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ABSTRACT

Metagenomic classifiers are widely used for the tax-
onomic profiling of metagenomics data and esti-
mation of taxa relative abundance. Small subunit
rRNA genes are a gold standard for phylogenetic
resolution of microbiota, although the power of this
marker comes down to its use as full-length. We
aimed at identifying the tools that can efficiently
lead to taxonomic resolution down to the species
level. To reach this goal, we benchmarked the per-
formance and accuracy of rRNA-specialized versus
general-purpose read mappers, reference-targeted
assemblers and taxonomic classifiers. We then com-
piled the best tools (BBTools, FastQC, SortMeRNA,
MetaRib, EMIRGE, VSEARCH, BBMap and QIIME 2’s
Sklearn classifier) to build a pipeline called RiboTaxa.
Using metagenomics datasets, RiboTaxa gave the
best results compared to other tools (i.e. Kraken2,
Centrifuge, METAXA2, phyloFlash, SPINGO, BLCA,
MEGAN) with precise taxonomic identification and
relative abundance description without false pos-
itive detection (F-measure of 100% and 83.7% at
genus level and species level, respectively). Using
real datasets from various environments (i.e. ocean,
soil, human gut) and from different approaches (e.g.
metagenomics and gene capture by hybridization),
RiboTaxa revealed microbial novelties not discerned
by current bioinformatics analysis opening new bi-
ological perspectives in human and environmental
health.

INTRODUCTION

In recent decades, significant advancements in sequenc-
ing technologies have helped to better characterize micro-
biomes from human gut (1), soil (2) and oceans (3). Pre-
dicting the presence and relative abundance of taxa through

analysis of phylogenetic markers like the 16S ribosomal
RNA (rRNA) gene is a common approach adopted in mi-
crobial ecology (4). Widely used, PCR amplification and
sequencing of the 16S rRNA gene through metabarcoding
generally employs universal PCR primers to target highly
variable regions of this gene. However, this approach can
lead to PCR biases and sequence chimera (5), leading to
incorrect microbial profiling. Furthermore, the amplicon
length (about 400 bp corresponding to one to two vari-
able regions) produced by the second-generation sequenc-
ing platform reduces the accuracy or reliability of phyloge-
netic resolution, limiting taxonomic affiliation to the fam-
ily level, in general, or in the best cases, to genus level (6).
Thus, using sequencing data, that allows access to all the
16S variable regions without primer and PCR biases, such
as shotgun metagenomics or 16S-targeted gene capture by
hybridization (7), appears to be the most suitable to describe
precisely microbial communities based on a phylogenetic
marker.

Commonly, microbial profiling of shotgun metagenomics
data is performed through annotation of reads, de novo
assembled genes or metagenome assembled genomes (8).
However, deciphering taxonomic diversity is often limited
by incomplete genome databases compared to large 16S
rRNA gene repositories, despite relentless efforts to update
them (9). Direct read annotation is largely favoured be-
cause of computational arduousness during assembly. Con-
sequently, several approaches have been proposed and com-
pared to estimate microbial diversity and relative abun-
dance of species using whole genome or marker reference
databases (10). Most methods such as MEGAN (11) rely on
sequence alignment based on matched database sequences
and use the lower common ancestor (LCA) algorithm to
assign taxa to the query sequence. However, the LCA al-
gorithm fails to consider the differing degrees of similar-
ity between the query and the database hit sequences. To
overcome this problem, BLCA (12) has adopted a Bayesian-
based LCA method whereby the taxonomic assignment of
the query sequence is weighted by a Bayesian probability
based upon the sequence similarity of the database hit to the
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query. Nevertheless, alignment-based approaches are gen-
erally memory and time consuming (13) while the advan-
tage of k-mer based approaches is its fast computational
speed. As an example, Kraken (14)/Bracken (15) and SP-
INGO (16) employ alignment-free method by using exact
k-mer matches between reference databases and reads to re-
port the microbial diversity based on LCA of every taxon.
Although k-mer approach is very efficient and fast on large
metagenomics data, the choice of the length k highly influ-
ences the classification (17,18)

The hybrid pipeline METAXA2 (19) allows rRNA ex-
tracting reads from large sequencing data sets using Hid-
den Markov Models (HMM) (20) and directly subjects
putative rRNA reads to a BLAST (21) search against a
specialized TRNA database. METAXA2 can report read
origin (archaeal, bacterial, nuclear eukaryote, mitochon-
drial or chloroplast) and hierarchical classification down
to genus or species level. Here, the step of rRNA read ex-
traction accelerates the algorithm execution while enhanc-
ing specificity of the analysis. Although HMM was used
in METAXA2, other methods can be employed such as
general-purpose mappers such as BBMap (https://jgi.doe.
gov/data-and-tools/software-tools/bbtools/) or specialized
algorithm such as SortMeRNA (22) to align reads against
a representative set of rRNA database.

Yet, the major concern remains that unassembled short-
length sequences do not contain all the informative regions
of the 16S rRNA genes, thus reducing the accuracy of taxo-
nomic assignments to species level (23). Indeed, depending
on the 16S rRNA region carried by each read, taxonom-
ical level of affiliation may vary from phylum to species,
impairing the true representation of the microbial com-
munity diversity. Converting short reads into full-length
or nearly full-length rRNA gene sequences typically yields
a more detailed taxonomic resolution, at the species or
even strain level (24), providing a unique opportunity to
thoroughly analyse microbial species that have never been
identified before. Pipelines, including filtering, reconstruc-
tion of full-length SSU rRNA genes and their classifica-
tion, may represent useful tools to facilitate data analysis
for scientists. PhyloFlash (25) is a compilation of tools to
rapidly filter and reconstruct the SSU rRNAs and explore
phylogenetic composition from metagenomics or meta-
transcriptomics datasets. To filter SSU reads from Illumina
metagenomics dataset, phyloFlash proposes the general-
purpose mapper BBMap and the rRNA-specialized tool
SortMeRNA. To assemble full-length SSU rRNA se-
quences, the general-purpose genomic assembler SPAdes
(26) and the reference-based assembler EMIRGE (27) are
proposed. Taxonomic identification of assembled sequences
is done using VSEARCH (28). Efficiency of 16S rRNA se-
quence reconstruction is the pivotal step of this approach.
EMIRGE, that uses Bayesian approach to iteratively map
short Illumina reads against a set of reference gene se-
quences with Bowtie (29), was selected for this pipeline but
other reference-based targeted assemblers have been pub-
lished since.

Released in 2020, MetaRib (30) has been developed to
reconstruct rRNA gene sequences from total RNA meta-
transcriptomic data. Using the same mapping in an itera-
tive approach as EMIRGE, this tool provides several im-

provements such as integrating sub-assembly and derepli-
cation before iterative mapping to reduce running time and
memory usage. MATAM (31) also provides high-quality re-
constructed full-length 16S rRNA gene sequences using the
construction and exploitation of an overlap graph and is
designed to minimize the error rate and the risk of chimera
formation during rRNA gene assembly from metagenomics
data.

Our aim was to propose an accurate and comprehensive
tool based on SSU rRNA gene to exploit metagenomics
data to the maximum, taking advantage of a widely stud-
ied phylogenetic marker that can overcome the lack of ref-
erence genomes and help to better characterize microbial
communities and discover novelties.

In this article, we have evaluated the performance
and accuracy of rRNA-specialized versus general-purpose
read mappers, reference-targeted assemblers and taxonomic
classifiers. Using a microbial mock, we aimed at identify-
ing the tools that can efficiently lead to taxonomic reso-
lution down to the species level from metagenomics data.
Finally, we have compiled the selected tools to build a
pipeline called RiboTaxa. This pipeline takes metagenomics
Illumina sequences as input and rapidly filter and recon-
struct SSU rRNA genes for taxonomic identification as-
sociated to relative abundance description. The efficiency
of RiboTaxa was determined using a synthetic complex
community of human gut microbiota and compared to ex-
isting 16S-based metagenomics classifiers (i.e. Centrifuge
(32), Kraken2, METAXAZ2, phyloFlash, SPINGO, BLCA,
MEGAN). Later, RiboTaxa was applied to various real
metagenomics datasets (i.e. ocean, soil, human gut) but also
to gene capture by hybridization datasets from previous
works to reveal novelties not detected by current bioinfor-
matics pipelines.

MATERIALS AND METHODS
Tool benchmarking on microbial MOCK community

Microbial MOCK community. The microbial MOCK
community was composed of 21 bacterial and 7 archaeal
species (Supplementary Figure S1), which was shotgun se-
quenced in paired-end (2 x 300 bp) MiSeq runs (Illu-
mina) by Gasc and Peyret (33). Microbial strains were se-
lected from the Leibniz Institute DSMZ collection provided
the availability of their genome in GenBank database. The
abundance of each species was then defined based on the
16S rRNA copy number per genome and the number of
genomes in the mixture.

Raw Illumina reads from the shotgun sequencing (un-
der accession number SRR 5381736) were downloaded from
NCBI open access Sequence Read Archive (SRA) using
NCBI SRA Toolkit_v2.9.1 (https://www.ncbi.nlm.nih.gov/
sra). Fastq-dump v2.8.2 (https://www.ncbi.nlm.nih.gov/sra/
docs/sradownload/) was then used to extract Fastq files
from SRR files using parameter -I -split-files to separate
Fastq files into forward (R1) and reverse files (R2).

Sequence quality control and read trimming. Tllumina
shotgun reads were processed using bbduk.sh (k-mer = 21,
https://jgi.doe.gov/data-and-tools/software-tools/bbtools/,
BBTools v37.62) to remove Illumina adapters, known
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Illumina artifacts and to quality-trim both ends to Q20.
Resulting reads containing more than one ‘N’, or with qual-
ity scores (before trimming) averaging <20 over the read, or
length under 60 bp after trimming, were discarded. Qual-
ity control was performed using FastQC v0.11.9 (https:
/Iwww.bioinformatics.babraham.ac.uk/projects/fastqc/)
before and after trimming to ensure that high-quality
Illumina reads are passed onto the next steps.

