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ARTICLE

Mining the equine gut metagenome:
poorly-characterized taxa associated with
cardiovascular fitness in endurance athletes
Núria Mach 1,2✉, Cédric Midoux 3,4,5, Sébastien Leclercq 6, Samuel Pennarun7, Laurence Le Moyec8,9,

Olivier Rué3,4, Céline Robert1,10, Guillaume Sallé6,11 & Eric Barrey1,11

Emerging evidence indicates that the gut microbiome contributes to endurance exercise

performance. Still, the extent of its functional and metabolic potential remains unknown.

Using elite endurance horses as a model system for exercise responsiveness, we built an

integrated horse gut gene catalog comprising ~25 million unique genes and 372

metagenome-assembled genomes. This catalog represents 4179 genera spanning 95 phyla

and functional capacities primed to exploit energy from dietary, microbial, and host resour-

ces. The holo-omics approach shows that gut microbiomes enriched in Lachnospiraceae taxa

are negatively associated with cardiovascular capacity. Conversely, more complex and

functionally diverse microbiomes are associated with higher glucose concentrations and

reduced accumulation of long-chain acylcarnitines and non-esterified fatty acids in plasma,

suggesting increased ß-oxidation capacity in the mitochondria. In line with this hypothesis,

more fit athletes show upregulation of mitochondrial-related genes involved in energy

metabolism, biogenesis, and Ca2+ cytosolic transport, all of which are necessary to improve

aerobic work power, spare glycogen usage, and enhance cardiovascular capacity. The results

identify an associative link between endurance performance and gut microbiome composition

and gene function, laying the basis for nutritional interventions that could benefit horse

athletes.
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Endurance athletes undergo prolonged cardiovascular exer-
cise and withstand physiological stress that disrupts the
body’s homeostasis. This, in turn, overwhelms organs and

the system’s normal function1,2. The ability to run for long dis-
tances at high speed is an uncommon feat for land mammals.
Through years of selective breeding for athletic performance and
tailored training practices, Arabian horses have gained built-in
biological mechanisms to compete at distances of up to 160 km in
a single day, an effort comparable to a human marathon or ultra-
marathon runners3. Like humans4, these equine athletes display
well-adapted physiological abilities, including processing large
volumes of oxygen required for aerobic metabolism and markedly
larger hearts than those less physically active. Unique to horses is
their quadrupedal nature of locomotion, the coupling of
respiration to stride frequency, and the pronounced increase in
pulmonary artery pressure. These equine-specific features place
different physiologic loads on the heart during endurance than
those observed in humans4.

Endurance exercise performance primarily depends on cardi-
ovascular fitness, exercise economy, and the ability to sustain
both the metabolic and thermoregulatory demands of such
activity4,5 without the accumulation of exponential levels of blood
lactate or skeletal muscle fatigue6–8. Athletes with the greatest
improved cardiovascular fitness and fatigue resistance often
succeed in competitions4,9,10.

Undoubtedly, endurance exercise performance entails complex
multifactorial processes whose mechanisms are still not fully
understood. New evidence has shown that the gut microbiome
and its associated metabolites can act locally in the intestine or
accumulate in different body fluids11 that impact host athletic
performance during endurance racing12,13. Such gut microbiome-
derived metabolites include short-chain fatty acids, dimethyl
sulfone, trimethylamine oxide, indoles, tryptamine, oligo-
saccharides, peptidoglycans, and secondary bile acids14,15, all of
which affect host health16. Within the context of exercise, the gut
microbiome metabolites support multiple physiological strands,
e.g., energy metabolism, hydration, redox reactions, and immune
responses, that can affect fatigue and stress perception2,15,17–20.
For example, Veillonella atypica likely enhances athletic endur-
ance performance via the utilization of host lactate and the
production of propionate12,13. Beyond microbial-derived meta-
bolites, changes in the microbial composition and increased
diversity correlate with improved performance and cardior-
espiratory fitness in marathon runners regardless of sex, age, body
mass index, and diet21. Increases of the Firmicutes-Bacteroidetes
ratio22, or depletion in Eubacterium spp.23 enhanced the cardi-
ovascular capacity of athletes, as assessed by the maximum oxy-
gen consumption.

Delineating of the relationships between the gut microbiome
and endurance performance is in its infancy in humans, and it is
hampered by the appropriate control of known confounding
factors (such as diet, training loads, medications, occurring ill-
nesses, environment, and genetic background). In this respect,
Arabian horses emerge as a suitable in vivo model for studying
the microbiome adaptations in response to endurance exercise.
Because of apparent differences in anatomy—e.g., the horse
cecum is large relative to the total gastrointestinal tract—and
physiology, the relevance, and translation of the observations
made in horses to human dietary applications may not be
straightforward. However, the natural aptitude of Arabian horses
for athletic performance, and the homogeneity of their genetic
and environmental backgrounds, offer a more tractable system.
The interdependence of exercise performance and gut microbiota
in horses is underscored by several lines of evidence19,20,24–27,
although the range and extent of this interplay are mainly
unknown. Recent findings suggest that gut microbial metabolites

in endurance horses, e.g., acetate, valerate, dimethyl sulfone, tri-
methylamine oxide, formate, and secondary bile acids coupled
with circulating free fatty acids regulate mitochondrial function
by preventing hypoglycemia25, which is the limiting factor for
fatigue onset and, thus, athletic performance. Despite these
findings, if and how gut microbiome functions are responsible for
better adaptations to resist fatigue and succeed in athletic per-
formances are unresolved.

To address this knowledge gap, we have built an extensive gene
catalog of the gut microbiome in elite endurance horses. This
expands the current representation of the equine gut microbiome
with more than 25 million non-redundant genes identified and
369 new metagenome-assembled genomes (MAGs). Moreover,
holo-omics data integration from the host and microbiome
domains show that gut microbiome composition, functions, and
mitochondria activity are critical determinants for cardiovascular
fitness. Relatively poorly-described genera and their pool of
genetic resources likely regulate metabolic pathways to fine-tune
mitochondrial function and enhance cardiovascular capacity. On
the contrary, microbial communities with reduced diversity but a
higher abundance of core taxa from the Lachnospiraceae family
are associated with poorer performance.

Results
Building a horse gut microbiome gene catalog and MAG
repertoire. We constructed a microbial gene catalog from the
feces of 11 highly trained endurance horses (Supplementary
Data 1). After quality filtering and host sequence decontamina-
tion, 1124 million high-quality paired reads were available, with
an average sequencing depth per sample of 93–107 million paired
reads, similar to that used for the construction of the chicken28

and bovine29 gut gene catalogs (Supplementary Data 2). These
data were de novo assembled (total assembly size of 21.68 Gb) to
build a non-redundant gene catalog of 25,250,066 genes with an
average length of 618 bp (Supplementary Note, Supplementary
Data 2, Supplementary Fig. 1a–e). Individual horses harbored
around half of these genes (n= 11,809,713; Fig. 1a). The core
group of genes present in all individuals consisted of <7.2% of the
overall microbial gene pool (n= 1,805,693; Fig. 1b). Yet, these
core genes showed highly conserved abundance rank structure
across individuals, representing 29.7 to 38.4% of the overall
microbiome abundance. Only 22.5% (n= 922,362) of the recently
published horse gut microbiome gene catalog30 overlapped with
our gene catalog, indicating that the functional potential of gut
microbiomes in horses is vast and currently under-sampled.

Taxonomic annotation of the microbial gene catalog was
implemented with Kaiju31 using a greedy mode and the NCBI
nr_euk reference database. While 39% of the gene sequences were
unclassified, this approach annotated 61% of the gene sequences
(Fig. 1c) and revealed a diverse community of 95 phyla
encompassing 1110 families and 4179 unique genera (Supple-
mentary Note, Supplementary Data 3). More than 90% of these
genera have not been previously described in horses. Among
classified genes, bacteria (95.58% of genes, n= 2927 genera)
defined most of the assemblage in terms of abundance and
diversity, followed by a handful of eukaryotes (2.55% of genes,
n= 1081 genera), and archaea (1.20% of genes, n= 170 genera).
At the phylum level, genes related to bacterial phyla Firmicutes
(47.1%) and Bacteroidetes (21.8%) greatly outnumbered Proteo-
bacteria (6.0%), Spirochaetes (3.9%), and Actinobacteria (3.1%;
Fig. 1d). Consistent with two recent metagenomic studies in
horses30,32, Ascomycota (0.56%) and Basidiomycota (0.25%) were
among the top annotated Eukaryota phyla in the gut. At the same
time, Saccharomycetaceae represented the dominant eukaryote
family30. Many genes in the catalog pertained to the Ciliophora
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Fig. 1 Taxonomic description of an expanded catalog of gut microbial genes: core genes and taxonomic annotation. a Contribution of different sample
sources (n= 11) to gene content of the horse gut microbial gene catalog. Vertical blue bars represent the number of genes present in only one sample or
shared between pairs of samples. Horizontal orange bars in the lower panel indicate the total number of genes contained in each sample. b Flower plot
showing the number of core genes shared between all samples (n= 11) and those specific for each individual. c Visualization of the taxonomic assignment
of Illumina trimmed paired reads in a Krona plot using the software tool Kaiju. d Lollipop plot showing the gene counts identified by the Kaiju resolved at the
phylum level. Dots are colored by kingdom. e Treemap showing the taxonomic ranking of the main taxa in the gene catalog using Kaiju. The size of each
box is proportional to the number of genes assigned to each taxon. The placement of boxes is arbitrary concerning boxes within the same taxonomic rank
and does not correspond to any form of phylogeny or relatedness.
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phylum (n= ~80,000 genes), stressing the importance and central
role protozoa likely play in host function and microbiome
metabolism (Fig. 1d). The most observed protozoa were Stentor,
Stylonychia, Paramecium, Ichthyophthirius, and Tetrahymena.
The taxonomic analysis also revealed that the core group of genes
was defined by Prevotella (5.10%) and Bacteroides (2.98%), both
dominant in the gut of marathon and triathlon athletes,
respectively33, along with Ruminococcus (3.17% of genes),
Treponema (3.11%), Clostridium (2.70%), Butyrivibrio (2.42%),
and Fibrobacter (1.37%; Fig. 1e; Supplementary Data 4). All of
these fully agree with the core microbiota of horses inferred from
16S rRNA-based sequencing24,34–36.

