieve this, this article 
focuses on the case study of temperature and precipitation 
influence on grapevine yield. It investigates whether relevant 
periods of temperature or precipitation influence on yield can 
be found through the analysis of time series of farm weather 
data from commercial vineyards, and whether these periods 
are defined differently from one vineyard to another. The 
three commercial vineyards used in the paper are situated in 
the Bordeaux region (France), California (USA) and Israel.

MATERIAL AND METHOD

1. Data description
Data was collected from three commercial vineyards 
situated in the Napa Valley (California, USA), Israel and the 
Bordeaux region (France). They are noted as Vineyard A, 
B and C respectively in this paper. Vineyards A and B were 
composed of different estates; i.e., different groups of blocks 
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spaced a few kilometres apart. Both vineyards were irrigated. 
Vineyard C was a single estate and was rain-fed (Table 1). 
For each vineyard, the achievement dates of 50 % budbreak, 
bloom and veraison were routinely recorded by the vineyard 
staff according to the Gregorian calendar.

Vineyard A was divided into 4 estates. Each estate was 
equipped with its own weather station and comprised 3, 
20, 5 and 5 blocks respectively. Yield and phenological 
observations were recorded from 2008 to 2018 for each 
block. Temperature data was recorded at a daily time step 
of 2008 to 2018, 2007 to 2018, 2012 to 2018 and 2010 to 
2018 respectively for each weather station. The years when 
phenological and yield observations were made differed 
from one block to another. Therefore, Vineyard A data set 
contained missing data (missing blocks and years).

Vineyard B was divided into 3 estates serviced by only a 
single central weather station. Each estate had 58, 32 and 
42 blocks respectively with yield observations, but only had 
6, 17 and 15 blocks with phenological observations. Yield 
and phenological observations were recorded from 2000 to 
2019. Temperature was recorded at a daily time step in 1999-
2012 and 2014-2019. The years when phenological and yield 
observations were made differed from one block to another. 

Therefore, the Vineyard B data set also contained missing 
data (missing blocks and years).

Vineyard C had 79 blocks in a single estate. All blocks had 
phenological and yield observations for the years 2002-11 to 
2014-15. Weather data was recorded from 2001-11 and 2014-
15. The blocks presented phenological and yield observations 
for the same number of years and the same years.

The main characteristics of the data sets of the three vineyards 
are summarised in Table 1.

2. Theory

2.1. Theory about the Extended Growing Degree days 
(eGDD) method
The eGDD method (Laurent, 2021) computes site-specific 
thermal indices by integrating a Phenological Advancement 
Speed as a function of Temperature (PAST function). This 
PAST function represents the operational relationship that 
links farm temperature data to the vine response in terms of 
phenology. In the form used here, it includes four temperature 
thresholds that represent the base temperature from which 
the vine starts developing (Tb), two optimal temperatures 
between which the vine develops at its highest speed (To

1 and 
To

2) and a critical temperature (Tc ) above which the vine stops 
developing (Figure 1) respectively.

TABLE 1. Characteristics of the Vineyards A, B and C and their data sets.

Vineyard A Vineyard B Vineyard C

Location California, USA Israel Bordeaux, France

Latitude (°) 38 32 45

Type of climate Semi-arid Semi-arid Oceanic

Irrigation yes yes no

Varieties Cabernet-Sauvignon, Merlot,  
Petit Verdot

Cabernet-Sauvignon,  
Merlot, Syrah

Cabernet-Sauvignon,  
Merlot, Petit Verdot

Number of estates 4 3 1

Number of weather stations 4 1 1

Years of weather data for each  
weather station

2008 to 2018

2007 to 2018

2012 to 2018

2010 to 2018

2008 to 2019
2001 to 2011

and 2014 to 2015

Number of blocks with phenological 
observations per estate

3, 20, 5, 5  
(33 in total)

6, 17, 15  
(38 in total) 79

Mean number of years with phenological 
observations per block 7.5 4.5 13

Number of blocks with yield observations 
per estate

3, 23, 8, 5  
(39 in total)

58, 32, 42  
(132 in total) 79

Mean number of years with yield 
observations per block 5.6 5.2 13
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These temperature thresholds are site-specifically optimised 
using a constrained optimisation approach. The optimisation 
criterion is designed to serve the purpose of Prediction 
of the achievement date of phenological stages or of 
Synchronisation of time series of data based on the vine 
phenology. In the second case, the criterion to be minimised 
relates to the respective variance of the dates of budbreak, 
bloom and veraison of all the years for a site when they are 
expressed in a thermal index and is normalised according to 
the mean length of the time series (Eq. 1). In this equation, 
the user is given the opportunity to weight the components 
of Eq. 1 corresponding to each phenological stage. This 
allows the user to drive the optimisation towards the best 
results for a particular phenological stage; e.g., if he/she 
has more confidence in the observations of each particular 
phenological stage. 

The site-specifically optimised PAST function is then 
weighted by the photoperiod and integrated over the season 
to result in a thermal index for each year for the given site as 
in Eq. 2.

The resulting thermal indices are expressed in Thermally 
Optimal Daylight Hours (TODH). For further details, 
interested readers are directed to Laurent (2021).

2.2. Theory about the Bayesian functional Linear 
regression with Sparse Step functions (BLiSS method)
A functional linear model relates a time series of data taken 
as a functional covariate xj to a scalar response variable 
y. In this paper, x refers to a time series of temperature or 
precipitation data taken as a functional covariate and y 
to the yield response (Eq. 3). Each functional covariate xj 
corresponds to a linear combination of unitary functions so 
as to generate a mathematical description of a complex time 
series (e.g., temperature or precipitation time series), based 
on a set of basic functional building blocks.

The BLiSS method (Grollemund et al. 2019) proposes a 
Bayesian approach to estimate the β function and most 
importantly its support (e.g., time). In Bayesian statistics, it is 
assumed that a certain understanding of β is available. It will 
be defined by the user and it is called a priori information. 
The principle of Bayesian statistics is to update this a priori 
information by processing the newly considered observations, 
which leads to produce a posteriori information. Both a priori 
and a posteriori information are formalised as probability 
distributions. In this sense, the focus is never on the exact 
value of β, which is assumed to be inaccessible anyway, but 
on the information available on β, thanks to the collected 
data, represented by a distribution of possible values for this 
parameter. 