Database preparation and indexing. Unless specified oth-
erwise, SILVA small subunit (SSU) ribosomal RNAs
(16S/18S) 138.1 released on August 27, 2020 (http://
www.arb-silva.de) was used for rRNA read extraction,
full-length 16S rRNA gene reconstruction and taxo-
nomic classification. SILVA 138.1 database (Fasta for-
mat) was clustered at 97% (NR97) with VSEARCH -
cluster_fast v2.7.0, converted from RNA to DNA alpha-
bet, and any ambiguous bases were replaced by random
base characters using fix_nonstandard_chars.py. Specific
database indexes were then built for each tool used in
this study. The NR97 filtered and fixed database was in-
dexed for BBMap with bbmap.sh (https://jgi.doe.gov/data-
and-tools/software-tools/bbtools/), for EMIRGE (27) and
MetaRib (30) with Bowtie (29) and for SortMeRNA (22)
and MATAM (31) with matam_db_preprocessing.py, for
Kraken2/Bracken (34) with kraken2-build (kmer = 35) and
for Centrifuge (32) with centrifuge-build.

SSU rRNA reads extraction. BBMap v38.87 (https://jgi.
doe.gov/data-and-tools/software-tools/bbtools/): The in-
put reads were aligned (mapped) against the indexed SILVA
138.1 database, with minimum identity 70% by default, re-
taining all ambiguous alignments if there are multiple best
scoring. Output was written in Fastq format, retaining all
read pairs where at least one read could be aligned.
SortMeRNA v2.1b (22): Since SortMeRNA accepted
only one file as input for the reads, forward and reverse
paired-end reads were interleaved into a single Fastq file us-
ing merge-paired-reads.sh (SortMeRNA v2.1b). The reads
were then aligned by SortMeRNA against the indexed
SILVA 138.1, using min_lis of 2 (number of candidate align-
ments) and E-value cut-off of 1 by default. Aligned and
unaligned reads were reported with options -aligned and
-other, respectively and were written in Fastq format. To
keep the order of paired-end reads —paired-in option was
used and an overall statistics file (-log) was generated. After
filtering, the aligned Fastq file containing the SSU rRNA
reads was separated into forward and reverse paired-end
reads using unmerge-paired-reads.sh (SortMeRNA v2.1b).

Assembly of nearly full-length SSU rRNA sequences.
EMIRGE v0.61.1 (27): Two available scripts were tested,
namely Emirge.py and Emirge_amplicon.py designed for
metagenomics data and PCR amplicon data respec-
tively. Both scripts were tested with the same fol-
lowing parameters. Average insert size of paired-end
input was estimated from the initial mapping with
Bowtie using mean_size.py (https://gist.github.com/timoast/
af73c0e9fac00187ee49). EMIRGE was run with 120 it-
erations with -max_read_length = 300, -insert_-mean =
500, -insert_stddev = 100 and -join_threshold = 1. Once
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all the iterations were completed, emirge_rename_fasta.py
(EMIRGE) was run on the last iteration folder to con-
vert Bam files into a single Fasta file containing all
the reconstructed SSU rRNA genes and their relative
abundances.

During sequence assembly, the join_threshold parameter
influences sequence reconstruction as if two candidate se-
quences share > join_threshold value over their bases with
mapped reads, then both sequences are merged into one for
the next iterations. Emirge_amplicon.py was run using the
same above parameters with -join_threshold = 0.97 (as pro-
posed in the original publication of EMIRGE) and the re-
sults were compared.

MetaRib (version from 13 November 2019) (30): For
MetaRib, which uses the same iterative mapping algo-
rithm as EMIRGE, the above parameters were used with -
join_threshold = 1. The deduplication included in MetaRib
was performed with the following mapping parameters:
minid = 0.96, maxindel = 1, minhits = 2, idfilter = 0.98.
Reconstructed SSU rRNA gene sequences were written in
Fasta format and their relative abundances were output in
a tsv file.

MATAM v1.6.0 (31): The forward and reverse paired-
end reads were first reformatted to interleaved Fastq for-
mat with reformat.sh (https://jgi.doe.gov/data-and-tools/
software-tools/bbtools/). The resulting Fastq file was used
as input and matam_assembly.py was run using a score
threshold of 0.7, a minimum identity of 1 and an E-value
cut-off of 1e—05. Reconstructed rRNA gene sequences were
written in Fasta format and read counts were written in a tsv
file.

Identification of 16S variants present in the microbial
mock community. To build a 16S rRNA database of the
microbial mock community, 16S rRNA sequences were
downloaded from the NCBI (https://www.ncbi.nlm.nih.
gov/gene/) for each microbial strain and concatenated into a
single Fasta file (excluding low-quality variants containing
Ns in sequence). The sequences were first deduplicated to
get rid of strictly identical sequences and then clustered at
100% using VSEARCH v2.7.0. This 16S mock database was
used in downstream affiliation of reconstructed sequences
using blastn of NCBI BLAST + v2.11.0 (21) with an iden-
tity cut-off fixed at 99% to differentiate between microbial
variants. Only the top hit alignment between the subject and
the query sequence was targeted using HSP = 1 parameter.

Taxonomic affiliation.  To classify nearly full-length recon-
structed SSU sequences, Kraken2 v2.0.8-beta (14), Cen-
trifuge v1.0.3-beta (32), mothur v1.33 (classify.seqgs) (35),
SPINGO vl1.3 (16), BLCA v2.1 (12), QIIME 2’s Sklearn
classifier (classify-sklearn plugin, QIIME2 v2020.8) (36)
and RDP Classifier v11.5 (http:/rdp.cme.msu.edu/) (37)
were used. Kraken2 and Centrifuge had their own 16S
databases (SILVA 138.1 SSU NR99 sequence set) from
which indexes were created. Similarly, for SPINGO, the
SILVA 138.1 SSU database was indexed using the provided
makefile (https://github.com/tiendu/SPINGO _updated/
tree/master/SPINGO_SILVA/database). Unlike other tools,
BLCA does not require indexed database files. Instead, the
SILVA SSU 138.1 database was provided to BLCA as a
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BLAST formatted library obtained from the Fasta file us-
ing the makeblastdb utility from NCBI BLAST + v2.11.0,
together with a taxonomy file using write_taxonomy.py
(https://github.com/FOI-Bioinformatics/flextaxd/tree/
master/flextaxd/modules). Pre-trained full-length SSU
SILVA 138.1 database was downloaded for mothur
(https://mothur.org/wiki/silva_reference_files/) and QIIME
2’s  Sklearn classifier (https://docs.qiime2.0rg/2020.11/
data-resources/) and for RDP Classifier v11.5, pre-trained
full-length 16S rRNA training set 18 released on 14 August
2020 (https://sourceforge.net/projects/rdp-classifier/files/),
was used. Taxonomic classification using all the above tools
was done with default parameters and a confidence cut-off
setat 0.7.

Tool benchmarking on a synthetic complex human gut micro-
biota

Synthetic complex human gut microbiota. To mimic real
dataset analysis, tool benchmarking was then done on a
synthetic complex human gut community comprising of
100 microorganisms as described by Lu and Salzberg (38).
To simulate this microbial community, 100 genomes (com-
plete genomes, scaffolds, contigs) in Fasta format were
downloaded from NCBI. Barrnap v0.9 (https://github.com/
tseemann/barrnap) was used to extract all SSU rRNA se-
quences present in each genome using default parameters.
They were clustered at 100% using VSEARCH to remove
duplicates and used as references. ART simulator v2.5.8 (39)
was then run on each individual genome file to generate
20X coverage of synthetic paired-end Illumina reads with
length 250 bp using the following parameters: art-illumina
-p -ss MSv3 -f 20 -1 250 -m 300 -s 100. To calculate theo-
retical abundance of each microorganism, the number of
16S rRNA reads was filtered from individual paired-end
file using SortMeRNA and was divided by the sum of the
16S rRNA reads present in the community of 100 microor-
ganisms. Finally, the synthetic metagenomics dataset was
produced by concatenating all forward and reverse Fastq
files into a single forward (HG_R1) and a single reverse
(HG_R2) Fastq file respectively.

The paired-end human gut files were trimmed us-
ing bbduk.sh (k-mer = 21, https://jgi.doe.gov/data-and-
tools/software-tools/bbtools/, BBTools v37.62) as described
above. For SSU rRNA sequence reconstruction, MATAM,
emirge.py and emirge_amplicon.py were provided with SSU
reads filtered using SortMeRNA while MetaRib was pro-
vided with unfiltered high-quality reads. These choices were
based on the results of the microbial MOCK community.
After SSU rRNA gene assembly, the presence or absence
of species was determined, instead of variants. For this,
the SSU rRNA references, previously extracted by bar-
rnap, were used in downstream affiliation of reconstructed
sequences using blastn of NCBI BLAST + v2.11.0 (21)
with an identity cut-off fixed at 97% to identify species.
Only the top hit alignment between the subject and the
query sequence was targeted using HSP = 1 parameter. Fi-
nally, microbial profiling was performed using all the above-
mentioned tools applied to the microbial MOCK commu-
nity.

RiboTaxa pipeline

RiboTaxa pipeline is written in bash and is available on
GitHub (https://github.com/oschakoory/RiboTaxa). It can
easily be installed using miniconda3 (https://docs.conda.io/
en/latest/miniconda.html). Running conda_virt_env.sh will
install all the necessary tools required by RiboTaxa to anal-
yse raw Illumina metagenomics reads. To avoid conflicts be-
tween required dependencies and those in existing environ-
ment, RiboTaxa uses a virtual conda environment.

RiboTaxa pipeline includes SortMeRNA v2.1b
and EMIRGE v0.61.1 tools, both of which need in-
dexed databases of their own. For that, parameters
for each tool are predefined in the configuration
file, indexDB_arguments.conf, of RiboTaxa and in-
dexDB_RiboTaxa.sh is run to create all necessary database
indexes required by RiboTaxa to analyse raw metagenomics
sequences. Any SSU database in Fasta format can be used,
however, we recommend using SILVA SSU database as it is
the most updated.

