

Diagnostic et Solutions: LES OUTILS DE CARTOGRAPHIE DE L ALÉA ET DES RISQUES

Guillaume Barjot, Pascal Breil, Frédéric Pons, Valentin Lendemaine, Anne Piveteau

▶ To cite this version:

Guillaume Barjot, Pascal Breil, Frédéric Pons, Valentin Lendemaine, Anne Piveteau. Diagnostic et Solutions: LES OUTILS DE CARTOGRAPHIE DE L ALÉA ET DES RISQUES. ATELIER DE DÉMONSTRATION du e-colloque Risque Ruissellement, Comité scientifique et technique de la SHF, Nov 2020, E-colloque, France. hal-03793168

HAL Id: hal-03793168 https://hal.inrae.fr/hal-03793168

Submitted on 30 Sep 2022

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Atelier de démonstration

LES OUTILS DE CARTOGRAPHIE DE L'ALÉA ET DES RISQUES

Animé par :

BARJOT	Guillaume	ARTELIA
BREIL	Pascal	INRAE
CERDAN	Olivier	BRGM
LANDEMAINE	Valentin	BRGM
PIVETEAU	Anne	ARTELIA
PONS	Frédéric	CEREMA

Sommaire

Présentation succincte des méthodes

EAIP, Exzeco, IRIP, ORUS, WaterSED, Cartino2D, Modèles Hydrauliques locaux, Repères/Proxy/Incidents

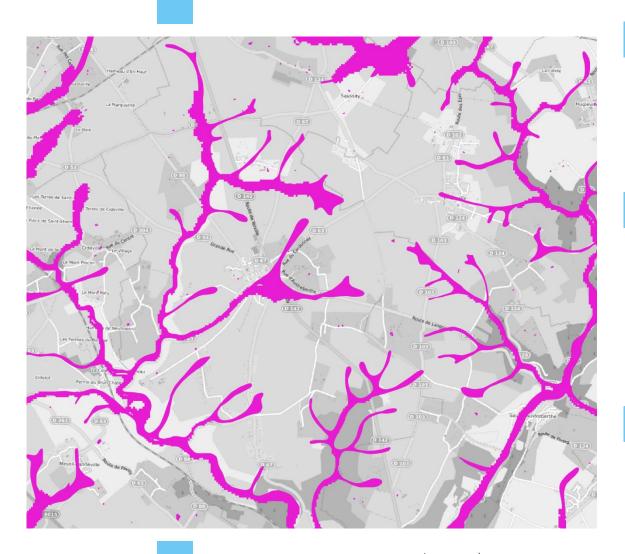
Prise en main de l'outil de visualisation

Liens disponibles sur le site [site du e-colloque/page de l'atelier]

Jeu de questions/réponses « Dans la peau de ... »

Synthèse des échanges

Atelier cartographique


Présentation des méthodes

02/12/2020

EAIP — ENVELOPPE DES INONDATIONS POTENTIELLES

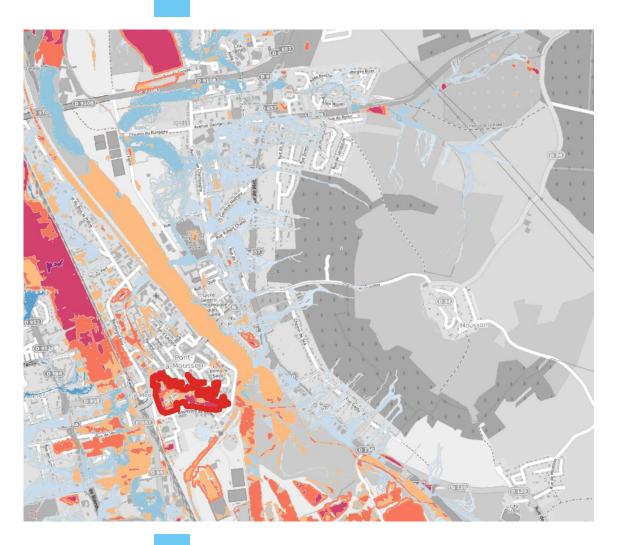
PRINCIPE ET DONNÉES

Fusion experte de diverses données d'inondations à l'échelle de la France

- Données réglementaires (ante 2011)
- Surface en Eau BDTopo IGN
- Formations alluviales Géologie BRGM
- Exzeco 25m >1km² de bassin versant