The BLiSS method is based on a hierarchical Bayesian 
model. In this model, the support of the coefficient function 
is taken as a union of possibly overlapping time intervals 
I1,…,K. Each interval is defined by two parameters: its position 
(centre) and its half-length. The prior associated with the 
position parameter corresponds to a uniform law over the 
entire time series and the prior of the length parameter is an 
exponential law. Given these intervals, the functional linear 
model becomes a multiple linear model involving the partial 
integrals of the coefficient function over the intervals as 
covariates as in Eq. 4.

In this way, the BLiSS method leads to the detection of 
periods during which a covariate (e.g, temperature or 
precipitation) influences a quantitative response variable 
(e.g., yield performance). These periods correspond to the 
intervals Ik during which the BLiSS estimator takes non-
null values; i.e., the periods during which temperature or 
precipitation has a real impact on yield development. The 
sign of the bk coefficient indicates whether the covariate is 
negatively or positively correlated to the response variable 
during each time interval Ik; i.e., whether an increase in 
temperature or precipitation promotes or hinders yield.  

FIGURE 1. Example of PAST function obtained with the eGDD method. Tb corresponds to the base temperature,  
To

1 and To
2 to the bounds of the interval of optimal temperatures, and Tc to the critical temperature.

Cécile Laurent et al.

https://oeno-one.eu/
https://ives-openscience.eu/


OENO One | By the International Viticulture and Enology Society 2022 | volume 56–2 | 305

The number of intervals Ik is constrained by the 
hyperparameter K. In parallel, the probability for a given 
time to be in the β function support (i.e., the probability 
for a given time to be included in a period of influence) is 
established. Its posterior distribution provides an assessment 
of the reliability with which the intervals Ik are detected. In 
other words, a probability distribution of the possible effect 
on yield is given for each period within the time series of 
a weather variable such as temperature or precipitation. 
Therefore, the most interesting periods to study are those for 
which the a posteriori distribution is very close to a value 
different from 0. For further details on the BLiSS approach 
applied in this context, interested readers are directed to 
Laurent (2021) and Laurent et al. (2019).

3. Data analysis strategy
The analytical process proposed in this paper comprises 
three steps in chronological order: Step 1 corresponds 
to the implementation of the eGDD method in order to 
obtain synchronised time series, Step 2 corresponds to the 
discretisation of the weather data time series according to 
an optimised time step and, finally, Step 3 corresponds to 
the implementation of the BLiSS method to detect periods 
of influence on yield. These three steps are summarised in 
Figure 2.

The eGDD method is preliminary used to compute a timeline 
consistent with grapevine phenology. This time-series 
synchronisation is needed to unequivocally detect periods of 
weather influence on yield with the BLiSS method. The BLiSS 
method requires each time series to be discretised at a given 
time step as an input parameter. This time step corresponds 
to the minimal time step based on which the time series will 
be passed into a functional data; i.e., the maximum number 

of basic functions whose linear combination will lead to the 
functional data. The time step will be henceforth termed as 
the discretisation time step. The discretisation time step was 
defined according to the eGDD thermal indices. However, 
several discretisation time steps were possible for each time 
series; for example, a time series could be discretised into 
periods of 200, 250, 300, etc. TODH. Therefore, to further 
the synchronisation of the time series according to grapevine 
phenology at the vineyard scale, the discretisation time step 
was optimised so that there was at best a unique discretised 
period or at least two successive discretised periods for the 
respective scores of budbreak, bloom and veraison across 
all years and all blocks for a given vineyard. Once this was 
achieved, the shortest discretisation time step was chosen 
for the time series of each block (or groups of blocks for 
vineyard B). By way of example, for Vineyard A, all time 
series were discretised into 17 periods. Budbreak, bloom and 
veraison unfolded in periods of rank 2 or 3, 4 or 5 and 7 
respectively for all years and blocks of Vineyard A. However, 
these periods lasted 300 TODH for block 1 and 320 TODH 
for block 2. This corresponds to the initial hypothesis that 
each block has its own rhythm; i.e., its own phenology.

A minimum of five years of phenological and weather 
data has been empirically identified to ensure a correct 
implementation of the eGDD method (convergence of the 
optimisation problem). Consequently, it was possible to 
apply the eGDD method at the block, estate or vineyard scale. 
Thus, the eGDD method was applied at the finest spatial 
scale possible, depending on the available data: blocks for 
Vineyard A and C and groups of the same estate and planted 
with the same variety for Vineyard B. In contrast, the BLiSS 
method implementation requires the largest data set possible 

 Equation 1: S = 𝑎𝑎 ∑
(𝑠𝑠𝑖𝑖

𝑏𝑏𝑏𝑏𝑏𝑏−𝑠𝑠𝑖𝑖𝑏𝑏𝑏𝑏𝑏𝑏̅̅ ̅̅ ̅̅ ̅̅

𝑠𝑠max
)

2

𝑛𝑛
𝑛𝑛
𝑖𝑖=1 + 𝑏𝑏 ∑

(𝑠𝑠𝑖𝑖
𝑏𝑏𝑏𝑏𝑏𝑏−𝑠𝑠𝑖𝑖𝑏𝑏𝑏𝑏𝑏𝑏̅̅ ̅̅ ̅̅ ̅

𝑠𝑠max
)

2

𝑛𝑛
𝑛𝑛
𝑖𝑖=1 + 𝑐𝑐 ∑

(
𝑠𝑠𝑖𝑖

𝑣𝑣𝑣𝑣𝑣𝑣−𝑠𝑠𝑖𝑖𝑣𝑣𝑣𝑣𝑣𝑣̅̅ ̅̅ ̅̅ ̅
𝑠𝑠max )

2

𝑛𝑛
𝑛𝑛
𝑖𝑖=1  

with n the number of considered years for a given site, 
si

bud,blo,ver and 𝑠𝑠𝑖𝑖
𝑏𝑏𝑏𝑏𝑏𝑏,𝑏𝑏𝑏𝑏𝑏𝑏,𝑣𝑣𝑣𝑣𝑣𝑣̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  the observed and predicted scores, 

𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚  the mean maximal score for all years,  
a, b and c the weighting for each phenological stage with a + b + c = 1 

 Equation 2: 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑇𝑇ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑎𝑎𝑒𝑒 𝐼𝐼𝐼𝐼𝐼𝐼𝑒𝑒𝐼𝐼 = ∫ 𝑃𝑃𝑃𝑃𝑃𝑃𝑇𝑇(𝑡𝑡)𝑠𝑠𝑣𝑣𝑚𝑚𝑠𝑠𝑏𝑏𝑛𝑛 ∗ 𝑝𝑝ℎ𝑜𝑜𝑡𝑡𝑜𝑜𝑝𝑝𝑒𝑒𝑒𝑒𝑜𝑜𝑜𝑜𝐼𝐼(𝑡𝑡) d𝑡𝑡 
with PAST the Phenological Advancement Speed as a function of Temperature  
and t the time in Gregorian units (days, hours, minutes, etc.) 