RiboTaxa pipeline is illustrated in Figure 1. The inputs
for RiboTaxa are shotgun metagenomics singled-end or
paired-end files, which have been generated by an Illumina
sequencer. The sequence data can either be in uncompressed
Fastq format or in compressed Fastq.gz format. Several
samples can be handled in the same folder. RiboTaxa will
extract the name of the sample from the name of the Fastq
file. By running Pipeline_RiboTaxa.sh, RiboTaxa starts by
removing Illumina adapters and trims Illumina reads us-
ing bbduk.sh (BBTools v37.62). Quality control is per-
formed before and after trimming with FastQC v0.11.9 and
summary statistics are reported in a standalone html file
using MultiQC vI1.11 (https://github.com/ewels/MultiQC/
releases/tag/vl.11). For SSU rRNA gene reconstruction,
RiboTaxa uses MetaRib (version from 13 November 2019)
and EMIRGE v0.61.1 (Emirge_amplicon.py). MetaRib
uses unfiltered high-quality reads for rRNA genes assem-
bly while EMIRGE uses SSU reads that have been extracted
using the rRNA-specialized tool SortMeRNA v2.1. The re-
constructed sequences are then used as reference onto which
unfiltered high-quality reads are mapped using BBmap
v38.87 to calculate the relative abundance. Prior to taxo-
nomic affiliation, the reconstructed rRNA gene sequences
obtained from MetaRib and EMIRGE are clustered at 97%
using VSEARCH v2.17.0 and abundances from BBmap are
summed up for sequences sharing the same cluster. Finally,
the clustered sequences are classified taxonomically using
QIIME 2’s classify-sklearn plugin. Since RiboTaxa incor-
porates different tools, essential parameters for each tool
(bbduk.sh, EMIRGE, MectaRib and skearn_classifier) need
to be predefined in the RiboTaxa_arguments.conf file. This
allows users to set parameters to fit to their own data and
objectives. Threads and memory usage can also be set by
the user.

Finally, RiboTaxa outputs a Fasta file containing
all the reconstructed sequences clustered to 97% in
SSU _sequences.fasta file, and taxonomic affiliation and
relative abundances of each reconstructed sequences in
SSU_taxonomy_abundance.tsv file. It is important to notice
that RiboTaxa and the other metataxonomic tools could
not assign certain sequences at species level and stopped
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Figure 1. RiboTaxa pipeline. RiboTaxa takes raw metagenomics data as input and performs quality control using BBTools and FastQC. MetaRib re-
constructs SSU rRNA sequences from high-quality reads. Also, SortMeRNA extracts SSU reads from the high-quality reads which are assembled into
SSU rRNA sequences by EMIRGE. To estimate relative abundance, BBMap uses reconstructed sequences as reference to align high-quality reads. Prior
to taxonomic identification, sequences from EMIRGE and MetaRib are clustered at 97% using VSEARCH and consensus sequences are classified using

QIIME 2’s sklearn classifier.

at genus-level classification in case of nearly identical 16S
rRNA gene sequences.

Parameters used for RiboTaxa analysis

The RiboTaxa_argument.conf file is available on GitHub
and contains important parameters required for analysis.
This config file needs to be properly filled to avoid er-
rors. Compulsory parameters include directory paths while
the remaining parameters can be left as default, except
sequence reconstruction parameters —max_read_length, —
insert_mean, —insert_stddev which exclusively depend on the
sequencing length of the input data.

Comparison of RiboTaxa with other existing rRNA-based
metagenomic classifiers on microbial MOCK and synthetic
community data

Kraken2, Centrifuge, METAXA2, BLCA, SPINGO,
MEGANG6 were evaluated for their ability to describe the
microbial MOCK and synthetic community from short
reads and labelled as “Without sequence reconstruction’.
PhyloFlash and RiboTaxa, which included a step of
sequence reconstruction from short reads, were labelled as
‘With sequence reconstruction’. All tools except RiboTaxa
were run on high-quality metagenomics reads, trimmed

and cleaned using bbduk.sh (from BBTools v37.62), while
RiboTaxa performed its own quality control step using
BBTools.

Kraken2 and centrifuge used default settings. To esti-
mate the relative abundance, Bracken v2.6.1 was used to es-
timate microbial abundance from Kraken2’s output while
Centrifuge outputs its own calculated abundances.

METAXAZ2 v2.1.2 (19): The function metaxa2 was run
using default settings with option -t = bacteria, archaea to
filter SSU reads of bacteria and archaea only and to dis-
card any other SSU reads (e.g. mitochondrial, chloroplast).
Classifying filtered sequences at different taxonomic levels
was done using metaxa2_ttt with default parameters and
sequence abundance was estimated using metaxa2_dc. Fil-
tered SSU reads were written in Fasta format while taxo-
nomic identification and read counts were written in txt for-
mat. Relative abundance was calculated by dividing each
taxon count by the total number of reads classified at the
species or genus level.

BLCA v2.1 (12): Taxonomic classification was performed
by running 2.blca_main.py with the formatted database
and taxonomy file on the interleaved paired-end HG files,
in Fasta format (reformat.sh from https://jgi.doe.gov/data-
and-tools/software-tools/bbtools/, BBTools v37.62).

SPINGO v1.3 (16): SPINGO was run on the interleaved
paired-end HG files, in Fasta format, using default param-

220Z 1890100 €0 U0 Jasn uoubIny YHNI A9 60580.9/0.209eb|/s/y/e1onie/qebieu/woo dno-olwspese//:sdny woJj papeojumoq


http://jgi.doe.gov/data-and-tools/bb-tools/

6 NAR Genomics and Bioinformatics, 2022, Vol. 4, No. 3

eters (k = 8, bootstrap = 10). The output taxonomy file
was then summarised using the provided python script, sp-
ingo_summary (https://github.com/GuyAllard/SPINGO)

MEGAN v6.21.0 (11): For taxonomic profil-
ing, MEGAN takes as input DAA (DIAMOND
alignment archive) formatted files. Thus, to gen-
erate DAA filess, DIAMOND (40) v2.0.14 was
used. First, the latest version of NCBI nr protein
database was downloaded (on 19 July 2022) from
https://ftp.ncbi.nlm.nih.gov/blast/db/FASTA/nr.gz and
indexed using diamond makedb with default parameters.
The paired-end HG files were interleaved into a single fastq
using reformat.sh (BBTools v37.62) and reads were aligned
against the pre-built nr database using diamond blastx,
specifying the parameter -f 100 to output alignments in
DAA format. Finally, the meganizer tool, daa-meganizer,
was applied to the DAA file for taxonomic binning
based on the SILVA taxonomy mapping file obtained
from https://software-ab.informatik.uni-tuebingen.de/
download/megan6/welcome.html. Relative abundance was
also calculated using the number of aligned reads output
by DIAMOND.

phyloFlash v2.0 (25): Since phyloFlash offers two tools
for rRNA reads extraction (BBMap or SortMeRNA) and
full-length sequence reconstruction (SPAdes or EMIRGE),
we tested several associations between these tools. Default
tools (BBMap + SPAdes) were used to produce phyloFlash
(BS) results. PhyloFlash was also run using SortMeRNA
and EMIRGE (phyloFlash (SE)) or using BBMap and
EMIRGE (phyloFlash (BE)). For all conditions, cluster
identity was set at 100%, the maximum length of reads was
300 bp and the taxonomic classification was set at genus and
species level. Output from SPAdes and EMIRGE were writ-
ten in Fasta. Abundance estimates and summary statistics
were reported in a standalone Html file. All reconstructed
sequences were filtered using bbduk.sh (BBTools v37.62) to
discard sequences below 800 bp. For taxonomic affiliation,
phyloFlash classified the last common ancestor (LCA) con-
sensus using the SILVA taxonomy and species-level classifi-
cation was chosen.

RiboTaxa was run on raw metagenomics reads using
default parameters except for the following: (MOCK: -
max_read_length = 300, -insert_mean = 192, -insert_stddev
= 98; synthetic: -max_read_length = 250, -insert_-mean =
185, -insert_stddev = 90), which exclusively depend on the
sequencing length of the input datasets.

Evaluation of RiboTaxa on real datasets

Metagenomics and 16S gene capture by hybridization
are two well-adapted techniques to target the phyloge-
netic 16S marker gene. For RiboTaxa evaluation, metage-
nomics datasets (paired-end) as well as 16S gene cap-
ture by hybridization datasets (paired-end) from different
environments including soil, ocean and human gut (Ta-
ble 1) were downloaded from NCBI SRA using NCBI
SRA Toolkit_v2.9.1 (https://www.ncbi.nlm.nih.gov/sra) as
described earlier. The aim was to evaluate the versatil-
ity of RiboTaxa on different environments and on differ-
ent techniques. All the parameters of RiboTaxa were kept
as default except parameters associated with sequencing
length of the input data (Ocean samples: -max_read_length

= 101, -insert_mean = 121, -insert_stddev = 96; Human
gut samples: -max_read_length = 151, -insert_mean = 203,
-insert_stddev = 131; 16S gene capture by hybridization
samples: -max_read_length = 151, -insert_mean = 233, -
insert_stddev = 127).

RiboTaxa results (reconstructed sequences and tax-
onomies) for each dataset were analysed to measure any po-
tential phylogenetic signals of interest present in the recon-
structed SSU sequences that were probably missed by ini-
tial studies. For the sequence of interest, a similarity search
was conducted using blastn of NCBI BLAST + v2.11.0
(21) with default parameters against the GenBank database.
Phylogenetic analysis was performed using the pipeline phy-
logeny.fr (41). The 16S rRNA gene sequences in Fasta for-
mat were aligned with MUSCLE (42), followed by a cura-
tion step using Gblocks (43). A phylogenetic tree was re-
constructed with PhyML by using the maximum-likelihood
method (44). For each phylogenetic dataset, a percent iden-
tity matrix was also generated using Clustal Omega (45) and
we used the identity thresholds defined by (46) to determine
novel taxa, that is, 97 % for species, 94.5 % for genus, 86.5 %
for family, 82.0 % for order.

