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Abstract
Emerging evidence indicates that the gut microbiome contributes to endurance exercise performance, but
the extent of their functional and metabolic potential remains unknown. Using elite endurance horses as
a model system for exercise responsiveness, we built the first equine gut microbial gene catalog
comprising more than 25 million non-redundant genes representing 4,696 genera spanning 95 phyla. The
unprecedented resolution unrevealed functional pathways relevant for both the structure of the
microbiome and the host health and recovered 369 novel metagenome-assembled bacterial genomes,
providing useful reference for future studies. Integration of microbial and host omic datasets suggested
that microbiomes harboring rare species were functionally dissimilar from those enriched in
Lachnospiraceae taxa. Moreover, they offered expanded metabolic pathways to fine-tune the
cardiovascular capacity through mitochondria-mediated mechanisms. The results identify an associative
link between horse endurance capability and its microbiome gene function, laying the basis for nutritional
interventions that could benefit endurance athletes.

Introduction
Endurance athletes undergo prolonged cardiovascular exercise and withstand physiological stress that
disrupts the body's homeostasis. This, in turn, overwhelms organs and the system's normal function 1,2.
The ability to run for long distances at high speed is scarcely distributed across land mammals. Through
years of selective breeding, Arabian horses have gained built-in biological mechanisms to run at more
than 160 km at 20 km/h, an effort comparable to that of marathon or ultra-marathon runners 3. The
effective body heat dissipation and the ability to endure extreme exercise enable this breed to have
outstanding endurance capabilities 4.

Endurance exercise performance is primarily limited by cardiovascular fitness, exercise economy and the
ability to sustain work without either excessive blood lactate levels or fatigue 5. The athletes with the
greatest improved cardiovascular fitness and fatigue resistance often succeed in competitions 5.

Undoubtedly, endurance exercise performance entails complex multifactorial processes whose
mechanisms are still not fully understood. New evidence has shown that the gut microbiome and its
associated metabolites impact host athletic performance during endurance racing in humans 6,7. The gut
microbiome produces thousands of unique small molecules that can potentially affect many aspects of
physiology such as regulating immunity, hydration and redox reactions as well as shaping the gut-brain
axis that affects fatigue and stress perception 2,8−12. These metabolites can act locally in the intestine or
can accumulate up to millimolar concentrations in different body fluids 13. Higher microbial diversity has
been correlated with improved cardiorespiratory fitness and performance in marathon runners regardless
of the sex, age, body mass index and diet 14. Other reports have also found significant associations
between the cardiovascular capacity, as assessed by the maximum oxygen consumption and the
Firmicutes-Bacteroidetes ratio 15 or reduced levels of fecal Eubacterium spp. 16. Deeper characterization
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of the links between athletic performance and the gut microbiome revealed that the single bacterium
Veillonella atypica is required to enhance athletic performance in treadmill mice experiments 6,7.

While current knowledge of the relationships between gut microbiome and endurance performance are in
their infancy in humans, controlling for known confounding factors (such as diet, training loads,
medications, occurring illnesses, environment and genetic background) has proven difficult. In this
respect, Arabian horses emerge as a suitable in vivo model for characterizing the microbiome
adaptations to endurance exercise due to their natural aptitude for athletic performance, the homogeneity
of their genetic and environmental backgrounds and the relative ease of sampling during endurance
races. Furthermore, recent findings suggest that gut microbial metabolites in endurance horses act as
mitochondria function regulators that prevent hypoglycemia 17, which is the limiting factor for fatigue
onset and thus, performance.

Despite these findings, if and how gut microbiome functions are responsible for better adaptations to
fatigue resistance, as well as success in athletic performances are not well understood. To address this
gap, we have built the first gene catalog of the equine gut microbiome in elite endurance horses. Our
results expanded the current representation of the equine gut microbiome with more than 25 millions of
non-redundant genes identified and 369 new metagenome-assembled genomes (MAGs). Moreover, by
using the holo-omic approach that incorporates multi-omic data from host and microbiome domains we
have shown that the gut microbiome composition and functions and the mitochondria activity are key
determinants for cardiovascular fitness. Rare microbes and their pool of genetic resources likely offered
metabolic pathways that fine-tuned mitochondrial function and consequently confer enhanced
cardiovascular capacity compared to microbial ecosystems with reduced diversity but higher abundance
of the Lachnospiraceae family.