 Equation 3: �̂�𝑦 = 𝜇𝜇 + ∫ 𝛽𝛽(𝑡𝑡)̂𝜏𝜏 𝐼𝐼(𝑡𝑡)d𝑡𝑡 
where �̂�𝑦 is the response variable,  
τ is an interval of ℝ,  
µ is the intercept,  
x is the functional covariates with its coefficient functions β 

 Equation 4: yî = μ + ∑ bk
K
k=1 xi(Ik) where xi(Ik) = 1

𝐼𝐼𝑘𝑘
∫ xi(t)dtIk

 
where µ is the intercept, x is the functional covariate, Ik a given interval and bk the related coefficient. 
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to limit estimation problems. Therefore, it could only be 
computed at the vineyard scale. 

3.1. Step 1: implementation of the eGDD method
The eGDD method with Synchronisation option (cf. Eq. 2) was 
employed to compute site-specific thermal indices. A eGDD 
thermal index was computed for each block in Vineyards A 
and C. Regarding Vineyard B, some of its blocks only had a 
low number of years with phenological observations, which 
prevented the eGDD method from being applied at the block 
scale. To address this issue, a eGDD thermal index was 
computed by groups of blocks localised in the same estate 
and planted with the same variety for Vineyard B. Therefore, 
the computed PAST functions were likely to integrate inter-
estate differences that were modulated by the variety. Equal 
a, b and c coefficients were used (Eq. 1).

3.2. Step 2: Discretisation of the weather data time series
For each block (or estate for Vineyard B) and each year, 
the time series of the daily mean, maximum and minimum 
temperature and precipitation were expressed according to 
the corresponding eGDD thermal index. A discretisation time 
step was optimised (minimised) in a block or in an estate-
specific way with the constraint that the respective scores 
of budbreak, bloom and veraison were preferably defined in 
different intervals within a year and within a block (or estate), 
but that each phenological stage for a given vineyard was 
synchronised into the same interval across blocks (or estates) 
and years. In the cases where a solution could not be found, 
this constraint was relaxed to permit the possibility of having 

two consecutive intervals assigned to a specific phenological 
stage.

Each time series was then discretised according to its site-
specific time step by averaging the mean, minimum and 
maximum daily temperature over each period for the two 
years before harvest (noted years n-1 and n) so as to cover 
the assumed duration of yield development cycles (Carmona 
et al., 2008; Vasconcelos et al., 2009; Guilpart et al., 2014; 
Bonada et al., 2020).

3.3. Step 3: Implementation of the BLiSS method
For each vineyard, the discretised time series of all blocks 
and years were regressed to the yield data using the BLiSS 
method. The K hyperparameter, which defines the number of 
influence periods searched for in the time series, was tuned 
using a Bayesian selection approach based on a Bayesian 
Information Criterion (BIC) (Grollemund et al., 2019).

RESULTS

1. The three vineyards were characterised by 
different temperature profiles
The daily mean temperatures in each vineyard for the whole 
year are given in Figure 3 for all years. The four weather 
stations in Vineyard A (Figures 3a to 3d) showed the 
same annual pattern of mean daily temperatures. The sites 
corresponding to Figure 3b and 3c appeared to be slightly 
cooler, with temperatures of around 7° C rather than 10 °C in 
winter and temperatures of around 20 °C rather than 22 °C in 
summer. Considering the number of years, the temperature 

FIGURE 2. Description of the proposed analytical process aiming at identifying periods of climate influence on 
yield for each vineyard. Time series of weather data are synchronised according to thermal indices computed with 
the extended Growing Degree Days approach (eGDD method). Then, the synchronised time series are discretised 
according to an optimised time step and they are analysed with the BLiSS method. 
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FIGURE 3. Daily mean temperatures in each estate of Vineyard A (a, b, c and d), in Vineyard B, which has a single 
weather station for the 3 estates (e), and in Vineyard C, which is composed of a single estate with a single weather 
station (f). The years displayed are 2008 to 2018 (a), 2007 to 2018 (b), 2012 to 2018 (c), 2010 to 2018 (d), 1999 
to 2012 and 2014 to 2019 (e), 2001 to 2011 and 2014 to 2015 (f) respectively.
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dispersion in Figures 3a, 3c and 3d was comparable and 
seemed lower in the case of Figure 1b. Vineyard B showed 
a large temperature dispersion during the year, but this was 
probably due to the number of years considered. (Figure 3d). 
The daily temperature profile of Vineyard B showed winters 
with temperatures of between 5 and 10 °C and with a long hot 
season: the average daily temperatures were generally higher 
than 20 °C from DOY 120 to 300; i.e., from before bloom until 
well after veraison. Vineyard C presented the most temperate 
thermal profile (Figure 1f), with winter temperatures ranging 
from 5 to 10 °C and summer temperatures of around 20 °C. 
The hot season was the shortest season for all three vineyards, 
with temperatures exceeding 20 °C only between DOY 170 
and DOY 230; i.e., between flowering and veraison. The daily 
dispersion of temperatures in Vineyard C was the lowest of 
the three vineyards.

2. The three vineyards obtained different site-
specific eGDD thermal indices
Figure 4 presents the PAST functions obtained with the 
eGDD method. They were described according to the values 
of Tb, To

1, To
2 and Tc that were optimised block by block for 

Vineyards A and C, and by estate and variety for Vineyard 
B. The eGDD thermal indices of Vineyards A and B were 
more dispersed than those of Vineyard C. For Vineyard A, 
the PAST functions showed a large range of values for each 
temperature threshold for Tb and Tc: from -4 to 13 °C and 25 to 
50 °C respectively. The values of To

1 and To
2 were consistent 

between the blocks of the same estate and ranged from 18 to 
25 °C, and the [To

1 , To
2] interval ranged from a single value to 

a 4 °C interval depending on the blocks. The slope between 
To

1 and To
2 was relatively constant for the whole vineyard. 