To gain functional insights, we annotated genes via KEGG
orthologous groups (KOs) and carbohydrate-active enzymes
(CAZymes) using the non-supervised orthologous groups
(EggNOG) database. Results revealed a total of 12,060 KOs and
137 unique CAZymes, which encompassed 44% (n= 11,132,404)
and 3.38% (n= 665,235) of the gene catalog, respectively. Most
KOs had essential microbial gut functions, including metabolism
(transport and metabolism of amino acids, carbohydrates,
nucleotides, and lipids), genetic information processing, and
signaling (Supplementary Data 5). We also identified potential
functions related to the biosynthesis of secondary metabolites,
quorum sensing, and prokaryotic defense system, which help
maintain the microbiome’s structure and the host’s health
(Fig. 2a). Given the abundance and variety of carbohydrates in
the horse diet, the functionalities of glycosidic bond processing
enzymes were investigated using the CAZy database. The great
majority of these CAZYmes pertained to glycosyl-transferase
(GT, 26.8%, n= 228,878 genes) and glycoside hydrolase (GH,
64.9%, n= 554,661 genes) families, followed by carbohydrate-
binding modules (CBM; ~4%, n= 37,474 genes) and polysac-
charide lyases (PL) families (~1.6%, n= 13,801; Supplementary
Data 6). Confirming what has been recently found in horses30,
the most highly expressed CAZy family genes belonged to the
GT2, GH5, and GH9 families, which contain diverse cellulases
and hemicelluloses. Genes encoding GH13, GH57, GH77, and
CBM48 families, characterized by their starch catalytic activities,
were also highly represented in the catalog (Fig. 2b). Among
568,462 GHs and PLs genes, 53,569 (6.38%) were involved
selectively in host glycan degradation (PL8, PL12, GH18, GH20,
and GH3837; Supplementary Data 6).

We subsequently investigated the presence of antimicrobial
resistance (AMR) genes within our gene catalog. A total of 57
clusters of AMR genes representing the major antibiotic classes
were observed, including tetracycline (n= 20), aminoglycosides
(n= 14), and macrolides, lincosamides, and streptogramins
(MLS, n= 9; Fig. 2c; Supplementary Data 7). The strong
representation of Firmicutes and Bacteroidetes-associated tetra-
cyclines resistance genes (tet(W), tet(Q), tet(O), tet(40)) and MLS
resistance genes (lnu(C) and mef(A)) mirrored past observations
in horses30 and matched that found in humans38, and livestock
species such as cattle, pig, and chicken39–41. We detected an
extended-spectrum of β-lactamase (ESBL) blaACI-1 found in
several Negativicutes (Gram-negative Firmicutes) but rarely
detected in animal or human gut microbiomes42.

Last, we built 372 non-redundant prokaryotic MAGs at >50%
completeness and contamination ≤10% (Supplementary Note,
Supplementary Data 8, Supplementary Fig. 2a–h). Among these,
121 MAGs were estimated to be near complete; MAGs in this
subset had minimal contamination (≤ 5%) and high completeness
(> 95%). According to the Genome Taxonomy Database Toolkit
(GTDB-Tk)43, this MAG repertoire was assigned to 361 bacteria
and 11 archaea, involving bacteria from the Bacteroidetes and
Firmicutes phyla, followed by Spirochaetes, Euryarchaeota,
Verrucomicrobia, Fibrobacteres, and Cyanobacteria phylum

(Fig. 2d). However, only 83 and 41 MAGs were classified at the
genus and species levels, respectively (Fig. 2e). The MAGs
pertaining to the Cyanobacteria, Proteobacteria, and Verrucomi-
crobia phyla displayed variable abundances between hosts
(Fig. 2f). This trend was bolstered at the lower taxonomic level,
except for MAGs assigned to Fibrobacter spp. (Supplementary
Fig. 2h). Most MAGs encoded enzymes that degrade poly-
saccharides (Supplementary Note, Supplementary Data 8, Sup-
plementary Fig. 3).

Notably, most MAGs (n= 369) were new for horses44,45,
increasing the mappability of metagenomes and expanding our
understanding of the horse microbiomes.

The dominant basal gut phylotypes defined two taxonomical
and functional microbial communities. We first profiled
microbial taxa in each metagenomic baseline sample at the
taxonomic (NCBI nr_euk reference database) and functional
(EggNOG database) levels. Then, we retained the most dominant
microbial phylotypes. These phylotypes harbored 1,146 unique
genera (accounting for 95% of the classified sequences) with
abundance and prevalence in the top 25% and 50% quantiles,
respectively (Supplementary Data 9). They were represented
mainly by prokaryotes (91%), a handful of eukaryotes (7.15%),
and archaea (1.75%). In agreement with 16S rRNA gene
sequencing data from the same samples, Prevotella, Fibrobacter,
Clostridium Ruminococcus, and Treponema were the most pre-
valent genera in most individuals (Supplementary Data 10 and
11). However, all individuals harbored large amounts of
uncharacterized taxa in the horse, such as Mediterraneibacter,
Coprobacillus, Mucilaginibacter, Chitinophaga, Flavobacterium,
and Enterocloster (Fig. 3a).

The ordination analysis of these dominant microbial phylo-
types yielded two distinct clusters of samples that recapitulated
variation along the first axis (non-metric multidimensional
scaling (NMDS), Bray–Curtis distances; Fig. 3b). The same
pattern was supported by a permutational analysis of variance
(pairwise PerMANOVA; p= 0.008, R2= 0.3716). Cluster 1
individuals (n= 3 horses) exhibited higher α-diversity despite
the small sample size (Shannon and inverse Simpson indices;
p= 0.0134 for both, two-sided Wilcoxon rank-sum test, Fig. 3c,
d). We then investigated which microbial taxa underpinned each
cluster. Cluster 1 mainly included the enrichment of many
poorly-characterized taxa (n= 318; IQR: 2.90e−04– 1.16e−04;
Fig. 3e, f) that encompassed Proteobacteria (n= 132), Actino-
bacteria (n= 49), Verrucomicrobia (n= 17), Planctomycetes
(n= 17), and Cyanobacteria (n= 7). Methanogens previously
described in the bovine rumen46,47—including those belonging to
the Methanomicrobiales (Methanothrix), Methanobacteriales
(Methanosphaera, Methanobacterium, Methanothermobacter),
and Thermococcales (Thermococcus) orders—were also more
abundant in that cluster (DESeq2, adjusted p < 0.05; Supplemen-
tary Data 12). In contrast to the overwhelming diversity observed
in cluster 1, a dwarfed biodiversity defined cluster 2 that
assembled around highly efficient fiber degraders (members from
the Lachnospiraceae taxa: Anaerostipes, Butyrivibrio, Blautia,
Coprococcus, Dorea, Eubacterium, Hespellia Lachnospira, Oribac-
terium, Roseburia, and L-Ruminococcus) and downstream users
of degradation products (Prevotella, and Treponema)47 (DESeq2,
adjusted p < 0.05; Supplementary Data 12, Supplementary
Fig. 4a–d).

The sample distribution based on microbial KOs (PerMA-
NOVA; R2= 0.3725, p= 0.008) and CAZymes (PerMANOVA;
R2= 0.6063, p= 0.005) echoed that of taxonomical composition,
supporting taxa segregation by their underlying biochemical
activities (Supplementary Fig. 5). Cluster 1 captured higher
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Fig. 2 Functional diversity of the equine microbial genes catalog, antimicrobial genes, and MAGs landscape. a Frequency of KEGGs pathways in the gut
microbial gene catalog estimated from the orthologous groups (KOs). The horizontal bars represent the absolute number of genes found in each KEGG
pathway. b The Frequency of total carbohydrate-active enzyme (CAZymes) families estimated in the gut microbial gene catalog. CAZymes are colored
according to their class. c Heatmap shows each individual’s (n= 11) normalized counts of antimicrobial resistance (AMR) genes based on the ResFinder
database. The left column depicts the AMR class. d The Phylogenetic tree of the n= 372 MAGs detected. The outer cycle boxplots represent the
abundance of each MAG. Boxplots are colored according to phyla. e Sankey diagram showing the numbers of MAGS with completeness between 50 and
90% or > 90%. Only a relatively small fraction of the MAGs (73 out of 372) was annotated at the genus level. f Circular stacked bar plot of the MAGs
phyla abundance detected for each individual in the cohort (n= 11).
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CAZyme diversity. It showed enrichment of CAZymes that might
act in a concerted manner to cleave plant polysaccharides into
fermentable monosaccharides (GH6, GH39, GH54, GH82, GH84,
GH99) or host glycosaminoglycans (PL8, PL12, GH18, GH20,
GH29, GH88, and GH95; DESeq2, adjusted p < 0.05; Supple-
mentary Data 13, Supplementary Fig. 4d). Cluster 1 also had