Results

Building the first horse gut microbiome gene catalog
We constructed a microbial gene catalogue from the feces of 11 highly trained endurance horses (Suppl
Table S1). After quality filtering and host sequences decontamination, 1,124 millions of high-quality clean
paired reads were available, with an average sequencing depth per sample similar to that used for the
construction of chicken 18 and bovine 19 gut gene catalog (n = of 102 millions of paired reads per sample
on average; Suppl Table S2). These data were de novo assembled (total assembly size of 21.68 Gb;
Suppl Fig S1a) to build a non-redundant gene catalog of 25,250,066 genes with an average length of 618
bp (Suppl Table S2 and Fig S1a-f). Individual horses harbored around half of these genes (n = 11,809,713
genes) on average (Fig. 1a).

Taxonomic assignments were made from clean read pairs searching for maximum exact matches
between translated sequences and a reference database 20. This approach yielded an annotation for 61%
of all sequences (Fig. 1b) and revealed a diverse community of 95 phyla encompassing 1,110 families
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and 4,696 genera. Bacteria (95%) defined most of the assemblage in terms of abundance and diversity,
followed by a handful of eukaryotes (3.27%), archaea (1.14%) and viruses (0.15%). At the phylum level,
the bacterial phyla Firmicutes (44.3%) and Bacteroidetes (26.5%) greatly outnumbered Proteobacteria
(7.5%), Spirochaetes (6.2%), Actinobacteria (4.6%), Euryarchaeota (1.1%), Ciliophora (0.90%) and
Ascomycota (0.90%; Fig. 1c). Consistent with a recent metagenomic study in the wild Przewalski’s horses
21, Ascomycota and Basidiomycota were among the top Eukaryota phylum in the gut.

We then identified the most dominant microbial phylotypes. Dominant phylotypes (top 25% most
common phylotypes sorted by their abundance and found in more than half of the samples) accounted
for ~94% of the total annotated sequences on average and were represented by 1,146 unique genera
(Suppl Table S3). The great majority of these dominant microbes (85%) closely matched the most
abundant bacterial genera recovered using 16S rRNA based prediction (relative abundance > 0.1%; Suppl
Table S4 and Fig S1g). The core microbiome (Fig. 1d) was defined by a narrow section of the phylomes
(less than 0.15% of the overall microbial genera) that were highly abundant (38 to 54% of the sequences).
Along with Bacteroides (6.66% ± 0.57) and Prevotella (9.41% ± 1.54), which have been found to be
dominant genera in the gut of marathon and triathlon athletes, respectively 22, this core microbiome
included species from Fibrobacter (9.44% ± 3.71), Treponema (5.96% ± 1.59), Clostridium (4.91% ± 0.49)
and Ruminococcus (4.04% ± 0.79). All of them are in full agreement with the core microbiome of
endurance horses inferred from 16S rRNA-based sequencing 23–26.

To gain functional insights, genes and functional modules were annotated using the non-supervised
orthologous groups (EggNOG) database. We identified a total of 12,060 KEGG orthologous groups (KOs)
and 137 different carbohydrate-active enzymes (CAZymes), which encompassed 44% (n = 11,132,404)
and 3.38% (n = 665,235) of the gene catalog, respectively. The majority of KOs had functions related to
essential microbial gut functions, including genetic information processing and signaling, carbohydrate
and amino acid metabolism. However, we also identified a number of pathways (i.e., drug resistance,
biosynthesis of secondary metabolites, endocrine system and neurodegenerative diseases) relevant for
both the structure of the microbiome and the host health (Suppl Fig S2a). Most of the CAZYmes (85.4%; n
= 568,462 genes) pertained to glycoside hydrolase (GH) and polysaccharide lyases (PL) families,
highlighting the indispensable role of gut metagenome in complex dietary glycans metabolism (Suppl Fig
S2b and Table S5).

Taking advantage of this deep shot-gun sequencing of the microbiome, we investigated the presence of
antimicrobial resistance (AMR) genes. Considered horses harbored 57 clusters of AMR genes
representing the major antibiotic classes, including tetracycline (n = 20), aminoglycosides (n = 20) and
macrolides, lincosamides and streptogramins (MLS, n = 9; Fig. 1e; Suppl Table S6). The overall AMR gene
composition was similar to those of human 27 and livestock species such as cattle, pig and chicken, with
a high abundance and prevalence of the Firmicutes and Bacteroidetes-associated tetracyclines resistance
genes tet(W), tet(Q), tet(O), tet(40) and MLS resistance genes lnu(C) and mef(A) 28–30. Of note, we
detected the extended spectrum of β-lactamase (ESBL) blaACI−1 in 10 of the 11 horses. This AMR gene,
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found in several Negativicutes (Gram negative Firmicutes), is only rarely detected in animal or human gut
microbiomes 31. Such unusual prevalence is likely linked to the presence of two Negativicutes genera,
Phascolarctobacterium and Selenomonas, in the core microbiome of the studied horses (Fig. 1d).