The values of Tc, and consequently the slope between To
2 

and Tc, varied significantly between blocks; the decrease in 
phenological advancement speed for temperatures above 
25 °C varied between blocks. For Vineyard B, the values of 

the temperature thresholds ranged from -10 to 6 °C for Tb, 
from 21 to 32 °C for To

1 and To
2, whose interval ranged from 

a single value to 3° C, and from 30 to 4 °C for Tc. The slope 
between Tb and To

1, as well as between To
2 and Tc, were different 

between the different estates. Overall, the PAST functions 
in Vineyard B showed the highest intra-vineyard variation. 
For Vineyard C, the values of temperature thresholds ranged 
from 8 and 11 °C for Tb, from 19 to 21 °C (with an exception 
at 27 °C) for To

1 and To
2 and from 31 to 45 °C for Tc. The 

values of Tb, To
1 and To

2, as well as the slope between Tb and 
To

1, were very similar between blocks, while the values of 
Tc, and therefore the slope between To

2 and Tc, presented 
significant differences between the blocks. However, this 
part of the PAST function related to only a few temperature 
observations actually recorded in the field (Figure 3).

3. The three vineyards obtained different 
discretisation time steps
Table 2 presents the results of the optimisation of the 
discretisation time steps for each vineyard. The maximum 
number of periods that could be discretised for Vineyards A, 
B and C was 17, 18 and 19 respectively. For some vineyards, 
phenological stages were assigned to two consecutive time 
periods to account for inter-block and inter-annual variations; 
e.g., budbreak in Vineyard A. 10 and 7 blocks for Vineyard 
A and C respectively were excluded at this stage, because 
the periods in which budbreak, bloom and veraison were 
positioned showed at least two periods of difference to the 
optimised fits in Table 2. For example, a block of Vineyard 
C with time period ranks of 2 and 5 for budbreak and bloom 
respectively would be excluded, because most blocks reached 
budbreak in the rank 1 period and bloom in the rank 3 period. 
No blocks were excluded from Vineyard B since the eGDD 
thermal indices were already computed for groups of blocks.

The discretisation time steps differed between vineyards in 
accordance with the differences in the eGDD thermal indices. 

FIGURE 4. Phenological Advancement Speed as a function of Temperature (PAST function) computed with the eGDD 
method for each block of Vineyards A and C (a and c respectively) and for each estate of Vineyard B (b).
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However, they allowed a similar number of discretised 
periods over the time series of weather data. It should be noted 
that the position of budbreak, bloom and veraison was more 
consistent for Vineyard C than for the other two vineyards. 
Veraison occurrence was consistent between vineyards: it is 
always positioned in the 6th or 7th rank. However, budbreak 
and bloom were positioned in the 1st and 2nd or 3rd periods for 
vineyards B and C respectively, while they were positioned 
in later periods for Vineyard A.

4. The three vineyards were characterised 
by different periods of weather influence on 
yield
Figure 5 shows the results of the BLiSS analysis of the 
discretised time series of weather data for the three vineyards. 
The results correspond to the detection of periods when Tmean, 
Tmin, Tmax or Precipitation influence yield development. The 
timing and duration (expressed in discretised time periods) 
of the detected periods, as well as their correlation direction 
(sign of the BLiSS estimator), were interpreted. The actual 
values taken by the BLiSS estimator were not interpreted 
between vineyards, and were considered in a relative sense 
between periods of influence for each vineyard. The colour 
gradient in Figure 5 corresponds to the distribution of the 
posterior distribution of the β estimator. It is interpreted as 
a confidence indicator for the detection of influence periods 
with the BLiSS estimator. Therefore, a period of influence 
corresponding to a non-null BLiSS estimator, but with a well 
spread or light colour gradient, was detected with very low 
reliability and could not be considered. 

The confidence in the estimation of the β coefficient was 
lower for Vineyard A (Figures 5a, d and g and j) than for 
Vineyards B (Figures 5b, e, h and k) and C (Figures 5c, f, i 
and l); i.e., periods of influence were more strongly detected 
for Vineyards B and C than for Vineyard A, which is related 
to the number of available analysed individuals. This was 
illustrated by the wider colour gradient that tended toward 
lighter colours around each period in the case of Vineyard A, 
compared to the other two vineyards.

4.1. Tmean influence on yield
For Vineyard A (Figure 5a), only one period of Tmean 
influence on yield could be reliably identified for periods 
12 to 14; i.e., around bloom of year n. Two other periods 
could be presumed from periods 1 to 5 (involving budbreak 
and bloom of year n-1) and 9 to 11 (around harvest of year 
n-1). Regarding the periods 12 to 14, the value of the BLiSS 

estimator was positive; i.e., the daily mean temperature 
observed during this period was positively correlated with 
the yield performance (the higher the temperature, the higher 
the yield).

For Vineyard B (Figure 5b), four periods of Tmean influence 
on yield could be identified from periods 1 to 2 (around 
budbreak of year n-1), 7 to 9 (between veraison and harvest 
of year n-1), 10 to 14 (involving budbreak and bloom of 
year n) and 17 to 18 (after veraison of year n) respectively.  
A fifth period could even be detected in period 16 (beginning 
of veraison of year n), although it had not been selected 
by the sparse step of the BLiSS estimator. The 2nd and 4th 
mentioned periods were positively correlated with the yield 
performance, while the 1st, 3rd and 5th periods were negatively 
correlated with it.

For Vineyard C (Figure 5c), four periods of Tmean influence 
on yield were also detected but with differences to Vineyard 
B. These were periods 1 to 2 (after budbreak of year n-1), 
 6 to 8 (around veraison of year n-1), 12 to 14 (around bloom 
of year n) and 18 to 19 (between veraison and harvest of 
year n) respectively. The 2nd and 3rd periods were positively 
correlated with yield performance, while the 1st and 4th were 
negatively correlated with it.

4.2. Tmin influence on yield
For Vineyard A (Figure 5d), three periods of Tmin influence 
on yield could be detected: from periods 1 to 3 (before 
and around budbreak of year n-1), periods 7 to 9 (during 
and after veraison of year n-1) and periods 10 to 12 (after 
harvest of year n-1 and until budbreak of year n) respectively.  
The 1st and 2nd periods of influence were negatively correlated 
with yield (i.e., a high Tmin favoured low yield), and the 3rd 
one was positively correlated with yield (i.e., high Tmin 
favoured high yield).                 