more CAZymes for host glycans degradation (14.15%) than
members of cluster 2 (9.63%). In agreement, the latter presented
an enrichment of KOs related to glycan biosynthesis and
metabolism (K09953, K18770, K12309, K12551, K01137,
K03276, K12985, K14459). Cluster 1 also exhibited large
metabolic increases (n= 520 KOs) in amino acids metabolism
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(K12256, K15226, K03852, K08688, K18049, K21062), energy
production, e.g., genes within lipid metabolism (K10781, K16795,
K01795, K01049, K12309), propanoate metabolism (K11264,
K01659 K00382 K01720), fructose and mannose (K19633)
and pyruvate (K02594), as well as methane production
(K00202, K00204, K00583, K05884; DESeq2, adjusted p < 0.05;
log2FC|>1.5|, Supplementary Data 14). In accordance with
protein catabolism, plasma iso-valerate—a precursor for muscle
glycogen1—was also higher in cluster 1 individuals (p= 0.0121,
two-sided Wilcoxon rank-sum test). These findings strongly
suggest that cluster 1 horses had a larger substrate range.
However, this highly functional complexity could not be captured
at the MAG level (Supplementary Note, Supplementary Data 8,
Supplementary Fig. 6a–d).

Cluster 1 metagenomes also had reduced representation of the
host DNA in the raw sequencing data (p= 0.05, two-sided
Wilcoxon rank-sum test, Supplementary Fig. 5, Supplementary
Data 2), suggesting reduced epithelium disruption or intestinal
inflammation, commonly observed in endurance athletes48.

Basal dominant gut phylotypes were closely associated with
cardiovascular fitness in equine athletes. To tie together the
basal dominant gut phylotypes with the horse performances, we
investigated whether diversity, compositional and functional
differences between clusters were driven by nutrient intake or any
horse-centered parameter. Recorded dietary data showed that
participants had a constant standard varied macronutrient diet on
training and non-training days [mean ± SD (% dry matter (DM)
basis): 53.7 ± 19.3 MJ/day, 939 ± 42 g/day of protein (11 ± 1.9%),
678 ± 20 g/day of fat (8 ± 1.6%), 2190 ± 706 g/day of hydrolyzable
carbohydrates (26 ± 8.9%), and 2320 ± 877 g of fermentable fiber
(27 ± 2.8%)]. Individuals were fed 8.43 ± 2.99 kg/day, with an
80:20 forage to concentrate ratio (Supplementary Data 1). None
of the macronutrient intakes were statistically different between
the two clusters (p > 0.05, two-sided Wilcoxon rank-sum test),
and none of them were the major driving forces of the micro-
biome composition (PerMANOVA; R2= 0.102 ± 0.089 and p-
values ranging from 0.055 to 0.82; Supplementary Fig. 7a–d).
Likewise, KOs (PerMANOVA; R2= 0.034 ± 0.010 and p-values
ranging from 0.940 to 0.969) and CAZymes profiles (PerMA-
NOVA; R2= 0.030 ± 0.016 and p-values ranging from 0.250 to
0.971) were also independent of nutrient intakes. Gut community
composition was neither linked to horse sex (PerMANOVA;
R2= 0.2486, p= 0.266), or age of the athletes (PerMANOVA;
R2= 0.0952, p= 0.409; Supplementary Fig. 7e–g). Moreover,

clusters 1 and 2 did not overlap with the horse kinship (Sup-
plementary Fig. 8).

After confirming that these confounding factors did not define
the gut microbiome phylotypes, we next tested if any host-
centered omic or phenomics dataset, including transcriptomics,
metabolomics, blood biochemical assay profiles, acylcarnitines,
and cardiovascular fitness parameters, best captured the distribu-
tions of metagenomic samples (Supplementary Note, Supple-
mentary Data 15–18, respectively). Cardiovascular fitness—a
composite variable of post-exercise heart rate, cardiac recovery
time, and average speed during the race—was the primary driver
of the overall structural variation of the gut metagenome (envfit,
R2= 0.9192, adjusted p= 0.005; Supplementary Data 19).

This cardiovascular composite parameter aggregated 39.64% of
fecal microbiome community variation, thereby outperforming
the expression of several mitochondrial-related genes (Fig. 3g, h).
Horses from cluster 1 had significantly higher cardiovascular
fitness than cluster 2 members (p= 0.048, two-sided Wilcoxon
rank-sum test, Fig. 3i). That did not increase blood lactate
concentration (p= 0.921, two-sided Wilcoxon rank-sum test),
which is a proxy for glycolytic stress and disturbance in cellular
homeostasis1.

An independent validation set confirmed that Lachnospiraceae
bacteria were negatively associated with cardiovascular fitness
in highly trained equine athletes. We further attempted to
validate this association with 16S rRNA sequence data from the
gut microbiota of 22 independent highly trained endurance
horses (Supplementary Data 20, 21)

As with the study cohort, the microorganisms’ community
profiles could be distinguished based on the horse’s cardiovas-
cular fitness (pairwise PerMANOVA on a Bray–Curtis distance
matrix; L vs. H: adjusted p= 0.057, R2= 0.109, Supplementary
Fig. 9a, b), with higher microbiota dispersion in more fit athletes
(betadisper(), L vs. H: adjusted p= 0.0243; Supplementary
Fig. 9c). We used sparse Partial Least Squares-Discriminant
Analysis (sPLS-DA) to find a taxa panel that discriminated
between the more and less fit horses (Supplementary Fig. 9d).
This analysis only supported the presence of Mogibacterium and
the yet undefined members of Rhodospirillaceae, Enterobacter-
iaceae, Planococcaceae, and Sphingobacteriaceae families in more
fit individuals but not the other 252 poorly-described bacteria
members. This likely reflects an under-representation of
these taxa in existing 16 S rRNA reference databases. Conversely,
the sPLS-DA corroborated the enrichment of Clostridiales,

Fig. 3 Basal dominant gut phylotypes composition is associated with cardiovascular fitness. a Dominant phylome and its prevalence at different
detection thresholds (relative abundance). The percentage of shared items and the proportion of shared samples are represented on the y- and x-axis.
b NMDS ordination analysis (Bray–Curtis distance) of dominant phylotype composition. Points denote individual samples (n= 11), colored according to the
clustering group. The shape of the dots indicates the competition level of horses. c, d Violin plot representing Shannon Diversity Index and inverse Simpson
index of dominant phylotypes according to the clustering groups, respectively. In all cases, colors indicate community classification, cluster 1 (red color,
n= 3) and cluster 2 (blue color, n= 8). Boxplots show the median, 25th, and 75th percentile, the whiskers indicate the minima and maxima, and the points
lying outside the whiskers of boxplots represent the outliers. Adjusted p-values from two-sided Wilcoxon rank-sum test. e Biplot values of the discriminant
phylotypes driving the NMDS ordination. The phylotypes contributing to the distinction between groups on at least one axis are depicted. Points are
colored by phylum. f Taxonomic distribution of the dominant phylotypes grouped by phyla in each individual (n= 11). Individuals are split by cluster: cluster
1 (n= 3) and cluster 2 (n= 8). g NMDS ordination plot shows the covariates contributing significantly to the variation of dominant phylotypes determined
by the envfit() function. The arrows for each variable indicate the direction of the effect and are scaled by the unconditioned r2 value. Dots represent
samples (n= 11), which are colored according to the type of community: cluster 1 (red color, n= 3) and cluster 2 (blue color, n= 8). h Effect sizes of the
main variables affecting the NMDS ordination. The length of the horizontal bars shows the amount of variance (r2) explained by each covariate in the
model. Covariates are colored according to the type of dataset: athletic performance are in green and mitochondrial-related genes in blue. i Violin plot
representing the cardiovascular fitness of each cluster, which was calculated as a composite of post-exercise heart rate, cardiac recovery time, and average
speed during the race. Colors indicate community classification, cluster 1 (red color, n= 3) and cluster 2 (blue color, n= 8). The boxplots show the median,
25th, and 75th percentile, and the whiskers indicate the minima and maxima. The points lying outside the whiskers of boxplots represent the outliers.
Adjusted p-values from the two-sided Wilcoxon rank-sum test.
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Erysipelotrichaceae, and Lachnospiraceae taxa in less competitive
individuals. Markedly, genera such as Blautia, Butyrivibrio,
Coprococcus, Dorea, Desulfovibrio, Hespellia, Lachnospira, and
L-Ruminococcus (all pertaining to the Lachnospiraceae family)
were consistently depleted in less fit athletes in both the discovery
and the validation sets. In addition, Dorea and the polyphyletic
Ruminococcus were consistent hallmark genera of less competitive
individuals (DESeq2, adjusted p= 0.0491; Supplementary Fig. 9e,
f) across both discovery and validation cohorts. This further
strengthens the association between the horse’s cardiovascular
fitness and gut microbiota composition.

Although larger metagenomic cohorts and improved reference
collections are required to validate the relationship between
athletic performance and gut microbiome, these data do,
however, confirm the negative association between Firmicutes
(notably Lachnospiraceae taxa) and cardiovascular fitness in
endurance athletes.