SSU rRNA gene reconstruction versus metagenome-based
approaches

To compare between SSU rRNA genes reconstruction
by RiboTaxa versus metagenome-based approaches, taxo-
nomic classification based on GTDB database (47) was also
performed using Kraken2/Bracken. For this, 10 metage-
nomics samples from real datasets (3 from octocorals, 3
from semi-supercentenarians, 4 from N160 permafrost soil)
were selected in which potentially new genus/species were
identified. The aim was to see whether GTDB-based tax-
onomy could provide precise identification of novel species
in different environments (i.e. ocean, human gut, soil)
when there are few or no available genome references. The
pipeline, struo (48), was used to build the index files of
GTDB 1202 for Kraken2 and Bracken. Kraken2 was then
run on the metagenomics samples using default parameters
to generate reports files which were then used by Bracken to
calculate relative abundances.

Performance analyses

Precision, recall, and F-measure metrics were used to eval-
uate whether the presence or absence of taxa in a microbial
community is correctly identified by a taxonomic classifier
(36). At a given taxonomic level, L, a classification is:

e True positive (TP), if that taxon is both observed and ex-
pected.

e False positive (FP), if that taxon is observed but not ex-
pected.

e False negative (FN), if a taxon is expected but not ob-
served.

Precision is defined as the ratio of the true positives (TPs)
to the sum of the TPs and the false positives (FPs)

TP

TP+ FP at taxonomic level, L

Precision =
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Table 1. Real datasets used to evaluate the versatility of RiboTaxa
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Method Reference Environment

Project (size)

# Description

Metagenomics (50) Ocean

(51) Human Gut

(52) Soil

16S gene capture by (33) Soil
hybridization

PRIJEB13222 (21.07 Gb) 20

PRINAS553191 (151.16 Gb) 62

PRINA647119 (23.04 Gb) 12

SRR 3648004 (1.2Gb) 1

Healthy E. gazella coral (3

samples) Necrotic E. gazella coral (3)
Healthy E. verrucosa coral (4)

Healthy L. sarmentosa coral

(3) Sediments (3) Seawater (4)

Young adults (mean age: 32.2 years)
(11) Young elderly (mean age = 72.5
years) (13) Centenarians (mean age:
100.4 years)

(15) Semi-supercentenarians (mean
age: 106.3 years) (23)

N10 (North-facing, 10 cm depth)

(3) N160 (North-facing, 160 cm depth)
(3) S10 (South-facing, 10 cm depth)
(3) S160 (South-facing, 160 cm depth)
(3)

Contaminated soil (1)

Recall is defined as the ratio of the TPs to the sum of the
TPs and the false negatives (FNs).

Recall = at taxonomic level, L

TP
TP + FN
The F-measure is defined as the harmonic mean of pre-
cision and recall. This metric represents a synthesis of the
performance of retrieval.

2 x Precision * Recall

F-measure = at taxonomic level, L

Precision + Recall

Precision and recall were multiplied by 100 to indicate re-
sults in percentages. Precision, recall and F-measure were
calculated at each taxonomic level.

RESULTS

Tools benchmarking to build the best performing pipeline for
16S rRINA gene reconstruction from metagenomics data

The first part of this study aimed at identifying the best tools
to achieve 16S rRNA reads filtering and 16S rRNA gene re-
construction, leading to species-level identification and rel-
ative abundancy description. For this, we used 1 246 376
pairs of Illumina sequences from a mock microbial commu-
nity (designated MOCK) (Supplementary Figure S1). After
filtering, 1 150 991 pairs of high-quality reads were kept for
downstream processing analysis.

rRNA reads extraction and nearly full-length 16S rRINA gene
reconstruction using the MOCK community

To extract SSU reads from metagenomics data of the
MOCK community, we compared the widely used general-
purpose mapper, BBMap and the rRNA-specialized tool
SortMeRNA. Even though BBMap was faster than
SortMeRNA, it filtered only 6339 pairs of SSU reads
(0.55%) in contrast with SortMeRNA which filtered 10
675 pairs of SSU reads (0.93%) from the raw metage-
nomics dataset. Then we compared the efficiency of four

reference-based targeted assemblers (Emirge amplicon.py,
Emirge.py, MATAM and MetaRib) using three input
datasets: unfiltered metagenomics reads, BBMap-filtered
reads or SortMeRNA-filtered reads (Figure 2), resulting in
12 combinations.

Emirge_amplicon.py reconstructed the highest number
of sequences, followed by MetaRib, Emirge.py and fi-
nally MATAM. Emirge_amplicon.py output 54 sequences
(375-1410 bp) from unfiltered reads, 50 sequences (497—
1495 bp) from SortMeRNA-filtered reads and 42 se-
quences (437-1457 bp) from BBMap-filtered reads (Fig-
ure 2). In all cases, more 16S rRNA sequences were recon-
structed from unfiltered reads followed by SortMeRNA-
filtered reads and BBMap-filtered reads. The highest me-
dian length (1200 bp) resulted from sequence reconstruc-
tion by Emirge_amplicon.py using SortMeRNA-filtered
reads with the longest sequence being 1495 bp. Similarly,
MATAM reconstructed longer sequences having a median
greater than 1125 bp using the three input datasets com-
pared to Emirge.py (median < 1100 bp).

The rRNA sequences of the eight less abundant microor-
ganisms of the MOCK (abundance lesser than 0.02%) were
not reconstructed by any combination of tools and hence
could not be detected. In fact, we confirmed the absence
of reads related to these microorganisms by mapping raw
reads on their 16S rRNA sequences (BBmap with default
parameters). Here, the sequencing depth was too low to
produce reads for these rare microorganisms. Henceforth,
we focused our analysis on the 20 microorganisms of the
MOCK that could be detected.

Reconstructed sequences obtained from the 12 tools
combinations were compared to the 41 unique 16S rRNA
variants originated from the 20 microbial species of the
MOCK (Figure 3). In all cases, Emirge_amplicon.py re-
ported the highest microbial (number of microorganisms
detected) and sequence (number of 16S rRNA variants de-
tected) diversities. Using SortMeR NA -filtered reads, 18 mi-
croorganisms (representing 38 variants) of the MOCK were
identified followed by unfiltered reads (16 microorganisms)
and BBMap-filtered reads (15 microorganisms). When the
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Figure 2. Sequence reconstruction by Emirge_amplicon.py, Emirge.py, MATAM and MetaRib using unfiltered metagenomics reads, BBMap-filtered reads
and SortMeRNA-filtered reads. (A) Number of SSU sequences reconstructed by each tool. (B) Length of reconstructed sequences in base pairs (bp). Black
dot inside violins represents the median length of the reconstructed sequences.

join threshold of Emirge_amplicon.py was reduced to 97%
(as in the original publication), less variants (22 vari-
ants representing 18 microorganisms) were obtained from
SortMeRNA-filtered reads. Hence, in this study, we kept
the identity threshold at 100% to target the identification
of 16S rRNA gene variants. Reconstructed sequences from
MATAM least described the MOCK with at most 9 identi-
fied species from unfiltered reads. Although, MetaRib iden-
tified less variants (31 variants) than Emirge_amplicon.py
from unfiltered reads, it was able to identify one variant
of Halogeometricum borinquense DSM 11551 and two vari-
ants of Corynebacterium glutamicum DSM 20300 which
were missed by all other combination of tools. Similarly,
the sequence of Methanoculleus marisnigri DSM 1498 was
identified only by Emirge_amplicon.py (from SortMeRNA-
filtered reads).

Thus, to maximise the number of identified microorgan-
isms (or variants) in the microbial MOCK community, we
decided to combine the two rRNA gene-targeted assem-
blers: Emirge_amplicon.py and MetaRib, to reconstruct
the SSU rRNA genes. The reconstructed rRNA sequences
obtained from Emirge_amplicon.py (using SortMeRNA-
filtered reads) and MetaRib (using unfiltered reads) were
clustered at 97% using VSEARCH. The final output re-
sulted in 53 sequences and identified the 20 microorganisms
of the mock (representing 41 variants). Most of the recon-
structed sequences showed very high identity with the ref-
erence sequences, with an identity between 98—100% (34 se-
quences) or close to 97% (15 sequences). The remaining four
sequences were relatively more distant from MOCK refer-
ences (close to 94% identity) but did not impact taxonomic
identification as they were well classified at genus level. This

result indicates that minor artificial diversity was created
during the reconstruction process of the nearly full-length
16S rRNA gene.

Taxonomic affiliation of reconstructed rRNA sequences from
the MOCK community

Next, we evaluated the efficiency of seven taxonomic clas-
sifiers commonly used: Centrifuge, Kraken2, mothur, RDP
classifier, SPINGO, BLCA and QIIME2’s Sklearn classifier.
The first input data was the 53 clustered sequences obtained
previously from Emirge_amplicon.py and MetaRib. Preci-
sion, recall and F-measure were then calculated by com-
paring the ‘expected’ classifications of the 20 detectable mi-
croorganisms of the mock community to the classifications
predicted by each taxonomic classifier using the SILVA
138.1 database (Figure 4A).

Classification using Centrifuge, Kraken2 and mothur
were limited to the genera level. Mothur and Kraken2 per-
formed better than Centrifuge with a precision of 84.6% and
71.4%, respectively, compared to 69.2% with Centrifuge.
Mothur also showed a higher sensitivity recall (55%) of
the mock community compared to Kraken2 (50%) and
Centrifuge (45%). On the other hand, RDP Classifier, SP-
INGO, BLCA and Sklearn classifier were more robust,
achieving a level higher (species level) in their classifications.
Alignment-based SPINGO and BLCA identified 11 and 5
species, respectively but were unable to infer taxa to 14 and
35 sequences, respectively which were left as “unclassified’.
Overall, Sklearn classifier distinguished itself by identifying
the 20 detectable microorganisms at genus level and 17 at
species level while RDP classifier identified only 8§ species.
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Figure 3. Reconstructed 16S rRNA genes. Reconstructed sequences are affiliated to the 16S MOCK database to identify the number of 16S gene variants
of the MOCK with a cut-off at 99% identity. The number of variants per species is indicated in ‘Reference’. Only microorganisms showing 16S gene reads
in the sequencing dataset are shown. The total number of detected variants is indicated in “Total’.