Lastly, a set of 372 non-redundant prokaryotic MAGs were constructed from the metagenomic
sequencing at a threshold of > 50% completeness and contamination ≤ 10% (Suppl Table S7). Among
these, 121 MAGs were estimated to be near complete; MAGs in this subset had minimal contamination
(≤ 5%), high completeness (> 95%; Suppl Table S7). This MAG repertoire was assigned to 361 bacteria
and 11 archaea, involving bacteria from the Bacteroidetes and Firmicutes phyla, followed by
Spirochaetes, Euryarchaeota, Verrucomicrobia, Fibrobacteres and Cyanobacteria phylum (Suppl Fig
S3ab). The abundance of genomes pertaining to Cyanobacteria, Proteobacteria and Verrucomicrobia
phylum showed high rates of divergence between hosts (Suppl Fig S3c). This trend was bolstered at the
lower taxonomic level, except for MAGs assigned to Fibrobacter spp. (Suppl Fig S3d).

Of note, most MAGs (n = 369) have never been described before in horses to date 32,33, increasing the
mappability of metagenomes and expanding our understanding of the horse microbiomes.

Altogether, the building of the gut gene catalog and MAGs repertoire expands current understanding of
the equine gut microbiome. Its complexity and the abundance of genes associated with complex
carbohydrate fermentation underscores the adaptation to a terrestrial herbivorous lifestyle while
reminding the pervasive presence of AMR genes. Additionally, the identification of metagenome
functional capacity primed for host health likely reflected the significant energy demands and tissue
adaptations that occur during endurance exercise.

Basal gut metagenome composition discriminates
cardiovascular fitness
Building on the dominant microbial phylotypes, we investigated whether diversity, compositional and
functional differences could classify samples according to athletic performance. First, the ordination of
individual horse metagenomes using a non-metric multidimensional scaling of the dominant phylotypes
identified two distinct groups of samples that recapitulated variation along the first axis (Fig. 2a). A
similar pattern was obtained with a principal coordinate analysis (PCoA, Suppl Fig S4a) and the two
groups were also supported by permutational analysis of variance (PerMANOVA; p = 0.01, R2 = 0.3715).
Cluster 1 (n = 3 horses) was represented by multiple taxa, involving ciliophora, methanogenic archaea as
well as rare bacterial species from the Proteobacteria and Verrucomicrobia phylum (Fig. 2b-c) and
exhibited higher α-diversity (Shannon and inverse Simpson indices; p = 0.0134, Mann-Whitney U test,
Fig. 2d-e) despite the small sample size considered. In contrast to the overwhelming diversity observed in
cluster 1, a skewed species abundance distribution, with predominance of phylotypes from the Firmicutes
phylum (mainly Lachnospiraceae taxa) and Fibrobacter and Treponema genera defined cluster 2.
Similarly, the sample distribution based on KOs and CAZymes profiles echoed that of the dominant
phylotypes composition (Suppl Fig S4b-c, respectively).
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The macronutrient intake was not statistically different between horses from the two clusters (p > 0.05;
Suppl Table S1). Therefore, we next tested the extent to which any horse physiological, metabolic or
performance indicators best captured the distributions of microbial taxa. Host-centered omic and
phenomics data, including transcriptomics, metabolomics, acylcarnitines and blood biochemical assay
profiles as well as cardiovascular fitness parameters were used (Suppl Tables S8-S11, respectively). The
cardiovascular fitness, a composite of post-exercise heart rate, cardiac recovery time and average speed
during the race, was the principal contributor to the metagenome heterogeneity (envfit, R2 = 0.9192,
adjusted p = 0.005; Suppl Table S12), outperforming the expression of several mitochondrial genes
(Fig. 2f-g). This composite parameter aggregated 39.64% of fecal microbiome community variation.
Horses from cluster 1 had significantly higher cardiovascular fitness relative to that of cluster 2 members
(p = 0.0484, Wilcoxon rank-sum test, Fig. 2h) without incurring dramatic increases in blood lactate
concentration (p = 0.9212, Wilcoxon rank-sum test), a proxy for glycolytic stress and disturbance in
cellular homeostasis 1. The results hence indicated that - under the same prevailing environmental
conditions and nutrient availability - individuals harboring cluster 1 type communities achieved improved
cardiovascular capacity, that is lower post-exercise heart rates and faster cardiac recovery time at the
veterinary inspection compared to individuals with cluster 2 type microbial communities. The cluster 2
individuals were harboring a less diverse gut microbiota with only a few rare species involved.