Holo-omics: microbiomes with a higher prevalence of Lach-
nospiraceae taxa signed lower cardiovascular fitness and
pointed toward likely impaired mitochondrial capacity. To
further characterize the microbiome-host crosstalk and identify
molecular differences between the two types of cardiovascular
outcomes in elite horses, we integrated multi-omic datasets from
the host and associated gut microorganisms through a multi-
variate matrix factorization approach (DIABLO; see ”Methods“).
To achieve this integrated perspective coined as holo-omics49, we
combined host-centered omic and phenomics data with the fecal
shotgun metagenomics, SCFAs composition, and the concentra-
tions of bacteria, anaerobic fungi, and protozoa.

First, we observed strong covariation between the dominant
phylotypes and the genetic functionalities derived from KOs
(r2= 0.99) and CAZymes (r2= 0.98; Fig. 4a). This apparent
correlation supports the added value of microbiome functions for
status prediction rather than composition alone, as noted in
human athletes21,50. Concomitantly, the microbiome composi-
tion highly covaried with the mitochondrial transcriptome
(r2 > 0.80) and loads of fecal protozoa (r2 > 0.80; Fig. 4a). The
targeted (acylcarnitine profiles and biochemical assays) and
untargeted host metabolomic analysis (1H NMR) also accounted
for the metagenome variation, albeit of lesser significance
(r2= 0.57–0.61; Fig. 4a). Then, to add biological meaning to the
predicted model, we investigated the relationship between the
DIABLO-selected features with the highest covariation (Supple-
mentary Fig. 10a–c). The first latent variable of the predicted
model indicated that athletes with higher cardiovascular fitness
harbored a wide range of multi-kingdom and yet undescribed
clades in horses (Fig. 4b). Consistent with the univariate analysis,
it included the facultative bacterial predator Lysobacter, Akker-
mansia, generally regarded as health-promoting bacteria in
athletes51–55, along with anaerobic fungi (Ophiocordyceps,
Pseudogymnoascus, Trichoderma, Talaromyces, Rhodotorula,
Exophiala, Puccinia), methanogens (Methanothermobacter,
Methanothrix) and algae (Emiliania and Porphyra). It is worth
noting that the ciliate protozoa, at up to 18% of the biomass
(~109 cells/g of stool), were discriminative of more fit individuals
(Supplementary Fig. 10d). Conversely, less fit subjects were
largely defined by members of the family Lachnospiraceae,
Treponema, Prevotella, and other commonly described taxa in
horses, including Clostridiales and undescribed Erysipelotricha-
ceae taxa. Paired with this less complex community, the first
latent variable pointed at a redundant functional diversity,
spanning CAZymes to extract energy from recalcitrant poly-
saccharides (GH8, GT36, GH51, GH28, GT2, GH5, GH3; Fig. 4c).
While intestinal microbiota members belonging to the

Lachnospiraceae family are known to produce acetate and
butyrate56, none of these SCFA were significantly increased in
the feces or plasma of these athletes (p > 0.05; two-sided
Wilcoxon rank-sum test), and the fecal pH remained unchanged
(p= 0.837; two-sided Wilcoxon rank-sum test; Supplementary
Data 22).

At the transcriptome level, the first latent variable supported an
impairment rather than improved metabolic flexibility in the less
fit individuals. The latter exhibited downregulation of
mitochondrial-related genes involved in β-oxidation (ECI1,
SCP2, ACLY), electron transport chain (TMEM242, NDFB4,
TMEM126B, NDUFV3, NDUFA1, NDUFA10, SURF1, NDUFV1,
DLD), Ca2+ translocation (PMPCA, VDAC2, PHB), mitophagy
(TOMM40), and biogenesis (SSBP1, ACSS2; Supplementary
Fig. 10e). These results suggested decreased mitochondrial fatty
acid oxidation and increased glucose catabolism, which progres-
sively impedes longer running times, and fatigue resistance. In
agreement with this notion, less fit individuals presented reduced
concentrations of glucose (p= 0.0484, two-sided Wilcoxon rank-
sum test), increased accumulation of long-chain acylcarnitines in
plasma (e.g., oleoyl carnitine, p= 0.0484; hydroxy oleoyl
carnitine, p= 0.0242, two-sided Wilcoxon rank-sum test) and a
tendency for augmented non-esterified fatty acids (NEFAs) in
plasma (p= 0.0848, two-sided Wilcoxon rank-sum test). There-
fore, less diverse microbial communities dominated by a few
Firmicutes-derived families (mainly Lachnospiraceae) could
constrain the horse mitochondrial aerobic ATP production for
extended cardiovascular fitness.

Frenemies: Lachnospiraceae and poorly-described phylotypes
in horse athletes. To gain insight into the co-occurrence and co-
exclusion relationships between multi-kingdom microbial genera
and functions, we applied an inverse covariance estimation for
ecological associations. This approach identified 12 modules.
Among them, we uncovered two extreme assortative modules
characterized by robust microorganism-microorganism or
microorganism-functions interactions (Fig. 4d) that agreed with
the other univariate and multivariate analytical frameworks. The
first module was mainly characterized by bacterial interactions
within the Firmicutes phylum (mainly from the Lachnospiraceae
family) and CAZy families that can target the substrate of plant
structural polysaccharides (GH3, GH39, GH51, GH82, GH84).
On the other hand, the second extreme network encompassed
widespread yet undescribed bacteria in horses from the Proteo-
bacteria, Actinobacteria, Planctomycetes, and Verrucomicrobia,
together with CAZymes active in the degradation of the complex
structure of plant cell-wall materials (GH28) and host glycans
(GH20, GH18, GH33; Fig. 4d).

Discussion
The current study presents a comprehensive horse gut micro-
biome gene catalog and its association with endurance perfor-
mance. The more than 25 million non-redundant genes in this
catalog have widened 20-fold the number of genera known to
reside in the gastrointestinal tract of horses20,32,44,45,57,58, unco-
vering a substantial number of bacteria (n= 2927), archaea
(n= 174), and Eukaryota (n= 1081). This catalog also captured a
wide array of functions related to complex carbohydrate fer-
mentation and functional capacities that enabled more energy
extraction from dietary, microbial, and host resources, which
likely provided a performance advantage for athletes. For exam-
ple, genes encoding enzymes for glycosidic-bond cleavage (GHs
and PLs) represented the majority (67%) of the CAZyme genes,
highlighting the indispensable role of gut microorganisms in
glycan metabolism. Intriguingly, 6.38% of GHs and PLs were
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involved selectively in cleaving endogenous host-related glyco-
sylated proteins and glycans37. It is yet unclear whether these
CAZymes correspond simply to the peptidoglycan-processing
machinery required for bacterial cell growth and division or
whether peptidoglycan and highly glycosylated proteins represent
a major carbon source for some bacteria or the host after being
transformed to acetate59.

In addition, we have identified a set of 372 MAGs. The number
of microbial genes and MAGs will likely increase as more samples
are analyzed, as seen in equids44,45 and other livestock gut
metagenomes29,60–62. Nonetheless, the present metagenomic
genes and MAGs repertoire are a step forward in explaining the
composition and function of the horse gut microbiome, especially
in the context of endurance exercise.

Along with fatigue resistance, cardiovascular fitness is a crucial
indicator of endurance performance in human athletes9. In the

considered elite endurance horses, the cardiovascular capacity
defined about ~40% of the variation in the most dominant gut
phylotypes (e.g., most abundant and ubiquitous) in the absence of
any confounders. This association was replicated in an indepen-
dent cohort of elite horses and outweighed that estimated
between marathon runners’ cardiovascular fitness and their
microbiota (~22% of explained variance22). Moreover, we found
that higher cardiovascular capacity was mostly associated with
uncharacterized microbial features and functional pathways.
Cardiorespiratory fitness matched increased gut microbiota
diversity in marathon runners21. A possible explanation for this
phenomenon could stem from the broader use of resource
compounds, including SCFAs, host glycans, dietary and microbial
proteins, complex lipids, propanoate, pyruvate, and hydrogen, to
produce higher relevant goods for host energy requirements. This
notion was exemplified by the extensive enrichment of CAZymes
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Fig. 4 Sportomics: data integration supports the link between cardiovascular fitness and the gut microbiome composition and functionality. a Matrix
scatterplot showing the correlation between the first components related to each dataset in DIABLO according to the input design. b Dominant microbial
genera contributing to the separation along with component 1 of the microbiome dataset. Microbiome data are centered log-ratio-transformed, and bar
length indicates loading coefficient weight of selected phylotypes, ranked by importance, bottom to top. Columns on the left depict the kingdom and
phylum of each discriminant phylotype. c CAZymes contributing to separation along with component 1 of the CAZy dataset. CAZymes profiles are log-
transformed median-scaled values. Bar length indicates the loading coefficient weight of selected CAZymes, ranked by importance, bottom to top. In all
cases, colors indicate community classification, cluster 1 (red color, n= 3) and cluster 2 (blue color, n= 8). The column on the left depicts the CAZymes
class. d Co-occurrence network analysis of dominant phylotypes and carbohydrate-active enzymes (CAZy) types datasets using sparse inverse covariance
estimation for ecological association inference (SPIEC-EASI). Louvain clustering was able to generate 12 feature co-occurrence modules. The two extreme
assortative modules are depicted in detail using Cytoscape. A positive correlation between nodes is indicated by red connecting lines, and a negative
correlation by blue. A circle or triangle denotes microbial clades and CAZymes features. Microbial nodes are colored by phyla. Elements with larger text
sizes are those revealed as discriminant along with component 1 by the DIABLO approach. Edge width corresponds to the strength of the association
between features.
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and KOs involved in the metabolism of glycans, amino acids,
carbohydrates, and lipids.