PRINCIPALES LIMITES

Melting Pot de méthodes très différentes Uniquement des emprises potentiellement inondables maximalistes


MISE EN ŒUVRE

Semi-Automatique à expertisée (75% automatique)

EXZECO - EXTRACTION DES ZONES D'ECOULEMENT

PRINCIPE ET DONNÉES

Détection topographique automatisée des zones d'écoulement à l'échelle de très grand territoire

Données de type Topographie (ex: Lidar IGN)

PRINCIPALES LIMITES

Pas de calcul hydraulique Uniquement des emprises susceptibles aux écoulements Microtopographie et ouvrages

MISE EN ŒUVRE

Automatique (99%)

IRIP – Indicateurs du Ruissellement Intense pluvial

PRINCIPE ET DONNÉES

Le potentiel de ruissellement intense (0 à 5) dépend des caractéristiques topographiques, pédologiques et d'usage des sols, dans une logique hydrologique amont-aval. La pluie statistique permet de distinguer le potentiel de ruissellement hortonien et par saturation.

- Topographie (IGN ou télédétection, raster de 1m à 25m)
- Propriétés hydrauliques du sol de 0 à 30 cm (ESDAC, raster 250m)
- Usages des sols (CES-BIO, raster 20m, mise à jour annuelle)
- Pluies statistiques spatialisées 30 ans , 1h et 24h (MF, radar 1 km2)

HYPOTHÈSE CENTRALE

Méthode de diagnostic de territoire à grand rendement pour cibler l'usage de méthodes plus complexes dans les zones à enjeux. Identifier les zones de production, transfert et accumulation depuis les versants afin d'adapter les solutions de prévention.

CARTOGRAPHIES PRODUITES

Carte de potentiel de production du ruissellement intense; Carte de potentiel transfert-érosion du ruissellement intense; Carte de potentiel d'accumulation solides et liquides; La sélection des forts potentiels conserve des zones déconnectées

ECHELLE

IRIP – Indicateurs du Ruissellement Intense pluvial

MÉTHODES D'ÉVALUATION

Usage de données approchées (proxy) pour vérifier la liaison spatiale avec forts potentiels en production (auto-inondation), en transfert et ou accumulation.

Cela permet de retenir les niveaux de potentiel pertinents. Une règle opérationnelle consiste à retenir le niveau d'aléa qui détecte au moins 80% des incidents en couvrant moins de 20% du bassin versant.

Usage des « pluies » radar pour vérifier la liaison négative entre intensité de pluie et potentiel de ruissellement dans les zones d'incidents datés. Confirme l'hypothèse des niveaux de potentiel.

PRINCIPALES LIMITES

Pas de calculs hydrauliques

MISE EN ŒUVRE

Par utilisateur via un « plug in » libre développé pour QGIS;

Actuellement en test par un groupe d'utilisateurs;

Temps calcul: dépend du nombre de mailles à traiter 1h30 pour 5000 km2 à la maille de 25m (8.0000.0000 de mailles)

ECHELLE

ORUS - ORGANISATION DU RUISSELLEMENT

PRINCIPE ET DONNÉES

Le potentiel de ruissellement dépend des caractéristiques topographiques, pédologiques et d'usage des sols, dans une logique hydrologique amont-aval. Les indicateurs sont continus et permettent de prioriser l'action publique notamment sur des évènements à faible niveaux de service (pluie moyenne et fortes).

- Topographie (LiDAR)
- Propriétés pédologiques des sols et des sous-sols (piézométrie)
- Usages des sols (par recoupement de bases, y compris agriculture)

OBJECTIF

Méthode de diagnostic de territoire à grand rendement pour identifier les zones de production, transfert et accumulation depuis les versants afin d'adapter les solutions de prévention et concevoir des plans d'actions et d'aménagement du territoire pour réduire sa vulnérabilité intrinsèque. Prendre en compte l'impact des services écosystémiques liés à la gestion de l'eau et du ruissellement.

CARTOGRAPHIES PRODUITES

Carte de potentiel de production, de potentiel transfert-érosion et de potentiel d'accumulation solides et liquides

PRINCIPALES LIMITES

Pas de calculs hydrauliques et pas de prise en compte de la pluie.

MISE EN ŒUVRE

Expertisée – Plugin QGiS en cours de développement Temps de calcul: 1h / 500 km².

WATERSED

Modélisation du ruissellement et de l'érosion des sols.