The precision score of both tools were outstanding (100%
at all taxonomic levels up to genus) while at species level,
the sensitivity recall of Sklearn classifier and RDP Classi-
fier dropped to 85% and 40%, respectively.

To further confirm the efficiency of each taxonomic clas-
sifier, the second input data was the 16S rRNA reference se-
quences originated from the 20 detectable microbial strains
(Figure 4A). Again, Sklearn classifier was the most efficient
tool. Sklearn classifier identified 20 genera and 19 species
using the 168 reference sequences of the mock community,
with a precision at 100% at each level and a sensitivity recall
of 95% at species level. The only species missed by Sklearn
classifier using 16S reference sequences of the mock popula-
tion was Pseudomonas putida, which was classified at genus
level.

High performance of Sklearn classifier was further ev-
idenced by F-measure which synthetizes the balance be-
tween recall and precision at different taxa levels (Figure
4A). Sklearn classifier had the highest score at species level,
reaching 91.9% for the reconstructed sequences, which was
not very far from the harmonic mean obtained for 16S ref-
erence sequences (97%).

Validation of benchmarked tools using a complex synthetic
community

To validate the combined approach (i.e.
Emirge_amplicon.py and MetaRib) during sequence
reconstruction, we, next, evaluated the sequence re-

construction tools (i.e. Emirge_amplicon.py, Emirge.py,
MATAM and MetaRib) on a synthetic sequencing data
of 100 microorganisms from the human gut. This complex
synthetic community was reproduced using 100 genomes
(complete genomes, scaffolds and contigs), representing 45
genera and 100 species with 16S rRNA gene abundances
varying from 0.273% to 2.789%. After filtering, 14 754
123 pairs of high-quality reads were kept for downstream
processing analysis. Considering variants (<99% identity),
a total of 347 sequences of the 16S rRNA gene from the
100 genomes were used as reference.

Nearly full-length 16S rRNA gene reconstruction using the
synthetic community

Based on the results of the MOCK, Emirge.py,
Emirge_amplicon.py and MATAM were provided with
SSU reads extracted using SortMeRNA and MetaRib was
run on unfiltered high-quality reads, trimmed and cleaned.
Emirge_amplicon.py reconstructed the highest number of
sequences (203 sequences) and Emirge.py reassembled the
least (44 sequences). To determine the number of species
represented by the reconstructed sequences, the latter were
subjected to a blastn search against the 347 16S-reference
sequences of the synthetic community and all sequence
alignments with an identity of >97% was considered as a
detected species. In this synthetic community, 44 microor-
ganisms were successfully represented by the sequences
reconstructed by the four tools. Emirge_amplicon.py
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Figure 4. Performance of taxonomic classifiers used to classify nearly full-length 16S sequences based on the number of correctly assigned taxa, precision,
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sequences obtained from Emirge_amplicon.py (SortMeRNA-filtered reads) and MetaRib (unfiltered reads). Right column: Using MOCK reference 16S
sequences. (B) Using clustered sequences obtained from Emirge_amplicon.py (SortMeRNA-filtered reads) and MetaRib (unfiltered reads).

identified 69 microorganisms, out of which, 8 species were
exclusively identified by this tool. On the other hand,
MetaRib and MATAM detected Bacteroides intestinalis,
missed by Emirge_amplicon.py. In additional to this mi-
croorganism, MetaRib also detected two more bacteria:
Oceanobacillus massiliensis and Roseburia intestinalis, both
missed by MATAM and Emirge_amplicon.py.

Thus, these results confirmed that using a combined ap-
proach (i.e. Emirge_amplicon.py and MetaRib) during se-
quence reconstruction has the advantage of more accurately
describing the microbial community. Hence, after clus-
tering the reconstructed rRNA sequences obtained from
Emirge_amplicon.py (using SortMeRNA-filtered reads)
and MetaRib (using unfiltered reads) at 97%, it resulted in a
total of 233 sequences, representing 72 species (>97% iden-
tity) of this synthetic community.

Taxonomic affiliation of reconstructed rRINA sequences from
the synthetic community

To validate the best performance of QIIME2’s Sklearn clas-
sifier during microbial profiling, we evaluated the efficiency
of previously used taxonomic classifiers (i.e. Centrifuge,
Kraken2, mothur, RDP classifier, SPINGO, BLCA and QI-
IME2’s Sklearn classifier). The input data was the 233 clus-
tered sequences obtained from Emirge_amplicon.py and

MetaRib. Precision, recall and F-measure were then calcu-
lated at different taxa levels: from class to species (Figure
4B).

Taxonomic classification using Centrifuge, Kraken2 and
mothur again stopped at genus level. This time, the per-
formance of Kraken2 (precision = 86.8%) was slightly bet-
ter than mothur (precision = 84.6%) and Centrifuge (preci-
sion = 79.5%), despite, both Kraken2 and mothur identified
a total of 33 genera. On the other hand, BLCA, SPINGO,
RDP and Sklearn classifier reached the species level classi-
fication. While BLCA and SPINGO displayed a precision
of 91.6% and 76.6%, respectively, RDP and Sklearn classi-
fier were 100% precise at inferring taxa. Moreover, the F-
measure of Sklearn classifier was the highest (83.7%) com-
pared to all taxonomic classifiers, confirming the best per-
formance of Sklearn classifier for microbial profiling.

Compilation of RiboTaxa

After evaluating all the above tools, the best perform-
ing tools were compiled to build a pipeline enabling ef-
ficient and accurate taxonomic identification of any mi-
crobial community starting from raw shotgun metage-
nomics data. BBTools and FastQC were integrated to
perform quality control. For SSU sequence reconstruc-
tion, Emirge_amplicon.py (giving the best results as de-
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scribed previously) was chosen. For optimal results,
Emirge_amplicon.py was fed with SSU reads filtered by
SortMeRNA. During tools comparison, MetaRib also per-
formed outstandingly, identifying two microorganisms of
the mock community, left out by Emirge_amplicon.py.
Thus, to optimise SSU sequence reconstruction, MetaRib
was also included. Complementarily, MetaRib was fed with
unfiltered reads as this tool included a dereplication step
during iteration and could handle large datasets in low com-
putational time. To calculate the relative abundance, un-
filtered high-quality reads were mapped onto the recon-
structed sequences using BBMap (BBTools). Prior to taxo-
nomic affiliation, the reconstructed rRNA gene sequences
obtained from MetaRib and EMIRGE were clustered at
97% using VSEARCH and abundances from BBmap were
summed up for sequences sharing the same cluster. Fi-
nally, Sklearn classifier (QIIME 2) was used to infer taxa.
Throughout the study, the default database used for Ribo-
Taxa was SILVA SSU 138.1.

RiboTaxa was then compared to existing taxonomic
classifiers such as Centrifuge, Kraken2, METAXA2,
phyloFlash, SPINGO, BLCA and MEGANG to evaluate
their sensitivity, specificity and computation time during
taxonomic classification using then MOCK and synthetic
community.

Comparison of RiboTaxa with other existing tools on the
MOCK dataset

Here, only the 20 detectable microorganisms were looked
for in the resulting taxonomic classification. Centrifuge,
Kraken2, MEGANG6, METAXA2, SPINGO and BLCA in-
ferred taxa directly to short Illumina reads and were la-
belled as “Without sequence reconstruction’. RiboTaxa and
phyloFlash included a step of SSU sequence assembly be-
fore microbial profiling and were labelled as “With sequence
reconstruction’ (Table 2). All performance measures were
computed at genus and species level (except for Centrifuge
and Kraken2) to compare between all classifiers. Among
classifiers ‘without sequence reconstruction’, METAXA2
performed the best at identifying the 20 genera correctly
(recall 100%) while BLCA and Centrifuge, both, yielded
the lowest recall (45%) of the microbial MOCK community
with 11 and 9 correct taxa, respectively. On the other hand,
RiboTaxa identified all the 20 genera with a recall of 100%
and phyloFlash assigned 10 or 12 taxa at genus level with
a recall of 60% (BS) and 50% (BE/SE). Direct short-length
read classification led to unexpected taxa (false positives)
(Figures 5A) while phyloFlash and RiboTaxa (‘with se-
quence reconstruction’) assigned taxa at genus and species
level without false positive classification (Figure SA), result-
ing in precision score of 100% (Table 2). Centrifuge and
Kraken2 wrongly classified 2/3 of detected genera, reach-
ing mean precision to 28% and 43% respectively, while
METAXAZ2 misclassified 1/3 of detected taxa (precision
66.7%).

Consequently, F-measure was 100% for RiboTaxa and
between 67% and 75% for PhyloFlash compared to the
‘Without sequence reconstruction’ tools where F-measure
was affected by the false positive classifications (Centrifuge
= 35%, Kraken2 = 56%, METAXA2 = 80%, SPINGO
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= 63%, BLCA = 42%, MEGANG6 = 55%). Moreover,
the difference between classifying short-length reads and
longer sequences was more obvious at species level. Ri-
boTaxa identified 17 species while phyloFlash assigned
10 or 12 species-level taxa using reconstructed sequences.
Among the tools that inferred taxa to short-length reads,
BLCA, MEGANG6, METAXA?2 and SPINGO managed to
reach the species level with 14, 14, 10 and 11 correctly as-
signed sequences (Figure 5A). The three microorganisms
that RiboTaxa could not affiliate as species because of
their highly similar 16S rRNA gene sequences to other
species were Pseudomonas putida, Corynebacterium glutam-
icum and Geobacter lovieyi.