The deep phenomics applied to these horses pointed to the
microbiome-mitochondria crosstalk as a potentially highly
effective way to modulate cardiovascular capacity. Conceptually,
the higher availability of goods likely influenced the mitochondria
function and readouts. This hypothesis paralleled increased glu-
cose availability in serum, a precursor for glycogen in muscle,
alongside reduced circulating acylcarnitines and NEFA levels. The
acylcarnitine and NEFA drop was possibly not due to reduced
substrate availability but to an increase in transport into the
mitochondria through the carnitine shuttle, typically for ß-
oxidation. In concert, mitochondrial-related genes involved in
energy resilience, biogenesis, and Ca2+ cytosolic transport were
simultaneously upregulated in participants with greater cardio-
vascular capacity suggesting enhanced mitochondrial oxidative
phosphorylation and FAO, the two metabolic pathways central to
energy production63. Therefore, bidirectional regulatory circuits
between host and inter-microbial components can seemingly
increase mitochondrial substrate availability to meet the high
energy needs during exertion while optimizing cardiovascular
capacity, longer running times, and fatigue resistance. Beyond its
energy-producing ability, mitochondria are essential for the
physiological activity of the cardiovascular system due to their
crucial role in the regulation of intracellular Ca2+ fluxes, which
contribute to cardiac muscle contraction64.

Methane-producing taxa were over-represented in more fit
individuals’ gut microbiomes. Methane cannot be absorbed by
animals65, but might exert anti-inflammatory, anti-apoptotic, and
anti-oxidative effects in the gut66. This means that methane-
producing taxa that primarily contribute to energy waste may
counterintuitively help to confer gut protection from the
inflammatory effects of endurance exercise67. Supporting this
notion, the best performers showed reduced amounts of horse
DNA in the feces, a proxy of epithelial cells and leukocytes’
shedding. Whether methane production is a host-microbiome
engineering adaptation to reduce intestinal permeability, disrup-
tion, and inflammation remains an open question.

On the other hand, the microbiomes of less fit individuals
exhibited lower diversity. They were dominated by specialized
cellulose and hemicellulose degraders of the Lachnospiraceae
family. Despite this specialization, SCFA concentration was
similar to the more fit individuals. A similar observation was
made in humans with low aerobic fitness whose microbiota
harbored more Eubacterium rectale-Clostridium23. Therefore, in
light of these findings, nutritional interventions to reduce Lach-
nospiraceae taxa like Dorea and L-Ruminococcus while creating
more space for non-core species will likely be required to increase
microbiome diversity, functional plasticity, and athletic perfor-
mance. Dietary changes can promote swift changes in Lachnos-
piraceae abundance57. Consumption of dietary pectins could
strongly reduce the fecal abundance of Ruminococcus, Blautia,
and Roseburia (all pertaining to the Lachnospiraceae family)68.
Conceptually, the partial replacement of diet-derived poly-
saccharides needed to expand Lachnospiraceae taxa (e.g., starch,
inulin, xylans, and arabinoxylan) by other structurally diverse
dietary fibers (e.g., soluble pectins such galactan, arabinan, and
arabinogalactan) could be the front-line for nutritional inter-
ventions. Due to the minor involvement of the Lachnospiraceae
phylotypes in proteolytic metabolism69, increasing protein con-
sumption could be another way to optimize the microbiome
function in horse athletes.

The present study contains several limitations. First, interac-
tions should be interpreted cautiously, and the associations can-
not be considered direct causal effects. Second, due to the
difficulty of sampling elite endurance horses after long races, our

observations were made from a small sample size on a single race,
with a few samples for independent validation. Replicating results
in other athletes with continuous long-term measurements will
hence be needed to assess the generalizability of these findings.
Third, the current study did not include negative control samples
to control for DNA contamination before or during shotgun
sequencing. Still, our analyses were restricted to the most pre-
valent and dominant phylotypes to limit inaccuracy in further
data interpretation. Last, functional investigations to identify
microbial and host metabolites through 1H NMR and mass
spectrometry coupled with longitudinal meta-transcriptomics and
metagenomics are needed to improve inference of microorgan-
ism’s functionalities and support the herein reported findings.

Beyond these limitations, the present study presented several
strengths. First, this study revealed an unprecedented level of
microbial diversity, biotic interactions, and functional gene
potential in the gut of horse athletes. Second, holobiont data
integration suggested that the variability of the gut microbiome
composition and functions was associated with cardiovascular
fitness in two different ways. On the one hand, less diverse
microbial communities comprising high amounts of Lachnos-
piraceae taxa showed high functional microbial redundancy and
downregulation of mitochondrial-related genes associated with
energy production, biogenesis, and Ca2+ translocation, thereby
leading to reduced amounts of aerobic ATP, impaired cardio-
vascular function, and thus reduced athletic performance. On the
other hand, gut communities harboring an extensive range of yet
undescribed phylotypes in horses, including a myriad of anae-
robic fungi, methanogens, and protozoa, were metabolically more
active and offered complimentary or unique metabolic pathways
to enhance fuel bioavailability for the mitochondria while
improving aerobic work competences, sparing glycogen usage,
and increasing cardiovascular capacity.

The athletes with the greatest improved cardiovascular fitness
likely have better fatigue resistance, a critical factor in achieving
competitive success. Functional studies of gut microbiome species
linked to mitochondria function will be instrumental in devel-
oping dietary strategies that optimize cardiovascular capacity and,
therefore, athletic performance.

Methods
Ethical approval. The local animal care approved the study protocol and use
committee (ComEth EnvA-Upec-ANSES, reference: 11-0041, dated July 12, 2011),
and protocols were conducted following the EU regulation (no 2010/63/UE).
Owners and riders provided their informed consent before the start of sampling
procedures with the animals. The horses (Equus caballus) used in this research
study were pure-breed or half-breed Arabian (three females, one male, and seven
geldings; age: 10 ± 1.69 years old).

Animals. Eleven endurance horses were selected from a cohort previously used in
our team6,24,25,70. All equine athletes started training for endurance competitions at
age 4 and presented a similar training history, level of physical fitness, and training
environment. The 11 horses were selected due to the following criteria: (1)
enrollment in the same 160 km endurance category; (2) blood sample collection
before and after the race; (3) feces collection before the race; (4) absence of gas-
trointestinal disorders during the four months before enrollment; (5) absence of
antibiotic treatment during the four months before enrollment and absence of
anthelmintic medication within 60 days before the race, and (6) a complete
questionnaire about diet composition and intake.

Subject metadata, including morphometric characteristics and daily
macronutrient diet intake records, is depicted in Supplementary Data 1. Daily
nutrient intake calculations are described elsewhere24.

Performance measurement. The endurance race was split into ~30–40 km phases.
At the end of each phase, veterinarians checked horses (referred to as a vet gate).
The heart recovery time was the primary criterion evaluated at the vet gate as it is
shown to be an excellent complement to a physical assessment of an individual.
The heart rate was measured at each vet gate by the riders and a veterinarian using
a heart rate meter and a stethoscope. Any horse deemed unfit to continue (due to a
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heart rate above 64 bpm after 20 min of recovery) was immediately withdrawn
from the event.

It should be noted that the time interval between arrival at the vet gate and the
time needed to decrease the heart rate below 64 bpm was counted as part of the
overall riding time. Therefore, the cardiac recovery time was calculated as the
difference between the arrival time (at the end of the phase) and the time of
veterinary inspection (referred to as the “time in” by the FEI endurance rules). The
average speed of each successive phase was calculated at the vet gate.

Changes in these three variables during endurance events have been shown to
predict whether a horse is aerobically fit or not71. We consider these variables to
estimate cardiovascular capacity linked to performance capability and achievement.
Therefore, these three variables were first scaled through a Z-score; that is, the
number of standard deviation units a horse’s score is below or above the average
score. Such a computation creates a unitless score that is no longer related to the
original units of analysis (e.g., minutes, beats, Km/h). It measures the number of
standard deviation units and can more readily be used for comparisons. A
composite based on such Z-scores was then created to estimate cardiovascular
fitness. Specifically, the composite() function of the multicon R package (v.1.6) was
used to develop a unit-weighted composite of the three variables listed above.

Estimation of the pedigree kinship matrix. The kinship272 (v.1.8.5) R package
was used to calculate the pedigree kinship matrix of all individual pairs, plot the
pedigree, and trim the pedigree object. The kinship coefficient for any two subjects
was calculated as the probability that an allele chosen at random for both subjects
at a given locus is identical-by-descent, that is, inherited from a common
ancestor72. The pedigree was calculated using six generations back for the 11
Arabian horses of the study. The pedigree kinship matrix was then visualized using
the plot_popkin() function from the popkin (v.1.3.17) R package. The inbr_diag()
function was used to modify the kinship matrix, with inbreeding coefficients along
the diagonal, preserving column and row names.