Simulation de modifications passées ou futures de l'occupation des sols ou des pluies.

Evaluer l'impact d'actions de lutte contre le ruissellement et l'érosion des sols (aménagements d'hydraulique douce, mares).

CONCEPT

Ruissellement hortonien et par saturation et érosion en nappe et concentrée. Sensibilité au ruissellement en lien avec la dégradation structurale de la surface du sol, sous l'action des pluies, de l'usage des sols et de la texture des sols.

Système « expert » pour déduire les propriétés hydrodynamiques et érosive des paysages cultivés et naturels.

FONCTIONNEMENT

Modèle distribué multi-échelle pour un évènement de pluie donné ou une séquence de pluie.

Cartographie du volume de ruissellement, de la masse de terre érodée, hauteur de pluie nette, hauteur de pluie infiltrée, etc.).

WATERSED

Données

Topographie (BD ALTI IGN, LIDAR, etc.) + modification anthropique des axes de ruissellement

Occupation des sols (RPG, BD TOPO, Corine Land Cover, etc.) + Pratiques culturales Propriétés des sols (IGCS, BDAT, etc.)

Pluies observées / statistiques ; Pluies distribuées ou homogènes

PRINCIPALES LIMITES

Bilan hydrologique et non-hydraulique

Vitesse approximée suivant les équations de Manning (approximation de la dimension temporelle)

Mise en Œuvre

Plugin dans SAGA GIS et dans QGIS

Plugins additionnels pour le prétraitement des données

CARTINO2D

PRINCIPE ET DONNÉES

Modélisation hydraulique automatique 2D Pluie/Débit (utilisation logiciel Telemac2D à l'échelle de nombreux bassins versants de l'ordre de 10 km² en parallèle.

Données

Topographie (ex: Lidar IGN)

Pluies statistiques ou réelle (INRAE ou Météo France)

Ouvrages hydrauliques intégrables

Travail sur des bassins versants jusqu'à 10-20 km² maxi

PRINCIPALES LIMITES

Microtopographie et ouvrages

MISE EN ŒUVRE

Automatique à expertisé (90 à 70% automatique)

Modèles hydrauliques locaux

PRINCIPE ET DONNÉES

Modélisation hydraulique précise sur un secteur particulier avec analyse préalable des conditions d'écoulements et des différentes contraintes.

Possible avec plusieurs logiciels.

Types de modèles les plus souvent utilisés: FD (Fully Distributed) ou mixte SD (semidistributed) / FD, couplés avec ou sans réseaux

Données

Topographie (Lidar) – Bâti – Obstacles (murets, ...), Plans masse

Réseaux (éventuellement)

Pluies statistiques ou réelle

Ouvrages hydrauliques intégrables

Taille de BV : dépend de la finesse attendue des résultats (possible sur de grandes surfaces avec un maillage grossier), mais généralement < 20 km² en FD

PRINCIPALES LIMITES

Données de calage souvent indisponibles

Coût +++ (LIDAR + mise en œuvre)

Dépend du nombre de mailles. Généralement, temps de calculs importants lorsque l'on souhaite couvrir un bassin versant entier

MISE EN ŒUVRE

Expertisée

ECHELLE

Proxy de données

PRINCIPE

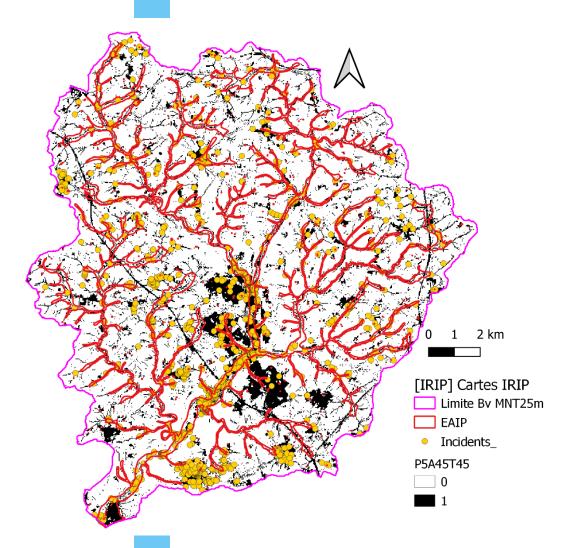
Disposer au maximum d'éléments permettant de savoir qu'une zone a été inondée avec des couches SIG d'éléments ponctuels, linéaires ou polygonaux

Données

Repères de crue, photos sol et aérienne, vidéos (sphère publique et web), sinistres gestionnaires d'infrastructures ou assureurs, interventions pompiers, réseaux sociaux, images télédétection avant/après.