Relative abundance is another major criterion to con-
sider in the analysis of microbial community diversity.
Unfortunately, BLCA and SPINGO did not output read
counts or provided relative abundance. RiboTaxa, similar
to, phyloFlash and Centrifuge can estimate its own relative
abundance. However, Bracken was used to estimate micro-
bial abundance from Kraken2’s output. For METAXAZ2,
relative abundance was calculated by dividing each taxon
count by the total number of reads classified at the species
or genus level. The estimated abundance of the correctly
assigned taxa was relatively close to the theoretical ones
with no under or over-estimation for 16S reconstruction-
based tools (Figure 6). However, false positives (Figure 6,
taxa in lighter colour) greatly impact the abundance profiles
for Centrifuge, Kraken2 and METAXA2. RiboTaxa gave
abundance profile close to the theoretical one due, in part,
to excellent precision and recall results.

Evaluation of RiboTaxa with other existing tools on the syn-
thetic human gut community

Among the different taxonomic classifiers, Centrifuge and
Kraken2 again stopped sequence affiliation at genus level
with false positives classification, impacting negatively their
respective F-measures (Kraken2 = 53.5%, Centrifuge =
47.3%) (Table 3). Moreover, despite METAXA2, SPINGO,
BLCA and MEGANG reached species-level identification,
they also produced many false positives due to short-reads
classification (Figure 5B). PhyloFlash (SE) and RiboTaxa,
which reconstructed nearly full-length SSU rRNA gene se-
quences prior to microbial classification, in turn, confirmed
that short reads lack phylogenetic signals to be assigned to
correct taxa. Both pipelines did not produce any false pos-
itive results and successfully classified sequences at genus
and species level (Figure 5B) with a precision of 100% (Ta-
ble 3). PhyloFlash (SE) reconstructed 198 SSU rRNA gene
sequences with a mean length of 1011 bp. Taxonomic af-
filiation led to an identification of 42 genera (F-measure =
96.5%) and 48 species (F-measure = 64.9%) of the synthetic
human gut community (Table 3).

Yet, this synthetic community was best described by Ri-
boTaxa. RiboTaxa reconstructed 233 SSU rRNA gene se-
quences with a mean length of 1512 bp. Microbial profil-
ing led to 212 sequences assigned to genus level, identify-
ing all the 45 genera of the synthetic human gut commu-
nity (F-measure = 100%). Furthermore, 103 sequences out
of 212 sequences classified at genus level (Figure 7A) were
assigned to a lower taxonomic level and allowed the iden-
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Figure 5. Tool performance to report genus and species diversity using high-quality metagenomics reads. (A) From the MOCK community (20 genera,
20 species). (B) From the synthetic human gut (HG) community (45 genera, 100 species). BLCA, Centrifuge, Kraken2, MEGAN6, METAXA?2 and SP-
INGO infer taxa to short reads without sequence reconstruction. PhyloFlash and RiboTaxa reconstruct nearly full-length SSU sequences before assigning

taxonomy.

Table 2. Statistics of the accuracy of different tools to describe the taxonomic composition of the MOCK community

Tools Precision (%) Recall (%) F-measure (%)
Genus Species Genus Species Genus Species
Without sequence reconstruction BLCA 40.9 42.9 45 30 42.8 323
Centrifuge? 28.1 - 45 - 34.6 -
Kraken2? 43.2 - 80 - 56.1 -
MEGANG6 55 64.3 55 45 55 52.9
METAXA2 66.7 100 100 50 80 66.7
SPINGO 66.7 81.8 60 45 63.1 58
With sequence reconstruction phyloFlash (BS) 100 100 60 60 75 75
phyloFlash (BE) 66.7 100 50 50 57.1 66.7
phyloFlash (SE) 50 100 50 50 50 66.7
RiboTaxa 100 100 100 85 100 91.9

4Taxonomic classification stopped at genus level.

tification of 72 species with an F-measure of 83.7% (Ta-
ble 3) and a species abundance relatively close to the the-
oretical profile (Figure 7B). Some of the species that could
not be identified beyond genus level included closely related
species of Escherichia and Clostridium which could not be
differentiated by RiboTaxa (Supplementary Table S1) due
to highly conserved 16S rRNA sequences limiting species
discrimination. Nevertheless, taxonomic profiling of simu-
lated human gut microbiota using RiboTaxa resulted in an
F-measure of 100% and 83.7% at genus level and species
level, respectively (Table 3). Few sequences stopped at fam-
ily level and more specifically to two families, i.e. Enterobac-
teriaceae and Lachnospiraceae. These sequences were sub-

jected to a blastn search against the 347 16S-reference se-
quences of the synthetic community to measure any arti-
ficial diversity that might have been produced during SSU
sequence reconstruction. The parameter HSP was set to 1
to fetch the first best match only. The sequences majority
shared an identity of >98% with the reference sequences,
implying that the reconstructed sequences belonged to the
synthetic community. It is known that, in certain cases, 16S
rRNA gene may not be a reliable predictor of genus-level
taxonomy (49).

All the tools (except BLCA and SPINGO) were
also evaluated on their capacity to describe the rela-
tive abundances of this synthetic community. While Ri-
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Figure 6. Microbial mock community profiles obtained using metagenomic classifiers and RiboTaxa. (A) At genus level. Theoretical profile represents the
relative genera abundance of the mock community. The genera identified by Centrifuge, Kraken2 and METAXA?2 that are not part of the microbial mock
community are indicated using lighter colour. (B) At species level. Theoretical profile represents the relative species abundance of the mock community.
This profile is compared with the relative abundances output by METAXA?2, phyloFlash and RiboTaxa.

Table 3. Statistics of the accuracy of different tools to describe the taxonomic composition of the synthetic human gut community

Tools Precision (%) Recall (%) F-measure (%)
Genus Species Genus Species Genus Species

BLCA 70.2 63.7 73.3 37 71.7 46.8
Centrifuge? 322 - 88.9 - 47.3 -
Kraken2? 39.2 - 84.4 - 53.5 -
MEGANG6 76 76.4 84.4 42 80 54.2
METAXA2 72.4 64.5 93.3 31 81.6 41.9
SPINGO 59.1 59.3 64.4 35 61.7 44.0
phyloFlash (SE) 100 100 93.3 48 96.5 64.9
RiboTaxa 100 100 100 72 100 83.7

4Taxonomic classification stopped at genus level.

boTaxa and phyloFlash (SE) have described the abun-
dances relatively close to the theoretical ones, tools like
Kraken2 and MEGANG6 have underestimated or overes-
timated the abundances of some microorganisms (Fig-
ure 7). For example, Kraken2 overestimated the abun-
dances of Klebsiella, Streptococcus and Escherichia. Ru-
minococcus sp., Thermoanaerobacterium xylanolyticum,
Corynebacterium halotolerans and Ruminococcus albus
were all highly underestimated by MEGANG, detecting
them below 0.05% while their theoretical abundances
were >1%.

Computational time comparison

16S-based metagenome classification using all the above
tools was carried out on: i86linux32, 4.0GB RAM x 8 cores
(32.8GB total).

Computational time for each tool is summarised in Fig-
ure 8. All the tools except RiboTaxa were run on high-
quality metagenomic reads, trimmed and cleaned using
BBTools while RiboTaxa was run on raw metagenomics
reads as the latter performs its own quality control step
using BBTools. Using the MOCK (Figure 8A) and the
synthetic human gut communities (Figure 8B), RiboTaxa
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Figure 7. Tool performance to report correct taxonomic diversity of the synthetic human gut community from high-quality metagenomics reads. The-
oretical abundance column represents the theoretical profile of the synthetic community. (A) At genus level, RiboTaxa, Kraken2/Bracken, Centrifuge,
METAXA2, PhyloFlash(SE) and MEGANG6 were used for genus classification and relative abundance calculations. (B) At species level. RiboTaxa,
METAXAZ2, PhyloFlash(SE) and MEGANG6 were used for species-level classification and relative abundance calculations. Detection of microorganisms are
represented by dots. The colour and size of the dots vary according to the relative abundance calculated by the different tools. Undetected microorganisms

by the different tools are denoted by the absence of dots.

completed taxonomic assignment in 18 min 03 s and 26
min 08 s, respectively. Based on short k-mer approach,
Kraken2 and Centrifuge were the fastest to infer taxa in
both communities. On the other hand, alignment-based
BLCA and DIAMOND-MEGAN took more than 1 hour
to classify sequences of the synthetic community. More-
over, METAXA2, which uses HMM, was the most time-
consuming and taxonomic classification lasted for 1hr45
min on the MOCK and 2 h 13 min on the synthetic com-
munity.

Evaluation of RiboTaxa on real datasets

In addition to providing a fine taxonomic resolution down
to the species level, RiboTaxa has proved to be a versatile

tool with its ability to analyse metagenomics data from dif-
ferent environments including soil, ocean and human gut.
In a study focused on corals’ health involving 20 metage-
nomics samples (13 corals, 3 sediments and 4 seawater) (50),
affiliation of prokaryotes was limited to the family level with
Endozoicomonadaceae characterising healthy octocoral tis-
sue. Using RiboTaxa, we identified that healthy octocoral
harbors a total of 19 prokaryotic species, whereby E. gazella
hosted 7, E. verrucosa 4 and L. sarmentosa 8 species. In
comparison, 204, 67 and 22 species were detected in sea-
water, necrotic E. gazella tissue, and sediments respectively
(Figure 9A; Supplementary Figure S2). Furthermore, Ribo-
Taxa highlighted two species of uncultured Endozoicomonas
which were dominant in the healthy tissue of all three oc-
tocorals species (average = 67.6%). The phylogenetic anal-
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Figure 8. Observed computational time of taxonomic profilers. (A) Required time for taxonomic profiling by Centrifuge, Kraken2, METAXAZ2, phyloFlash
BBmap-SPAdes (BS), BBMap-EMIRGE (BE) and SortMeRNA-EMIRGE (SE), and RiboTaxa on the MOCK communtity. (B) Required time for taxo-
nomic profiling by BLCA, Centrifuge, DIAMOND-MEGAN, Kraken2, METAXAZ2, phyloFlash SortMeRNA-EMIRGE (SE), RiboTaxa and, SPINGO

on the synthetic human gut communtity.