For Vineyard B (Figure 5e), five periods of Tmin influence 
on yield could be detected: in periods 4, 5 to 7 (before and 
during veraison of year n-1), 8, 10 (after harvest of year 
n-1) and 17 to 18 (after veraison and until harvest of year n) 
respectively. It was not clear whether the 4th period could be 
extended to periods 11 and 12, because the colour gradient 
was very diffuse. It seemed to be more concentrated around 
null values of the BLiSS estimator. The 1st and the 3rd periods 
were positively correlated with yield, while the other three 
periods were negatively correlated to yield.

TABLE 2. Results of the time series discretisation for Vineyards A, B and C. The rank of the harvest time period is 
given as an indicator of the length of the time series (number of discretised periods). 

Vineyard

Number of 
discretised 

periods over the 
years n-1 and n

Mean time step 
(in TODH)

Number of blocks/ 
estates excluded from 

the BLiSS analysis

Time period rank 
corresponding to 

Budbreak

Time period rank 
corresponding to 

Bloom

Time period rank 
corresponding to 

Veraison

Time period rank 
corresponding to 

Harvest

A 17 354.2 10 2, 3 4, 5 7 9, 10

B 18 252.4 0 1 2, 3 6, 7 8, 9, 10, 11

C 19 191.5 7 1 3 7 9, 10
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For Vineyard C (Figure 5f), four periods of Tmin influence on 
yield could be detected: periods 3 to 9, 10 to 11, 16 to 18 and 
19 respectively. The 1st and the 3rd periods of influence were 
positively correlated with yield, while the 2nd and 4th periods 
of influence were negatively correlated with yield.

4.3. Tmax influence on yield
For Vineyard  A (Figure 5g), only one period of Tmax influence 
on yield could reliably be detected from periods 2 to 5;  

i.e., around budbreak and bloom of year n-1. It corresponded 
to a positive correlation; i.e., high Tmax favoured high yield.

For Vineyard B (Figure 5h), Tmax influence was characterised 
by short periods of influence with a colour gradient clearly 
favouring non-null values for the BLiSS estimator, but 
these periods were within longer ones with colour gradients 
closer to 0. It was decided to consider the short periods 
only as periods of highest influence of Tmax on yield.  

FIGURE 5. BLiSS estimation for the synchronised time series of averaged daily mean (Tmean), minimum (Tmin), 
maximum (Tmax) temperature data and cumulated daily precipitation (Precipitation) data for Vineyards A, B and 
C. The discretised periods that graduate the X-axis correspond to a segmentation (discretisation) of the site-specific 
eGDD thermal indices that were used as a timeline to express the temperature time series. Positive, null or negative 
values of the β estimator on the Y-axis indicate that the daily mean temperature promotes, does not affect or hinders 
yield during the considered period. 
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Thus, four periods of Tmax influence on yield could be 
detected: in periods 1 (during budbreak of year n-1), 13 to 14 
(after bloom of year n), 15 to 16 (before and during veraison 
of year n) and 18 (during harvest of year n) respectively. The 
3rd period corresponded to a positive correlation of Tmax with 
yield while the others corresponded to a negative correlation 
with yield.

For Vineyard C (Figure 5i), four periods of Tmax influence 
on yield could be detected: periods 6 to 8 (around veraison 
of year n-1), 10 to 12 (around budbreak of year n), 16 to 
18 (around veraison of year n) and 19 (during harvest of 
year n) respectively. The 1st, 2nd and 3rd periods of influence 
corresponded to a positive correlation of Tmax with yield, 
whereas the 4th corresponded to a negative correlation with 
yield.

4.4. Precipitation influence on yield
For Vineyard A (Figure 5j), only one period was detected 
with a colour gradient in favour of non-null BLiSS estimator. 

It covered periods 3 to 5 (from budbreak to bloom of year 
n-1) and corresponded to a positive correlation; i.e., high 
Precipitation favoured high yield.

For Vineyard B (Figure 5k), two periods of Precipitation 
influence on yield were detected: periods 1 to 3 (during 
budbreak and bloom n-1) and 6 to 11 (from veraison of year 
n-1 until budbreak of year n) respectively. They corresponded 
to a positive and negative correlation with yield respectively. 
The 2nd period of influence included a shorter period of 
increased negative influence of Precipitation during period 8 
(after veraison of year n-1).

For Vineyard C (Figure 5l), three periods of Precipitation 
influence on yield were detected: periods 2 to 6 (a large period 
around bloom of year n-1), 12 (between bloom and veraison 
of year n) and 13 to 14 (after veraison of year n) respectively. 
The 1st and the 3rd periods of influence corresponded to a 
positive correlation with yield and the 2nd period of influence 
corresponded to a negative correlation with yield.

Periods number over the year n-1 Periods number over year n

Vineyard Weather variable 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

A Tmean + + +

A Tmin - - - - - - + + +

A Tmax + + + +

A Precipitation + + +

B Tmean - - + + - - - - + - -

B Tmin + - - - + - - -

B Tmax - - - + + -

B Precipitation + + + - - - - - -

C Tmean - - + + + + + + - -

C Tmin + + + + + + - - + + + -

C Tmax + + + + + + + + + -

C Precipitation + + + + + - + +

TABLE 3. Timing, duration and direction of correlation with the yield response ( - : negative, + : positive) of the 
periods of influence detected with the BLiSS method for the time series of daily mean (Tmean), maximum (Tmax) 
and minimum (Tmin) temperature and Precipitation data of each vineyard. The green colour gradient represents the 
periods of budbreak, bloom and veraison respectively in year n-1 and year n for each vineyard.There was a different 
number of discretised periods within the time series of Vineyards A, B and C: 17, 18 and 19 respectively. Therefore, 
the grey cells complete the rows in the table but do not correspond to periods because the optimisation of the time 
step to discretise the time series data resulted in a smaller number of periods.
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The results of the BLISS analysis of discretised time series of 
Tmean, Tmin, Tmax and Precipitation data are summarised 
in relation to the vine phenology of the three vineyards in 
Table 3. 

DISCUSSION

1. Contribution of the analytical process to 
investigating climate influence on grapevine 
yield contained in a time series of weather 
data

1.1. The results in terms of climate influence on grapevine 
yield were coherent with the literature but were site-
specific
The periods of climate influence on grapevine yield presented 
in Table 3 for the three vineyards globally identified the 
same stages of yield development, which have already been 
identified and studied in the scientific literature. However, 
vineyard differences were observed including: i) different 
periods of influence associated with a given stage of yield 
development between the vineyards, ii) different weather 
variables (Tmin, Tmean, Tmax or Precipitation) found to be 
influential between the three vineyards for a given period, 
and iii) the duration of the period of influence associated 
with a given stage of yield development differed between the 
vineyards.