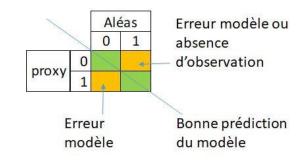
PRINCIPALES LIMITES

Hétérogénéité, non exhaustivité et précision de localisation


Mise en Œuvre

Expertisée

Proxy de données et évaluation


PRINCIPE

Les incidents sont considérés avec un tampon circulaire de rayon = 25m Un incident est détecté si 25% au moins de la surface tampon est en aléas forts.

MÉTRIQUES POSSIBLES

				D=%détection	S=%Surf.
	Surf.	% Surf.	Nombre	avec aléas	Aléas
	km2	Bv	incidents	forts	forts
				P5A45T45	dans Bv
By total	213.8		1327	90%	18%
Hors EAIP	188.7	88%	613	87%	14%
Dans EAIP	25.1	12%	714	92%	4%

Table de contingence et test KHI2 associé

		Matrice réalisée					Matrice	hazard				Matrice relatifs	
		Aléas					Aléas					Aléas	
		0	1				0	1				0	1
proxy	0	341034	58445		proxy	0	338645	60834		proxy	0	0.0071	-0.0393
buc	1	1040	3005			1	3429	616			1	-0.6967	3.8784

Chi-2 test	
Freedom degr	ee = 1
Chi-2=	11040.5564
Prob(Chi-2)=	0.000000

Dépendant des données

Base nationale (Repère de crue, assureurs), bases départementales (SDIS), bases très locales.

Atelier cartographique

Dans la peau de

02/12/2020

Les questions

Dans la peau de

ETAT

COLLECTIVITÉ

CITOYEN / HABITANT

GESTIONNAIRES D'INFRASTRUCTURES

SERVICES DE SECOURS

CHERCHEUR

ASSUREUR

- Quelles méthodes pour savoir où « ça craint! » ?
- Quelles méthodes pour tester des méthodes de réduction des aléas et de la vulnérabilité?
- Quelles méthodes pour connaître l'exposition des infrastructures linéaires et ponctuelles ?
- Quelles méthodes pour positionner les secours et mettre à l'abri les populations ?
- Quelles méthodes pour gérer son portefeuille de police d'assurance ?

Atelier cartographique

02/12/2020

Outil de visualisation en ligne des cas témoins

Accès aux données :

http://shf-prod.s3-website.eu-west-3.amazonaws.com

Site de secours :

http://shf-test.s3-website.eu-west-3.amazonaws.com

Atelier cartographique

Quelle synthèse de nos discussions

02/12/2020

Tableau de synthèse

	EAIP	EXZECO	IRIP	Orus	WATERSED	CARTINO 2D	Modèles locaux	PROXY
Type de modèle	Mix	Topographie	Score	Score	Distribué / Evènementiel	Dynamique	Dynamique non automatique	
Résultats type "zone inondable"	Oui	Oui			Non	Oui	Oui	
Résultats "susceptibilités des surfaces au ruissellement"			Oui	Oui	Oui		Possible avec analyse des résultats des modèles	
Résultats en hauteurs, vitesses et débits					Oui	Oui	Oui	
ACB / AMC possible				Oui. Au niveau de la politique globale d'aménagement du territoire	Oui	A terme	Oui	
Précision des résultats	+	+	En moyenne détecte à minima 80% des proxy avec moins de 20% de surface susceptible	++	++	++	+++	
Rapidité de mise en œuvre	++	***	+++	+++	++	+++	-	
Coûts	€	€		€	€€	€€	€€€	
Disponibilité	France	France 25m 10 Dpts Arc Med + Reunion	France	Disponibles sur certaines collectivités et bassins versants	Disponibles sur certaines collectivités et bassins versants	Disponibles sur certaines collectivités et bassins versants	Disponibles sur certaines collectivités et bassins versants	
Liens utiles	GEORISQUE	Cerema	INRAE	ARTELIA	BRGM		ARTELIA	

Atelier de démonstration

LES OUTILS DE CARTOGRAPHIE DE L'ALÉA ET DES RISQUES

Nous vous remercions pour votre attention