Blood sampling. Blood samples were collected from each horse the day before the
event (Basal, T0) and immediately after the end of the competition (T1) for
transcriptomic, biochemical, metabolomic, and acylcarnitine assays. As described
elsewhere24, pretreatment of the blood samples was carried out immediately after
the collection because field conditions provided access to refrigeration and elec-
trical power supply. Briefly, blood samples for RNA extraction were collected using
Tempus Blood RNA tubes (Thermo Fisher) and stored at −80 °C. Whole blood
samples were taken in EDTA tubes (10 mL; Becton Dickinson, Franklin Lakes, NJ,
USA) to determine biochemical parameters, while for the metabolome profiling,
the sodium fluoride and oxalate tubes were used to inhibit further glycolysis that
may increase lactate levels after sampling. Then, clotting time at 4 °C was strictly
controlled for all samples to avoid cell lyses that affect metabolome components.
After clotting at 4 °C, the plasma was separated from the blood cells, transported to
the lab at 4 °C, and frozen at −80 °C (no more than 5 h later, in all cases). Con-
cerning the acylcarnitine, blood samples were collected in plain tubes. After clot-
ting, the tubes were centrifuged, and the harvested serum was stored at 4 °C for no
more than 48 h and subsequently stored at −80 °C.

Transcriptomic microarray data production, pre-preprocessing, and analysis.
According to the manufacturer’s instructions, total RNAs were isolated using the
Preserved Blood RNA Purification Kit I (Norgen Biotek Corp., Ontario, Canada).
RNA purity and concentration were determined using a NanoDrop ND-1000
spectrophotometer (Thermo Fisher), and RNA integrity was assessed using a
Bioanalyzer 2100 (Agilent Technologies, Santa Clara, CA, USA). All the 22 RNA
samples were processed. The transcriptome microarray data production, pre-pro-
cessing, and analysis are depicted in Mach et al.25.

Transcriptome profiling was performed using an Agilent 4X44K horse custom
microarray (Agilent Technologies, AMADID 044466). All of the steps are detailed
here73,74. We refer to our previous work for more details on the pre-processing,
normalization, and application of linear models25. Given our interest in
understanding the role played by mitochondria during exercise, the set of 801
differentially expressed mitochondrial genes reported by our team25 was selected
for the downstream steps of analysis (Supplementary Data 15).

Proton magnetic resonance (1H NMR) metabolite analysis in plasma. As
described elsewhere24,70, the plasma metabolic phenotype of endurance horses was
obtained from 1H NMR spectra at 600MHz. The 1H NMR spectra were acquired
at 500MHz with an AVANCE III (Bruker, Wissembourg, France) equipped with a
5 mm reversed QXI Z-gradient high-resolution probe. Further details on sample
preparation, data acquisition, quality control, spectroscopic data pre-processing,
and data pre-processing, including bin alignment, normalization, scaling, and
centering, are broadly discussed elsewhere75. Details on metabolite identification
are described in our previous work24,25.

Biochemical assay data production. Sera were assayed for total bilirubin, con-
jugated bilirubin, total protein, creatinine, creatine kinase, β-hydroxybutyrate, and
aspartate transaminase (ASAT), γ-glutamyltransferase and serum amyloid A levels
on an RX Imola analyzer (Randox, Crumlin, UK).

Blood acylcarnitine profiling. As a proxy for mitochondrial β-oxidation, the
serum acylcarnitine profiles were produced and analyzed as described elsewhere6.
In the positive mode, free carnitine and 27 acylcarnitines were analyzed for their
butyl ester derivatives by electrospray tandem mass spectrometry (ESI-MS-MS) on
a triple quadrupole mass spectrometer (Xevo TQ-S Waters, Milford, MA, USA)
using deuterated water.

Fecal measurements: SCFA, DNA extraction, and microorganism concentra-
tions. Fresh fecal samples were obtained while monitoring the horses before the
race. One fecal sample from each animal was collected immediately after
defecation24,76, and three aliquots (200 mg) were prepared. The dehydration
experienced by most horses after the race altered intestinal motility and feces
shedding, making it impossible to recover the feces immediately after the race.

Aliquots for SCFA analysis and DNA extraction were snap-frozen.
SCFA levels were determined by gas chromatography using the method

described elsewhere77.
Total DNA from the 11 samples was extracted from ~200 mg of fecal material

using the EZNA Stool DNA Kit (Omega Bio-Tek, Norcross, Georgia, USA)
following the manufacturer’s instructions. DNA was then quantified using a Qubit
and a dsDNA HS assay kit (Thermo Fisher).

As detailed in our previous studies24,25, concentrations of bacteria, anaerobic
fungi, and protozoa in fecal samples were quantified by qPCR using a QuantStudio
12K Flex platform (Thermo Fisher Scientific, Waltham, USA). Primers for real-
time amplification of bacteria (FOR: 5′-CAGCMGCCGCGGTAANWC-3′; REV:
5′-CCGTCAATTCMTTTRAGTTT-3′), anaerobic fungi (FOR: 5′-TCCTAC
CCTTTGTGAATTTG-3′; REV: 5′-CTGCGTTCTTCATCGTTGCG-3′) and
protozoa (FOR: 5′-GCTTTCGWTGGTAGTGTATT-3′; REV: 5′-
CTTGCCCTCYAATCGTWCT-3′). Details of standard dilutions series, the
thermal cycling conditions, and the estimation of the number of copies are detailed
elsewhere24,25.

Fecal microbiota: V3–V4 16S rRNA gene sequencing and data pre-processing.
A detailed description of the DNA isolation process, V3–V4 16S rRNA gene
sequencing-PCR amplification, is presented by our group19,20,24,25,76,78,79. A
negative control sample alongside biological samples at the DNA extraction and
PCR steps was considered in attempts to control DNA contamination before and
after sequencing. In addition, contamination was minimized through laboratory
techniques such as UV irradiation of material, ultrapure water, the DNA-free Taq
DNA polymerase, and the separation of pre-and post-PCR areas.

The Divisive Amplicon Denoising Algorithm (DADA) was implemented using
the DADA2 plug-in for QIIME 2 (v.2021.2) to perform quality filtering and
chimera removal and to construct a feature table consisting of read abundance per
amplicon sequence variant (ASV) by sample80. Taxonomic assignments were given
to ASVs by importing Greengenes 16S rRNA Database (release 13.8) to QIIME 2
and classifying representative ASVs using the naive Bayes classifier plug-in81. The
phyloseq (v.1.36.0)82, vegan (v.2.5.7)83, and microbiome (v.1.14.0) packages were
used in R (v.4.1.0) for the downstream steps of analysis. A total of 364,026 high-
quality sequence reads were recovered for the 11 horses of the study (mean per
subject: 33,093 ± 17,437, range: 12,052–62,670). Reads were clustered into 5412
chimera- and singleton-filtered ASVs at 99% sequence similarity. The genera
taxonomic assignments and counts for each individual are presented in
Supplementary Data 10).

The negative control sample did not yield a band on the agarose gel, and the
concentration of the purified amplicon was undetectable (<1 ng/μL). Nevertheless,
the decontam (v.1.14.0) R package was used to identify and visualize possible
contaminating DNA features in the negative control sample. The function
isContaminnat() was used to determine the distribution of the frequency of each
contaminant feature as a function of the input DNA concentration. Only 6 ASV
were statistically classified (p < 0.05) as contaminants, although their frequency
plots showed they were non-contaminants (Supplementary Fig. 11).

Fecal metagenome: Shotgun sequencing data production and analysis.
Metagenomic sequencing was performed using the same DNA extractions. For
each individual, a paired-end metagenomic library was prepared from 100 ng of
DNA using the DNA PCR-free Library Prep Kit (Illumina, San Diego, CA, USA).
The size was selected at about 400 bp. The pooled indexed library was sequenced in
an Illumina HiSeq3000 using a paired-end read length of 2 × 150 pb with the
Illumina HiSeq3000 Reagent Kits at the PLaGe facility (INRAe, Toulouse).

MAG assembly and annotation. Raw metagenomic reads were quality-trimmed,
assembled, binned, and annotated using the ATLAS pipeline, v.2.4.484. In short,
using tools from the BBmap suite v.37.9985, reads were quality trimmed with
ATLAS parameters: preprocess_minimum_base_quality= 10, preprocess_
minimum_passing_read_length= 51, preprocess_minimum_base_frequency=
0.05, preprocess_adapter_min_k= 8, preprocess_allowable_kmer_mismatches=
1, and the preprocess_reference_kmer_match_length= 27. The contamination
from the horse genome (available at NCBI sequence archive with the accession
number GCA_002863925.1; Equus_caballus.EquCab3.0) was filtered out using the
following settings: contaminant_max_indel= 20, contaminant_min_ratio= 0.65,
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contaminant_kmer_length=13, contaminant_minimum_hits= 1, and con-
taminant_ambiguous=best. Reads were error corrected and merged before
assembly with metaSPAdes v.3.13.186 with the subsequent parameters: spa-
des_k=auto, prefilter_minimum_contig_length= 300, minimum_average_
coverage= 1, minimum_percent_covered_bases=20, and minimum_contig_
length= 500 after filtering. QUAST 5.0.287 was used to evaluate the quality of each
sample assembly. Since a high diversity between individuals was described through
16 S rRNA amplicon analysis, we first assembled each sample independently.
Contigs from single samples were clustered into metagenomic bins using MetaBAT
2 (v.2.14)88 with the following parameters: sensitivity=sensitive, min_conti-
g_length= 1500 and Maxbin 2.0 v.2.2.789 with the parameters set to max_itera-
tion= 50, prob_threshold= 0.9, and min_contig_length= 1000. Contig
predictions were combined using DAS Tool v.1.1.2-190 with diamond engine and
score_threshold set to 0.5.