A first grouping of periods of climate influence was found 
around budbreak of year n-1 (Table 3) and this was coherent 
with the existing literature that was reviewed by Vasconcelos 
et al. (2009). For Vineyard A, Tmin and Tmax were found to 
be negatively and positively correlated to yield respectively, 
meaning that during this period, high Tmin was correlated to 
low yields, while high Tmax was correlated to high yields. 
In addition, the Tmin influence seemed to occur before or 
during budbreak, while the Tmax influence seemed to occur 
during or after budbreak until bloom. A greater sensitivity 
of the developing inflorescences to temperature during the 
period before budbreak was found, compared to the period 
after budbreak (Vasconcelos et al., 2009). The flower 
number, the flower size and subsequent berry size (Petrie 
and Clingeleffer, 2005) are supposed to be programmed after 
budbreak following the branching process of inflorescences. 
In this way, the two periods of influence may correspond 
to two successive stages of the branching process. These 
stages may be sensitive to a different temperature variable 
between the two periods, because they unfold during periods 
with different temperature conditions. In addition, during 
the period before and around budbreak, temperatures were 
reported to favour the number of inflorescences per vine, but 
to reduce the number of flowers per inflorescence (Pouget, 
1981, Dunn and Martin, 2000, Petrie and Clingeleffer, 2005). 
In this way, the negative correlation of Tmin with yield found 
during this period may imply that the temperature influence 
on yield during this period is more related to the flower 
formation than to the inflorescence formation in Vineyard A. 
This may be explained by the fact that primary branching 
had already been completed without any limitation by that 

time and/or by the fact that the bunches were thinned after 
this period. Indeed, the variability of bunch number per 
vine may be smoothed between blocks and years by the 
practice of bunch thinning. Therefore, bunch thinning may 
reduce the capacity of the period related to the bunch number 
development to explain the yield variability. Furthermore, it 
seemed surprising that influences of Tmin and Tmax were 
detected without a Tmean influence being detected during 
the period around budbreak of year n-1. This suggests that 
night temperatures may be more influential before and during 
budbreak and that day temperatures may be more influential 
during and after budbreak than overall temperatures. This 
may be related to the coexistence of two physiological 
processes during the period: one driven by photoperiod and 
influenced by moderate temperatures, and another driven by 
abiotic stresses, such as low temperature conditions (Tanino 
et al., 2010). For Vineyards B and C, a period of negative 
correlation of Tmean was found during budbreak and bloom 
of year n-1. Following the same logic as for Vineyard A, 
this seems to suggest that flower rather than inflorescence 
formation was impacted by temperature during this period. 
Both vineyards also underwent bunch thinning. 

A Precipitation influence was found for the three vineyards. 
It was concomitant with budbreak and bloom of year n-1 
for Vineyards A and B while the period of influence lasted 
longer, until veraison, for Vineyard C. This influence was 
coherent with the results of Guilpart et al. (2014) who found 
an increased influence of water constraint on yield centred 
around bloom of year n-1. In addition, it seems coherent 
that the Precipitation influence stopped around bloom in 
Vineyards A and B, because irrigation may then take over, 
whereas the Precipitation influence lasted longer in Vineyard 
C, which was non-irrigated and only rain-fed.   

A second grouping of periods of climate influence on yield 
was found from bloom to after veraison of year n-1 (Table 3). 
For Vineyard C, Tmin, Tmean and Tmax were all positively 
correlated to yield meaning high daily temperatures generally 
favoured high yields. In contrast, for Vineyard B, only Tmin 
was correlated to yield during this period. Tmin presented a 
positive correlation with yield after bloom and after veraison, 
but a negative correlation around veraison, during the 
warmest days. This may highlight a threshold effect: cold 
night temperatures may reduce yield, i.e., the higher the Tmin, 
the higher the yield (positive correlation), but too high night 
temperatures may also reduce yield (negative correlation). 
Vineyard B experienced warmer temperature conditions than 
Vineyard C (Figure 3) and may have reached a threshold for 
Tmin during the summer. The impact of a high Tmin on yield 
during this period could be explained by a poorer carbohydrate 
export from the grapevine leaf, which could affect the 
photosynthetic activity during the day (Sawicki et al., 2015; 
Tombesi et al., 2018). A period of negative correlation of Tmin 
to yield was also found for Vineyard A after veraison. It can be 
noticed that a weak negative correlation of Tmin with yield was 
detected by the BLiSS method before and around veraison, but 
with a lot of uncertainty. Perhaps it would have been detected 
with more certainty if the Vineyard A data set had been larger.
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A third grouping of periods of influence was found from 
harvest of year n-1 to budbreak of year n (Table 3). For 
Vineyard A, Tmin was positively correlated with yield. For 
Vineyard B, Tmean was negatively correlated with yield. For 
Vineyard C, Tmin and Tmax were negatively and positively 
respectively correlated to yield. Again, these differences may 
be explained by the negative influence of temperature on 
the number of flowers and berries per bunch reported in the 
literature (Pouget, 1981; Dunn and Martin, 2000; Petrie and 
Clingeleffer, 2005; Jones et al., 2009; Keller et al., 2010), and 
the positive influence of temperature on berry weight found 
by others (Keller et al., 2010). However, they could also be 
partly explained by the temperatures experienced in each 
vineyard and particularly the risk of late frost or even early 
water stress that could go with high temperatures before and 
around budbreak.

A fourth grouping of periods of influence was found around 
bloom of year n (Table 3). For Vineyards A and C, Tmean 
was found to be positively correlated with yield, whereas 
Tmin and Tmax were found to be negatively correlated with 
yield for Vineyard B. Again, this difference could highlight 
a threshold effect: berry development is globally encouraged 
by increasing temperatures, but too high temperatures may 
reduce yield (Buttrose and Hale, 1973; Dunn and Martin, 
2000; Pagay and Collins, 2017; Gouot et al., 2019). Vineyard 
B experienced the highest bloom temperatures (Figure 3) and 
may have reached this threshold, which was corroborated by 
the fact that Tmin and Tmax, and not Tmean, were detected 
as influential during this period. A Precipitation influence 
was only detected for Vineyard C; it was found to be initially 
negatively (before bloom) then positively (during and after 
bloom) correlated with yield. The negative correlation may be 
explained by a physical inhibition of the flowering process or 
poor phytosanitary conditions due to high precipitation. The 
positive correlation may also be explained by water effects on 
berry development after bloom (Ojeda et al., 2001; Triolo et 
al., 2019), especially since Vineyard C was rain-fed.