ysis coupled with percent identity matrix revealed that both
species belonged to new genus (<95% similarity) despite be-
ing relatively close to the genus Endozoicomonas (Supple-
mentary Figure S3; Table S2). Other very close unclassified
sequences have been retrieved by similarity search in Gen-
bank database confirming the robustness of our approach,
but no genome seems to be available for these new species
which opens new research perspectives on corals’ health.
Applied to metagenomics data from a study on hu-
man gut and extreme longevity (51), RiboTaxa revealed
a richer microbial diversity with 1135, 1495, 1756 and
2621 species in young adults, young elderly, centenari-
ans and semi-supercentenarians, respectively (Figure 9B;
Supplementary Figure S4). While the authors compared
the relative abundance of different species between the
four groups, we focused on the presence of specific mi-
crobial signatures in the different groups. Interestingly,
among the different archaeal species identified, RiboTaxa
detected the presence of an uncultured archaeon in 4 semi-
supercentenarians. Phylogenetic analysis coupled with iden-
tity matrix revealed that the uncultured archaeon shared
an identity <95% with Methanosphaera species highlight-
ing a probable new archaeal genus not already described.
By similarity search in Genbank database, we detected an
uncultured clone, HM 573433, initially isolated from fae-
ces showing 99.68% identity but no available genome has
been detected reinforcing the interest in exploring this new
archaeal genus (Supplementary Figure S5; Table S2). Sec-
ondly, the genus Enorma, of the Coriobacteriaceae fam-
ily, that has important functions such as the conversion

of bile salts and steroids and the activation of dietary
polyphenols, was only present in the centenarian and semi-
supercentenarian groups. RiboTaxa allowed the identifica-
tion of 3 new species belonging to this genus that could be
species of interest participating in longevity process (Sup-
plementary Figure S6; Table S2).

We also applied RiboTaxa on metagenomics data
produced from underexplored permafrost mid-latitudinal
alpine regions (52). Our results demonstrated that the rich-
ness was highest for the N160 (permafrost) soils (Supple-
mentary Figure S7) with 97 detected species (Figure 9C)
confirming the observed highest alpha diversity of the pre-
dicted protein-coding genes in N160 soils. We detected the
presence of different species from Lysobacter and Aren-
imonas genera but also unknown species of Xanthomon-
adaceae family in permafrost N160 soils only. Phylogenetic
analysis coupled with identity matrix revealed a new species
belonging to the genus Thermomonas and 4 new species be-
longing to three new genera of the Xanthomonadaceae fam-
ily (Supplementary Figure S8; Table S2).

The new 16S rRNA gene capture by hybridization (33) al-
lows a significant enrichment of the 16S rRNA biomarker,
providing a more accurate representation of microbial com-
munities including the detection of rare microorganisms
(<0.1%). RiboTaxa detected 495 species from the explored
soil sample instead of 354 previously detected. Moreover,
23 archaeal species, belonging to the phylum Thaumar-
chaeota (initially known as mesophilic Crenarchaeota) were
the dominant archaeal group found in the soil sample with
a relative abundance of 0.25%. The two most abundant bac-
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Figure 9. Evaluation of RiboTaxa on metagenomics datasets from different environments. Number of species identified in: (A) octocorals samples (50).

(B) Human gut samples (51). (C) Soil samples (52).

terial species detected by RiboTaxa were unclassified Lutei-
monas and unclassified Sphingomonas with a relative abun-
dance of 13.3% and 8.9%, respectively. Phylogenetic analy-
sis coupled with identity matrix revealed that the two new
species belong to the genus Luteimonas (Supplementary
Figure S9; Table S2) and to the genus Tardibacter (identity
= 96.33%) instead of Sphingomonas (Supplementary Fig-
ure S10; Table S2), respectively. The initial misclassification
into the genus Sphingomonas is due to the lack of Tardibac-
ter sequences in SILVA 138.1 database.

SSU rRNA gene reconstruction versus metagenome-based
approaches

Microbial profiling performed by Kraken2 using the GTDB
database (47) revealed a high alpha diversity in each sam-
ple at all taxonomic levels. In healthy corals, an aver-
age of 12 949 species were detected compared to 20 321
species in necrotic corals. Due to this high microbial diver-
sity, Bracken identified the most abundance family, Endo-
zoicomonadaceae, at only 1.2%. Within this family, Kraken2
detected the genera Endozoicomonas (33 assigned reads),
Parendozoicomonas (2 assigned reads) and Kistimonas (1 as-
signed read). However, unlike RiboTaxa, Kraken2 could
not detect new genera within the Endozoicomonadaceae
family consisting of two new species revealed by Ribo-
Taxa. This is because Kraken only classifies the reads
from genomes present in the reference database. Thus,
lack of reference genomes in the GTDB database, partic-
ularly, for less explored microbial communities, hinders the
identification of novel species (53). Similarly, in the semi-

supercentenarian’s samples, only bacterial diversity was de-
tected with an average of 18 266 species compared to Rib-
oTaxa, which identified the presence of an uncultured ar-
chaeon among other archaea detected. Finally, RiboTaxa
revealed a microbial richness of 97 species in N160 per-
mafrost soil samples which Kraken2 detected an average of
23 191 species in the same samples. This high alpha diver-
sity provided by Kraken2 could be the result of short-reads
misclassification conducting to diversity overestimation as
demonstrated previously.

DISCUSSION

Shotgun metagenomics sequencing is a powerful method
to characterise microbiota. Metagenomic classifiers have
been developed to taxonomically classify metagenomics
data and estimate taxa abundance profiles (54). Algorith-
mic approaches also ensure that classification speeds are
fast enough to exploit very large numbers of sequencing
reads. In the present study, we compared bioinformatics
tools to exploit SSU reads for microbial community profil-
ing from metagenomics data. A major advantage of rRNA
gene analysis is that databases contain genes from hundreds
of thousands species, making them far more comprehen-
sive than current genome databases even if we observe con-
tinuous exponential genome accumulation. Furthermore,
unknown microorganisms could be identified even for rare
taxa using nearly full-length phylogenetic marker and po-
sitioned in phylogenic tree (33). Thus, phylogenetic ap-
proaches are designed to be able to detect distant homol-
ogy, enabling the characterization of previously unidenti-
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fied organisms. However, high conservation of 16S rRNA
sequence cannot discriminate all species as it is the case for
certain genera, or even in some cases, 16S rRNA gene may
not be a reliable predictor of genus-level taxonomy (49). We
observed this latter situation for a few microorganisms from
Enterobacteriaceae and Lachnospiraceae families. To over-
come these issues and reach strain-level identification, com-
plete rDNA operon (which could still miss some proportion
of bacterial species on account of unlinked rRNA genes)
(55) or other marker databases for prokaryotic (56) and/or
eukaryotes profiling (57) should be used as references. Low
biomass microbiota, rare and unknown taxa characteriza-
tions are other challenges in metagenomics sample explo-
ration. Hybridization capture targeting SSU rRNA genes
overcomes such difficulties (33,58) and RiboTaxa has been
designed and optimized for 16S/18S sequencing data analy-
sis as well as other universal markers targeted by hybridiza-
tion for microbial structure characterization (59).

Another difficulty of using shotgun DNA for rRNA gene
analyses is the identification of SSU rRNA fragments in
large sequence datasets (60). In this study, we extracted
rRNA reads using SortMeRNA, an RNA-specialized
tool and BBMap, a general-purpose read mapper. Sort-
MeRNA performed better than BBMap in extracting reads
that could be assembled using different tools such as
EMIRGE (Emirge.py and Emirge_amplicon.py), MATAM
and MetaRib. Nevertheless, tool selection was not based
on the highest number of reconstructed sequences. Using
SortMeRNA-filtered reads, Emirge_amplicon.py identified
the highest number of microbial species and proved to be
the most robust tool. In parallel, MetaRib which uses the
same algorithm as EMIRGE but with a deduplication and
subsampling step during sequence reconstruction, identi-
fied two additional microorganisms using unfiltered reads,
which were missed by Emirge_amplicon.py. Thus, combin-
ing these two tools for SSU reconstruction led a greater pop-
ulation characterisation. The efficiency of this combined ap-
proach was first demonstrated using the MOCK where the
sequences of the 20 detectable microorganisms were suc-
cessfully reconstructed and secondly, using the synthetic hu-
man gut community, the reconstructed sequences allowed
the identification of the 45 genera present in that com-
munity. Moreover, to target the identification of intrage-
nomic variations between 16S gene copies (99% identity),
SSU sequence reconstruction was optimised by using a joint
threshold of 100%. We thus, provided evidence that it is pos-
sible to detect divergent copies of the 16S gene that exist
within the same genome. According to Johnson et al (61),
99% sequence similarity can be an adequate threshold for
clustering sequences originating from the same genome, re-
flecting polymorphisms in one or more 16S gene copies to
differentiate between strains of the same species. Simulta-
neously, to ensure that the reconstructed sequence showed
no or little artificial diversity from the real sequences, 16S
reference sequences served as control. As we did not detect
chimeric sequences during 16S rRNA gene reconstruction,
we did not include chimera detection but such tool could be
used (62). However, it is possible that chimeric database se-
quences could carry over into SSU reconstructions, if reads
map across the full length of the chimera as indicated by
EMIRGE developers (27).
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This study emphasised on targeted-sequence reconstruc-
tion to maximise taxonomic assignment at species level.
Comparing taxonomic profiling using short-length se-
quences and reconstructed SSU sequences proved that in-
ferring taxa directly to short-length Illumina reads resulted
in a high rate of false positives while reconstructed se-
quences were correctly assigned, though it required an as-
sembly step prior to classification. As closely related species
share very similar or identical genome segments, short reads
often map to multiple species in the reference dataset re-
straining classification efficiency (18). This limitation was
depicted by BLCA and DIAMOND-MEGANG6, which rely
on sequence alignment based on matched database se-
quences. Despite classifying sequences at species level, they
failed to consider the differing degrees of similarity between
certain query and the database hit sequences (12) and either
stopped at genus level or produced false-positives. Kraken2
and SPINGO, which used the exact k-mer approach and
calculated the lowest common ancestor (LCA), were very
rapid at classifying short reads. However, according to Tovo
et al (63), the choice of the length k highly influences the
classification and default value (kK = 35) is frequently used
because it is difficult or impossible to determine the opti-
mal value for unknown environments. METAXA?2 achieved
the highest recall of the microbial community at genus level
but also produced false sequence classifications, jeopardis-
ing the precision of the taxonomic profiling. Another study
demonstrated that Centrifuge, Kraken2 and KrakenUniq
yielded many more taxa than the number included in the
test datasets (64). Thus, where reads are classified individ-
ually, multiple reference sequences can have identical levels
of similarity, leading to a high number of false positives. On
the contrary, using nearly full-length SSU sequences pro-
duced by phyloFlash and RiboTaxa resulted in correct taxa
assignment of the mock community and yielded no false-
positive results. We demonstrated that RiboTaxa has as-
signed the highest number of species-level taxa compared
to other tools and identified even low abundant taxa.