ATLAS configuration file, summaries of individual samples quality control,
contigs from the individuals, and detected bins are available at the INRAE data
repository (https://doi.org/10.15454/NGBSPC)91 and are contained in the files
“ATLAS_config.yalm”, “ATLAS_dag.pdf”, “notebook.html”, “ATLAS_QC_report.
html”, and “ATLAS_bin_report_DASTool.html”.

Assembly statistics for the predicted MAGs such as completeness, redundancy,
size, number of contigs, contig N50, length of the longest contig, average GC
content, and the number of predicted genes were computed using the lineage
workflow from CheckM v.1.1.392. MAGs were designated as near-complete drafts if
they had completeness ≥90%, redundancy <5%, transfer RNA gene sequences for at
least 18 unique amino acids, or medium-quality drafts if they had completeness
≥50% and a redundancy <10%. A summary of the assembly statistics for the
predicted MAGs is available at the INRAE data repository: https://doi.org/10.
15454/NGBSPC91 as “ATLAS_assembly_report.htlm”.

Because the same MAG may be identified in multiple samples, dRep v.2.2.293

was used to obtain a non-redundant set of MAGs by clustering genomes to a
defined average nucleotide identity (ANI) and returning the representative with the
highest dRep score in each cluster. The parameters used were set to ANI= 0.95,
overlap=0.6, length=5000, completeness=50, contamination=10, and N50= 0.5.
Only the highest-scoring MAG from each secondary cluster was retained as the
winning genome in the dereplicated set. The abundance of each MAG was then
quantified across samples by mapping the reads to the non-redundant MAGs using
the BBmap suite v.37.9985 (pairlen= 100, minid=0.9, mdtag=t, xstag=fs,
nmtag=t, sam=1.3, ambiguous=best, secondary=t, saa=f, maxsites=10). The
sample-specific median coverage of each MAG was then computed using pileup
within BBMap with default parameters.

For the taxonomic annotation, ATLAS predicted the genes of each MAG
sequence using Prodigal v.2.6.394 with single-mode and closed-end parameters.
The taxonomy of the predicted MAGs was inferred using the genome taxonomy
database (GTDB-Tk)43 (v.5.0, release 95 (July 17, 2020)). As such, GTDB-Tk
taxonomy names were used throughout this paper. In addition, domain-specific
trees incorporating the predicted MAGs were inferred by constructing a
maximum-likelihood tree using the de novo workflow in GTDB-Tk v.5.0 with the
following parameters: --bacteria | --archaea, min_perc_aa=50, prot_model=WAG.
Trees were visualized using ggtree (v.3.0.2) in the R package.

To assess the contribution of the constructed MAGs to the functional potential
of the gut microbiome, the predicted gene and proteins extracted by Prodigal
during the CheckM pipeline were compared to the EggNOG database 5.0 using
eggnog-mapper (v2.0.1). KEGG annotation (Kyoto Encyclopedia of Genes and
Genomes) and CAZymes annotation (Carbohydrate-active Enzyme) were extracted
from this output. Since the detection of KOs and CAZymes families is likely
influenced by sequencing depth, their relative abundance was normalized to the
abundance of the MAG they derived from. Pathways attributed to each KO were
annotated from the KEGG database (downloaded 23-October-2021; https://www.
genome.jp/brite/ko00001).

The uniqueness of our predicted MAG catalog was confirmed by dereplicating
them with the 121 MAGs produced by Gilroy et al.44 and three reported by
Youngblut et al.45 using dRep v.3.2.093 with parameters: P_ani= 0.9, S_algorithm
‘ANImf’, S_ani= 0.99, clusterAlg ‘average’, cov_thresh= 0.1, coverage_method
‘larger.’ dRep performed pairwise genomic comparisons by sequentially applying
an estimation of genome distance and an accurate measure of average nucleotide
identity. Visualizing and comparing highly similar genomes were performed using
the CGView family of tools (http://wishart.biology.ualberta.ca/cgview/).

Construction of the integrated gene catalog. The establishment and assessment
of the quality and representation of the microbiome gene catalog were performed
through the metagenomic ATLAS pipeline (v.2.4.4)84. As described above, we first
assembled the clean reads into longer contigs.

Genes were predicted by Prodigal v.2.6.3 and then clustered using linclust95 to
generate a non-redundant gene catalog. Redundant genes were removed with
linclust using the following parameters: minlength_nt= 100, minid= 0.95,
coverag= 0.9, and subsetsize= 500,000. The quantification of genes per sample
was done through the combine_gene_coverages() function in the ATLAS
workflow, which aligned the high-quality clean reads to the gene catalog using the
BBmap suite v.37.9985 (minid= 0.95, mdtag= t, xstag= fs, nmtag= t, sam= 1.3,
ambiguous= all, secondary= t, saa= f, maxsites= 4). Taxonomic and function

annotations were done based on the EggNOG database 5.0 using eggnog-mapper
(v.2.0.1) (emapper.py–annotate_hits_table {input.seed}–no_file_comments). The
eggNOG numbers corresponding to CAZymes based on homology searches to the
CAZyme database were retrieved from these. We used the derived eggNOG
abundance matrix to obtain a CAZyme profile per sample. Similarly, KEGG
annotation was recovered from the EggNOG output. KEGG gene IDs were mapped
to KEGG KOs and used to get the KEGG functional pathway hierarchy.
Furthermore, using mmseqs2 (v.13.45111) to find genes at a 95% similarity
threshold and 80% overlap, we compared our gene catalog with a previously
published gene catalog containing ~4 million genes30. The parameters used were
the following: easy-search --search-type 3 --min-seq-id 0.95 --cov-mode 0 -c 0.8
--threads 16 --alignment-mode 3 --max-seq-len 100000.

The annotated gene catalog fasta file is deposited at DDBJ/ENA/GenBank
Whole Genome Shotgun under the BioProject ID PRJNA438436 and is also
available at https://doi.org/10.15454/NGBSPC91 as “Genecatalog_with-
note.fna.gz”. The KO and CAZymes derived from the gene catalog are available in
the same INRAE data repository and are in the “Genecatalog_KO.tab” and
“Genecatalog_CAZy.tab” files, respectively.

Annotation of metagenomes using Kaiju. The kmer-based kaiju v.1.8.0 (https://
github.com/bioinformatics-centre/kaiju)31 approach was used for microbial taxo-
nomic profiling of the trimmed shotgun metagenomes and the microbial gene
catalog. The microbial gene catalog fasta, core group genes fasta, and paired reads
after quality trimmed and decontamination from the horse genome were used and
annotated against the NCBI nr_euk reference database (released on May 25, 2020)
containing all proteins belonging to archaea, bacteria, fungi, microbial eukaryotes,
and viruses for classification in Greedy run mode with -a greedy -e 3 allowing for
maximum three mismatches. By default, Kaiju returned a “NA” if it could not find
a taxonomic classification at certain ranks. The Kaiju’s tab-separated output files
were imported into Krona and converted into HTML files. They are available at
https://doi.org/10.15454/NGBSPC)91 under raw-samples.nr_euk.kaiju.html.

Dominant phylotypes. To circumvent the problem of false-positive species pre-
dictions due to misalignment and contamination, we defined an abundance
threshold of 25%, where the top 25% abundant species in at least 50% of the
individuals were retained using the filterfun_sample() function in the phyloseq R
package. This reduced background noise but kept information on poorly-described
species if they were ubiquitously found in the samples. The dominant phylotypes
abundance, taxonomy, and the associated metadata are available at https://doi.org/
10.15454/NGBSPC as “Ecaomic_dominant_phylotypes_nonrariefied.rds”.

Resistome. The high-quality clean paired reads were aligned to the ResFinder
database (accessed March 2018, v.4.0) using bowtie2 (v.2.3.5). ResFinder is a
manually curated database of horizontally acquired antimicrobial resistance (AMR)
genes. It contains many genes with numerous highly similar alleles (e.g., β-lacta-
mases). To avoid random assignment of read pairs on these high-identity alleles,
the database was clustered at 95% of identity level, over 200 bp using CDHIT-EST
(options -G 0 -A 200 -d 0 -c 0.95 -T 6 -g 1)96 and a reference sequence was
attributed to each cluster. Two successive mappings were done: (i) the first map-
ping with standard parameters (bowtie2 --end-to-end --no-discordant --no-overlap
--no-dovetail –no-unal) on the complete ResFinder database, and (ii) a second
mapping on the clustered database using the reads from the first mapping, with less
stringent parameters (bowtie2 --local --score-min L,10,0.8). More than 99% of the
reads from the first mapping correctly aligned on a cluster reference sequence in
the second mapping.

Counts from the second mapping were normalized by computing the RPKM
(reads per kilobase reference per million bacterial reads) value for each ResFinder
reference sequence. The RPKM values were calculated by dividing the mapping
count on each reference by its gene length and the total number of bacterial read
pairs for the samples and multiplying by 109. A minimum of 20 mapped reads was
considered to validate the presence of an AMR gene cluster.

Statistics and reproducibility
Biodiversity and richness analysis: α- and β-diversity. The microbiome R package
allowed us to study global indicators of the gut ecosystem state, including measures
of evenness, dominance, divergences, and abundance. Comparison of the gut α-
diversity indices between groups was performed by a two-sided Wilcoxon rank-
sum test (pairwise comparison). Benjamini–Hochberg multiple testing correction
p < 0.05 was set as the significance threshold for comparison between groups.