A fifth grouping of periods of influence was found around 
veraison of year n. For Vineyard B, Tmean and Tmax were 
positively correlated with yield. For Vineyard C, Tmean and 
Tmax were positively correlated with yield. Both results 
seemed coherent with sufficient temperatures generally 
favouring berry development without reaching any threshold 
effect. No period of influence was detected for Vineyard A, but 
this may be due to a low data volume. 

Finally, a sixth grouping of periods of influence was detected 
at harvest time of year n. Tmean, Tmin and Tmax were 
negatively correlated with yield for Vineyards B and C. Thus, 
high temperatures at harvest time seemed to reduce yield and 
it may be related to a loss of berry weight due to dehydration 
(Rogiers and Holzapfel, 2015; Deloire et al., 2021).

1.2. Periods of climate influence on yield were precisely 
defined within the time series data
The eGDD method allowed thermal indices to be computed 
that were optimised to model consistent scores; i.e., dates 
in a thermal index, of budbreak, bloom and veraison over 

years for each block of Vineyards A and C or groups of 
blocks for Vineyard B (Figure 4). These thermal indices 
were optimised to reduce the phenological shift between 
the analysed blocks and years. Because these scores were 
better synchronised between years than with the Gregorian 
calendar or the Growing Degree Days approach (data not 
shown, but refer to Laurent 2021 for other examples), the 
time series could be split into shorter periods (Table 2) to 
enable the BLiSS analysis. Moreover, in the BLiSS method, 
the a priori probability distribution used for the half-length of 
each period of influence corresponded to an exponential law, 
which encouraged the detection of periods of a parsimonious 
duration. In this way, relatively short periods could be 
detected; for example, for Tmin after veraison of year n-1 
for Vineyard B (Table 3). At this time of the year, a period 
expressed according to an eGDD thermal index corresponded 
to a period ranging from about ten to fifteen days, which 
is the finest time step that could be evidenced by Molitor 
and Keller (2017) with a Windows Pane approach. At this 
time of the year, such a period would also be equivalent to 
100-150 Growing Degree Days, which is often the smallest 
time step explored in classical analyses (Guilpart et al., 
2014). As such, the information contained in time series of 
weather data was considerably concentrated (i.e., reduced in 
dimensionality) into site-specific and precisely timed periods 
of climate influence on grapevine yield. These dimension-
reduced results could subsequently be used for other analyses 
based on statistical methods that do not have to account for 
time series characteristics.

2. Contribution of the analytical process to 
leveraging farm data 
Grapevine response to climate variables, such as temperature 
or precipitation, was seen as the result of the integration of 
many factors that cannot be dissociated. This point will be 
further discussed in paragraph 2.2 and 2.4. Obviously, the 
volume and quality of the analysed data also influenced the 
results. The following section explains the issues related to 
some of these characteristics and how the analytical process 
proposed in this paper addresses them. 

2.1. Small and heterogeneous data sets can still be 
analysed
The number of individuals involved in the analysis (i.e., the 
number of time series per block and per year) had a strong 
impact on the results. Thus, the results obtained for Vineyard 
B and C were more significant than for Vineyard A, with more 
periods detected and a greater reliability in their detection. 
However, the small number of individuals analysed for 
Vineyard A prevented an analysis of the time series with such 
a number of discretised periods in a frequentist framework 
because of estimation problems (the time series were 
discretised into 17 periods for only 140 individuals which 
may be too low of a ratio). In contrast, the Bayesian approach 
included in the BLiSS method still allowed the analysis of the 
data set and provided information on the uncertainty of the 
results. Thus, Table 3 only lists the periods of influence that 
were unequivocally detected for Vineyard A, but an expert 
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analysis of the results could have allowed more periods to 
be selected.

2.2. Capturing a constant site effect while analysing a 
statistically high enough data volume
The site-specific analysis proposed in this work is based on 
the assumption that grapevine response to climate through 
its yield performance is determined by a site-specific effect 
corresponding to the integration of numerous factors, such 
as plant material characteristics, environmental conditions, 
cultural practices and vineyard management in terms of 
production objectives, logistics and technical specifications 
of any label or geographical indication, etc. Therefore, it 
implies that the site-specific effect is consistent over time 
and for all the studied blocks. The finer the spatial scale, the 
more likely the site-specific effect hypothesis will be valid. 
For example, it is more likely to be valid at the block scale 
than at the regional scale, since the block scale embraces only 
one grape variety that will not change over time and cultural 
practices that should be planned according to the same logic 
every year, etc. This assumption determines the quality of 
the final results: the more consistent the site-effect, the more 
reliable the detection of periods of climate influence with 
the BLiSS method. However, a rigorous implementation 
of the analytical process also required a minimum data 
volume to statistically detect and consider any site-specific 
effect. Ensuring a consistent site-specific effect while having 
sufficient amount of data is not trivial, especially given the 
variable geometry of vineyards and their data in terms of 
estates, blocks and other management units. Therefore, each 
step of the analytical process is subject to a trade-off between 
the finest spatial scale that can be considered to allow a 
consistent site-specific effect over time and the minimum 
data volume at this spatial scale needed. In the first step, 
grapevine phenology was likely to be consistent over time at 
the block scale. However, a limit to the quality of the results 
was apparent when less than 5 years were considered for a 
site with the eGDD method (data not shown). Therefore, 
it was sometimes necessary to find a trade-off in spatial 
scale to allow for a sufficient volume of data to be used in 
the analysis. For example, there was not enough data to 
calculate the eGDD indices at the block scale for Vineyard 
B. However, it is known from previous work that the spatial 
scale that benefits the most from a site-specific calibration of 
thermal indices in terms of synchronising time series is the 
vineyard scale, while taking into account the grape variety 
(Laurent, 2021). Therefore, applying the eGDD method at 
the scale of all the blocks of the same estate and of the same 
grape variety was assumed to be an appropriate trade-off. 
Secondly, the BLiSS analysis could not be performed at the 
block or even at the estate level due to the amount of data 
available. Therefore, it was performed at the vineyard scale, 
assuming a certain consistency of the effects of, for example, 
the environment and cultural practices between the estates of 
the same vineyard. However, the validity of this assumption 
required the exclusion of some blocks whose phenology was 
markedly different from the majority of the blocks or whose 
grape variety was poorly represented in the vineyard.