The application of RiboTaxa to both the MOCK and
synthetic human gut communities allowed the identification
of all the microorganisms in each community, providing ev-
idence that longer sequences contain stronger phylogenetic
signals and yield higher precision for taxonomic profiling
than short-read analysis (46). Moreover, nearly full-length
16S sequences contain a wealth of information that allows
their accurate classification at appropriate taxonomic ranks,
i.e. at a high rank when the sequences are divergent or highly
novel and at a low rank when closely related organisms are
present in the database (65). However, very closely related
species evolve slowly and differ very little between their 16S
rRNA genes (66). Consequently, due to their nearly identi-
cal 16S rRNA gene sequences, RiboTaxa could not assign
certain sequences at species level and stopped at genus level
classification. Although, 16S rRNA sequences provide real
and significant advantages compared to targeted variable
regions, it will never provide a perfect representation of bac-
terial species diversity (46). To improve this, the 16S riboso-
mal RNA gene was coupled with the 16S-23S rRNA inter-
nal transcribed spacer region sequences to characterize Es-
cherichia species and to identify new strains (67). Likewise,
combined with the 16S rRNA gene, the 16S-23S rDNA ITS
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region can improve the description of microbial diversity
within and across group.

We used the SILVA SSU 138.1 NR99 database for tax-
onomic classification as it contains 510 508 SSU rRNA
gene sequences from Bacteria, Archaea and Eukaryota do-
mains (https://www.arb-silva.de/). However, RiboTaxa can
also use other existing rRNA sequence databases such as
the Ribosomal Database Project (RDP) (37) or Greengenes
(68) or genome-based databases such as the GTDB (47).
RiboTaxa could also classify eukaryotic organisms using
18S rRNA gene as phylogenetic marker. CCMetagen (64),
which has recently been developed, uses the read mapping
ConClave sorting scheme, implemented in the KMA soft-
ware (69) to include microbial eukaryotes in metagenomics
data exploration. In the same way, MetaPhlAn2 indexes
several different gene families in its database to identify taxa
from other microbial kingdoms (70).

Abundance estimation performance of different profilers
varies considerably even on the same benchmark datasets
(54). This apparently high-performance variation largely
arises because the profilers report either one of two fun-
damentally different types of relative abundances: sequence
abundance or taxonomic abundance (71). Furthermore,
false positives and false negatives impact microbial struc-
ture characterization and by consequence true abundancies.
As RiboTaxa shows high precision and recall, abundance
evaluation appears close to true abundancies even if it is
impossible to obtain exact profile. The presence of multi-
ple copies of rRNA gene makes the community abundance
data distorted and gene copy normalization should be nec-
essary for correction (72). However, recent studies indicate
that 16S rRNA gene copy number normalization does not
provide more reliable conclusions in meta-taxonomic sur-
veys (73,74), therefore, we choose not to use gene copy
number correction for RiboTaxa. In all cases, cautions
should be exercised when interpreting abundancies results.
The use of single-copy marker genes like for MetaPhlan
(75), mOTU (76) or PhyloSift (77) should, principally, make
abundance estimation more precise, although it is impos-
sible to know the copy number of a gene for a species
with an incomplete genome and, of course, for unknown
genomes. Many species of archaea and bacteria are poly-
ploid and can contain more than ten copies of their chro-
mosome that influence abundancies as gene copy number in
haploid genome (78). Unknown microbial genomes/taxa,
missing ploidy information, gene copy number and misclas-
sification of reads from conserved regions across different
species render the conversion very challenging, if not im-
possible (71). Expanded isolate genome availability is es-
sential to improve detection capabilities as demonstrated
recently by MetaPhlAn3 (79). However, it is still challeng-
ing to precisely analyze environmental samples using ap-
proaches based on genome databases, as most reference
databases are mostly based on human-associated microor-
ganisms (80).

The uniqueness of RiboTaxa is the benchmarking of
tools and metrics optimization at each step, from quality
control to taxonomic classification. The mock communities
also proved to be integral for parameter optimization, and
the accuracy of most taxonomic assignment was notably
controlled for sequence artefacts. Thus, users can apply de-

fault optimized parameters on their datasets coming from
any environment except for the sequence reconstruction pa-
rameters, —-max_read_length, —insert_mean, —insert_stddev,
which exclusively depend on the sequencing length of the
input datasets. Run time is another recurring challenge for
taxonomic classifiers. RiboTaxa is not as fast as short-
read classifiers (i.e. Kraken2, Centrifuge). Indeed, the com-
bined approach (EMIRGE-METARIB) during rRNA se-
quence reconstruction is responsible for this moderately
high but reasonable computational time. However, it also
allows to reach a higher precision of taxonomic assignments
compared to fast short-read analysis which may assign se-
quences to wrong taxa (false positives). Thus, the user may
need to choose between taxonomic accuracy and speed.

The efficiency of RiboTaxa was finally demonstrated us-
ing real datasets obtained from previous studies. In addi-
tion to providing a fine taxonomic resolution down to the
species level, RiboTaxa has proved to be a versatile tool
with its ability to analyse data from different environments
including ocean, soil and human gut revealing novelties
not detected by current approaches. Metagenome-based ap-
proaches were also surpassed by the dynamic approach of
RiboTaxa. In fact, lack of reference genomes in the GTBD
database, particularly, for less explored microbial communi-
ties, hinders the identification of novel species (53) while 16S
rRNA genes have the advantage of more accurately identi-
fying distinct microorganisms while reflecting real commu-
nity richness (81). In octocoral samples, phylogenetic anal-
ysis of RiboTaxa derived sequences allowed the identifica-
tion of a new genera within the Endozoicomonadaceae fam-
ily consisting of two new species whose abundances are pos-
itively correlated with coral health, opening new perspec-
tives to a better understanding of beneficial microbial inter-
actions and coral preservation (82). It will be interesting to
access genome information for these bacteria that are not
currently available to decipher positive cross talks in coral
holobiont. Similarly, we gave examples of specific signatures
detected in human gut microbiota in a longevity study. We
identified new species that could be of particular interest
for health or well-being and potentially used as probiotics.
However, precise characterization of these species through
isolation and/or genome reconstruction is needed to val-
idate such applications as recently described through new
metabolic pathways discovery for the maintenance of in-
testinal homeostasis in centenarians (83). In the same way,
specific microbial signatures in permafrost soils have been
revealed using RiboTaxa. For instance, within the family
Xanthomonadaceae, 4 novel species belonging to three new
genera have been discovered. Fine characterization of these
bacteria could also help in microbial adaptive process de-
scription in extreme environments and their evolution in the
context of global change (84).

Throughout this study, we supported the identification of
a potentially new genus or species with an alignment of >
97% with sequences from GenBank annotated as ‘uncul-
tured’ bacteria from corresponding environment. We can-
not exclude that a part of this diversity originates from
artificial diversity created in silico during full-length se-
quence reconstruction even though intragenomic 16S gene
sequence variation can be a valuable method to provide
accurate representation of bacterial species (61). As in-
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dicated by EMIRGE developers, occasional presence of
small indel errors in the reconstructed sequence could occur
but in practice, these rare indels have little effect on taxo-
nomic classification. Accuracy of 16S sequence reconstruc-
tion can be controlled as recently demonstrated by Marre
et al (85). The authors designed specific primers target-
ing nearly full-length reconstructed 16S rRNA genes using
the KASpOD algorithm (86) and tested them on biologi-
cal samples through PCR experiments coupled with Sanger
sequencing.

Using RiboTaxa, we detected rare microorganisms
(<0.1%) in real datasets from different environments (soil,
ocean, human gut) and different techniques (metagenomics,
gene capture by hybridization), confirming the sensitivity
of this approach. Most microbial studies focus on domi-
nant taxa, bypassing the inexhaustible source of metabolic
functions of rare microbial taxa, also called the ‘rare bio-
sphere’ (87). Unfortunately, rare taxa detection is highly
influenced by sequencing depth and deep sequencing ren-
ders downstream processes computationally exhaustive. In
this study, we also demonstrated the ability of RiboTaxa to
process huge datasets using hybridization capture, whereby
SSU rRNA genes accounted for 55.12% of the reads in the
soil compared with shotgun sequencing, in which usually
<1% of sequences carry the biomarkers. We also revealed
microbial novelties in such datasets.

In conclusion, RiboTaxa is a user-friendly metagenomic
classifier which supports database preparation, read trim-
ming and SSU read extraction, SSU rRNA gene targeted
assembly and taxonomic profiling. This complete workflow
demonstrates high specificity and sensitivity without false
positive detection and output species relative abundance
close to reality, enabling to manage large amount of metage-
nomics and gene capture by hybridization datasets from
any environment. RiboTaxa could efficiently reveal micro-
bial novelties not detected by current approaches as well as,
nearly full-length 16S sequences could potentially be con-
nected to metagenome-assembled genomes (MAGs) to im-
prove linking between taxonomy and metabolic functions
(88).
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