To estimate β-diversity, Bray–Curtis dissimilarity was calculated using the
phyloseq R package. All samples were normalized using the rarefy_even_depth()
function in the phyloseq R package, which is implemented as an ad hoc means to
normalize features resulting from libraries of widely differing sizes. The
PerMANOVA test (a non-parametric method of multivariate analysis of variance
based on pairwise distances) was implemented using the adonis() function in the
vegan R package and the pairwise.Adonis2() function from the pairwiseAdonis
(v.0.4) R package tests the global association between ecological or functional
community structure and groups. The model was adjusted by factors affecting the
microbiome: age, sex, and dietary macronutrient intake.
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The core microbiome. The core group of genes in the catalog was defined as the
genes present in all individuals.

The dominant core microbiome at the genus level was calculated using a
detection threshold of 0.1% and a prevalence threshold of 95% in the microbiome
R package.

Inference and analysis of SPIEC-EASI microbiome networks. The SParse InversE
Covariance Estimation for Ecological Association Inference method (SPIEC-
EASI)97 was used to identify sub-populations (modules) of co-abundance and co-
exclusion relationships between dominant phylotypes and CAZy classes abun-
dances matrices. Specifically, the method allows microorganisms and functions to
interact differently, from bidirectional competition to mutualism or not interacting
at all. The statistical method SPIEC-EASI comprises two steps: a transformation for
compositionality correction of the feature matrices and estimation of the interac-
tion graph from the transformed data using sparse inverse covariance selection.
The sparse graphical modeling framework was constructed using the spiec.easi()
function of the SpiecEasi package (v.1.1.1). The features were clustered using the
method=mb, lambda.min.ratio= 1e−5, nlambda= 100, pulsar.params=list
(thresh= 0.001). Regression coefficients from the SPIEC-EASI output were
extracted and used as edge weights to generate a feature co-occurrence network R
igraph package (v.1.2.6) and Cytoscape (v.3.8.2).

Integrative statistical analysis. Data integration was carried out using several
approaches and different combinations of datasets. Before the integration, we
applied some additional pre-processing steps to our exploratory datasets. In par-
ticular, to eliminate intra-individual variability and focus on the differential signals
between T1 and T0, we considered Δ values (T1–T0) for each of these datasets,
namely biochemical assay data and metabolome acylcarnitine profiles, and gene
expression data. For the transcriptome, we constructed a matrix of log-transformed
expression values between T1 and T0 (e.g., the difference in log2-normalized
expression between T1 and T0).

The integration of data was then performed using complementary methods and
working with different datasets available, namely: (1) Δ values of mitochondrial-
related genes; (2) Δ values of 1H NMR metabolites; (3) Δ values of the biochemical
assay metabolites; (4) Δ values of plasmatic acylcarnitines; (5) the fecal SCFAs at
T0; (6) the bacterial, ciliate protozoa and fungal loads at T0; (7) the dominant gut
phylotypes at T0; (8) the CAZymes profiles at T0; (9) the KOs at T0, and the (10)
athletic performance data.

As a first integration approach, a global non-metric multidimensional scaling
(NMDS) ordination was used to extract and summarize the variation in
microbiome composition using the metaMDS() function in the vegan R package.
Stress values were calculated to determine the number of dimensions for
each NMDS.

The explanatory datasets were then fit to the ordination plots using the envfit()
function in the vegan R package98 with 10,000 permutations. Each covariate’s effect
size and significance were determined, and all p-values derived from the envfit()
function were adjusted Benjamini–Hochberg. Variation partitioning was
performed using the varpart() function in vegan in R.

The N-integration algorithm DIABLO of the mixOmics R package (http://
mixomics.org/, v6.12.2) was used as a second integrative approach. It is to be noted
that, in the case of the N-integration algorithm DIABLO, the variables of all the
datasets were also centered and scaled to unit variance before integration. In this
case, the relationships among all datasets were studied by adding a different
categorical variable, e.g., the cardiovascular fitness of horses. Horses with poor
cardiovascular fitness (n= 8) were compared to horses with enhanced
cardiovascular fitness (n= 3). DIABLO seeks to estimate latent components by
modeling and maximizing the correlation between pairs of pre-specified datasets to
unravel similar functional relationships99. To predict the number of latent
components and the number of discriminants, the block.splsda() function was
used. The model was first fine-tuned using leave-one-out cross-validation by
splitting the data into training and testing. Then, classification error rates were
calculated using balanced error rates (BERs) between the predicted latent variables
with the centroid of the class labels using the max. dist() function.

Finally, the DESeq2 (v.1.32.0)100 R package was used to test differential
abundances analysis between groups for the dominant phylotypes, MAGs, and the
genetic functionalities derived from KOs and CAZymes at the basal time. DESeq2
assumes counts can be modeled as a negative binomial distribution with a mean
parameter, allowing for size factors and a dispersion parameter. The p-values were
adjusted for multiple testing using the Benjamini–Hochberg procedure. DESeq2
comparisons were run with the parameters fitType=“parametric” and
sfType=“Wald”.

The validation cohort. The validation set consisted of 22 pure-breed or half-breed
Arabian horses (12 females, three males, and seven geldings; age: 9.2 ± 1.27) not
included in the experimental set to ensure that the observed effects were repro-
ducible in a broader context (Supplementary Data 20). Five animals were enrolled
in a 160 km endurance competition among the horses in the validation set, while
17 were in a 120 km race. The management practices throughout the endurance
ride and the International Equestrian Federation (FEI) compulsory examinations
and the weather conditions, terrain difficulty, and altitude were that of the

experimental set. All the participants enrolled in the study (experimental and
validation set) competed in the same event in October 2015 in Fontainebleau
(France). The cardiovascular capacity was created as described in the “Performance
measurement” section as a composite of post-exercise heart rate, cardiac recovery
time, and average speed during the race. Then, the HIGH, MEDIUM, and LOW
groups were determined according to the interquartile range of the composite
cardiovascular fitness values. HIGH included individuals with cardiovascular fit-
ness values above the 75th percentile, LOW below the 25th percentile, and MED-
IUM, the individuals ranging in between.

The PerMANOVA test was implemented by using pairwise.Adonis2() function
from the pairwiseAdonis R package. The model was adjusted by factors affecting
the microbiome: age and sex. The homogeneity of group dispersions (variance) was
applied via the betadisp() function of the vegan package to account for the
confounding dispersion effect. The one-way ANOVA with Tukey’s honest
significant differences (HSD) method for pairwise comparisons was performed
using the TukeyHSD() function in the stats R package (v.3.6.2).

The PLS-DA was used to identify the key genera responsible for the differences in
the groups using the mixOmics101 R package (v. 6.18.1). In addition, as PLS-DA
loadings may be misleading with highly correlated variables, the differences in each
relative genus’ abundance between the groups were quantified by DESeq2 R package.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The datasets presented in this study can be found in different online repositories.
Microarray expression data (MIAME compliant) are available in Gene Expression
Omnibus (GEO) repository under the accession number GSE163767. Metabolomic data
are available in the NIH Common Fund’s Data Repository and Coordinating Center
UrqK1489 (http://dev.metabolomicsworkbench.org:22222/data/DRCCMetadata.php?
Mode=Study&StudyID=ST000945). The gut metagenome 16S rRNA targeted locus data
from the experimental and validation sets are available in the DDBJ/EMBL/GenBank
under the BioProject PRJNA438436. The accession numbers of the BioSamples included
in the experimental set are SAMN08715729, SAMN08715728, SAMN08715727,
SAMN08715725, SAMN08715723, SAMN08715721, SAMN08715719, SAMN08715718,
SAMN08715714, SAMN08715713, SAMN08715710. The SRR accession numbers for the
16S rRNA targeted locus data are: SRR13664931, SRR13664928, SRR13664927,
SRR13664925, SRR13664924, SRR13664923, SRR13664921, SRR13664919,
SRR13664918, SRR13664917 and SRR13664916, respectively. Moreover, the raw
metagenomic sequence data of the 11 athletes have been deposited at DDBJ/ENA/
GenBank Whole Genome Shotgun under the same BioProject ID PRJNA438436 and
BioSamples numbers. The accession numbers ranged from SRR17543914 to
SRR17543904. All metagenome assemblies and sequences of MAGs have also been
deposited at DDBJ/ENA/GenBank Whole Genome Shotgun under the same BioProject
ID PRJNA438436, with the genome accession numbers ranging from JAKSHS000000000
to JAKSVZ000000000. They are also available at the INRAE institutional data repository
powered by Dataverse with https://doi.org/10.15454/NGBSPC91. Last, the horse gut
microbiome gene catalog is available at DDBJ/ENA/GenBank under the same BioProject
ID PRJNA438436 and the accession numbers from JALNLV000000000 to
JALNLY000000000. The catalog is also available at the INRAE institutional data
repository powered by Dataverse with https://doi.org/10.15454/NGBSPC91. Datasets
generated or analyzed during the study are included in this published article as
Supplementary Data. Other data supporting this study’s findings are available in the
INRAE institutional data repository powered by Dataverse with https://doi.org/10.15454/
NGBSPC91. They have been appropriately specified in the text where required. The
source data underlying the graphs and charts presented in the main figures are stored in
Supplementary Data 23. It contains a single experiment-level phyloseq object with the
ASV matrix, all related phylogenetic sequencing data, annotation, and metadata. All
other data are available from the corresponding author on reasonable request.
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