2.3. Temporally and spatially inconsistent samples are 
supported by the proposed analytical process
For a variety of reasons, ranging from climatic hazards to 
logistical failures, the number of individuals (time series per 
year and per block) can commonly vary between estates/
vineyards and years in farm data sets. This issue can lead to 
an unbalanced sampling of site and year effects within the 
analysis and to non-robust conclusions that are potentially 
driven by a small number of individuals. Regarding the 
site effect, numerous precautions were undertaken in the 
whole analytical process to assume a constant site effect 
at the vineyard scale (see paragraph above). Therefore, the 
imbalance in the number of individuals representing each 
block (i.e., years per block) was not considered to be a major 
issue. Each block was considered to be a realisation of the 
same vineyard-specific pattern that outweighs variations due 
to inter-block differences within the same vineyard.

However, the reverse of this unbalanced sampling is that 
the years were also represented with a different number of 
individuals (i.e., blocks per year). The analysis of the climate 
effect on yield being inherently prone to incorporate year 
effects, this unbalanced year sampling was considered to be 
a red-flag issue which could lead to erroneous results. This 
was especially true for phenological observations, and hence 
for the implementation of the eGDD method. As it was not 
possible to include a random vintage effect in the analysis, 
the individuals were weighted by the inverse of the number 
of blocks for their corresponding year. This weighting aimed 
at balancing the different years. In the case of Vineyard 
B, which presented the more unbalanced year sampling, 
performing the eGDD analysis at the estate scale was also a 
way to gather more individuals representing the same years.

2.4. The analysis of farm data call for an operational 
interpretation of the results
Vineyards A and B were both split into several estates, 
whereas Vineyard C comprised a single estate, but with 
a higher number of blocks. Each estate of Vineyard A was 
equipped with its own weather station, while the same weather 
station serviced all the estates of Vineyard B. Vineyard C was 
also equipped with a single weather station. Therefore, the 
weather stations of the three vineyards were likely to offer 
a different representation of the weather conditions actually 
experienced in each block. In addition, all private weather 
stations can present different metrological and environmental 
characteristics. Obviously, these differences may lead to some 
noise in the results, hopefully, but not certainly, including a 
consistent bias. This is why these results should be used to 
draw practical conclusions rather than theoretical ones and 
should not be directly compared between vineyards without 
taking some precautions for their interpretation.

Regarding the results of Step 1, the eGDD thermal index was 
assumed to integrate i) physiological variations in the vine 
response temperature depending on plant factors as well as 
environmental factors, ii) spatial variations of temperature 
conditions between the blocks covered by the same weather 
station, and iii) the quality of phenological observations 
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and weather data (Laurent et al., 2020; Laurent, 2021). In 
the case of Vineyard A, the eGDD method was applied at 
the block scale with a weather station being close to each 
block. Therefore, it can be assumed that the difference in 
eGDD thermal indices between blocks in the same vineyard 
mainly correspond to differences in the vine response to 
temperature or to the data quality, rather than to spatial 
variations of temperature conditions. This hypothesis was 
reinforced by the fact that a clear consistency was observed 
between the eGDD indices of three out of the four estates 
of Vineyard A, with the last estate being the most spatially 
extended and comprising the largest number of blocks. In 
the case of Vineyard B, the fact that the three estates were 
equipped with only one weather station likely implies that 
the spatial variations of temperature conditions may play a 
more significant role in the differences of the PAST functions 
(Figure 4b) and related eGDD thermal indices between 
blocks and a fortiori between blocks on different estates. In 
addition, the eGDD method was applied at the estate scale 
in Vineyard B. Therefore, the resulting indices have to be 
interpreted as a trade-off between different vine responses to 
temperature. The clustering of blocks according to their estate 
and to their variety likely helped with this trade-off. Without 
this clustering, the constrained optimisation component of 
the eGDD method would have had difficulties in converging 
and would have tended to obtain PAST functions with very 
close temperature thresholds for mathematical reasons; i.e., 
to cumulate very few heat units (TODH).

Regarding the results of Step 3, the analytical process  
presented in this paper highlighted site-specific periods 
of Tmean, Tmin and Precipitation for the three vineyards. 
These site-specific results do not mean that the physiological 
mechanisms of yield development were different between 
the vineyards, but that the site-specific conditions of 
each vineyard led to some periods (and associated yield 
development processes) becoming determining or limiting. 
The site-specific conditions of each vineyard were an 
integration of plant material characteristics, environmental 
conditions, cultural practices and vineyard management 
in terms of production objectives, logistics and technical 
specifications of any label or geographical indication, etc. 
This analytical process did not allow a specific explanation 
of which factor(s) caused the detection of a period of yield 
sensitivity to temperature or precipitation and its correlation 
direction to yield. However, it highlighted periods that should 
be taken into account when monitoring yield development. 
From a research perspective, these results may reveal 
hypotheses to be further explored and validated. The diversity 
of site-specific conditions could lead to a generation of new 
knowledge on grapevine physiology and ecophysiology. 
From an operational perspective, these results indicated 
periods that need to be carefully managed. For example, the 
period of Precipitation influence during the season in years 
n-1 and n for Vineyard C (rain-fed) showed a sensitivity to 
water constraint and may advocate for a review of cover crop 
and canopy management to increase grapevine resilience 
to water stress. Another example is linked to the periods of 
negative influence of temperature on yield at harvest time 

in year n for Vineyards B and C, which should promote the 
advancement of the date of harvest operations if a heat period 
is announced by weather forecasts. 

CONCLUSIONS

This study proposed an analytical process combining two 
statistical methods, the eGDD and the BLiSS methods, as an 
exploratory approach to site-specifically extracting relevant 
information from time series of farm weather data. The 
influence of climate on grapevine yield in three different 
commercial vineyards was chosen as a case study. Vineyard-
specific periods of temperature and precipitation influence on 
yield were found for six key stages of the grapevine yield 
development cycle. Thus, the potential of the analytical 
process was shown in terms of i) a site-specific analysis of 
time series of weather data in order to extract local climate 
indicators with reduced dimensions and ii) feasibility when 
working with farm data. The results of such analyses should 
be carefully interpreted, since they integrate numerous 
determinisms in relation with the operational reality of 
commercial vineyards. However, they are of real interest 
to commercial vineyards as they give them guidelines to 
operationally interpret their own data to better understand 
their own vineyards. This analytical process could be applied 
to other crops, especially perennial crops, and could also 
relate to other time series data and response variables. 
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