An independent validation of findings confirms that Lachnospiraceae bacteria was associated with
cardiovascular fitness and in highly trained equine athletes

To further confirm the association between the cardiovascular fitness and the gut microbiome
composition found in the 11 elite horses based on their metagenome data, we analyzed the 16S rRNA
sequence data from the gut microbiota of 22 independent highly trained endurance horses (Suppl Table
S13 and S14). As with the study cohort, the microorganisms’ community profiles could be distinguished
based on the horse’s cardiovascular fitness (adjusted p = 0.05; pairwise comparisons using PerMANOVA
on a Bray-Curtis distance matrix, Suppl Fig S5a-c). Individuals with lower cardiovascular fitness harbored
a few players belonging to Firmicutes phylum with higher abundance (adjusted p = 0.024, Tukey’s Honest
Significant test; Suppl Fig S5d), namely Clostridiales, Erysipelotrichaceae and butyrate-producing bacteria
from the Lachnospiraceae family. For instance, taxa such as Barnesiella, Blautia, Butyrivibrio,
Coprococcus, Dorea, Desulfovibrio, Hespellia, Lachnospira, Myroides and L-Ruminococcus (all pertaining
to the Lachnospiraceae family) were commonly found in less fit athletes in both discovery and validation
sets. Contrastingly, individuals with improved cardiovascular fitness harbored a multitude of minor
players, as observed in the discovery set. Although larger cohorts are required to clearly validate the
relationship between athletic performance and gut microbiome, these data do, however, confirm the
association between Firmicutes (notably Lachnospiraceae taxa) and cardiovascular fitness.

Holo-omics: rare microbiomes with lower abundances of Lachnospiraceae taxa associated with improved
cardiovascular fitness and points toward enhanced mitochondrial capacity
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To characterize the microbiome-host crosstalk and identify molecular differences between the two types
of cardiovascular outcomes in elite horses, we integrated multi-omic datasets from host and associated
gut microorganisms through a multivariate matrix factorization approach using DIABLO (Data Integration
Analysis for Biomarker discovery using Latent Components). To achieve this integrated perspective
coined as holo-omics34, we combined pair host-centered omic and phenomics data with the shotgun
metagenomics, fecal SCFAs composition and the concentrations of bacteria, anaerobic fungi and
protozoa.

First, we observed strong covariation between the dominant phylotypes and the genetic functionalities
derived from both KOs (r2 = 0.99) and CAZymes (r2 = 0.98). This clear correlation supports the added
value of microbiome functionalities for status prediction rather than composition alone, as noted
previously in human athletes 14,35. Concomitantly, the microbiome composition highly covaried with the
mitochondrial transcriptome (r2 > 0.8) and the loads of fecal bacteria, anaerobic fungi and protozoa (r2 >
0.8; Fig. 3a). Second, to add biological meaning to the predicted model, we investigated the relationship
between the DIABLO-selected features with highest covariation (Suppl Fig S6a-c). The first latent variable
of the predicted model indicated that athletes with higher cardiovascular fitness harbored a wide range of
multi-kingdom and relatively low abundant species (Fig. 3b). It included the facultative bacterial predator
Lysobacter36, the health-promoting Akkermansia, which resides in the mucus layer of the gut and has
been already reported in elite athletes 39–43, along with anaerobic fungi (Ophiocordyceps, Cryptococcus,
Pseudogymnoascus, Trichoderma, Talaromyces), methanogens (Methanothermobacter, Methanothrix)
and algae (Emiliania and Porphyra). Coupled with these rare yet highly active microbes, the first latent
variable spanned CAZymes involved in the extraction of energy from recalcitrant polysaccharides and
endogenous host glycans (GH99, GT10; Fig. 3c). Conversely, less fit horses harbored higher amounts of
core species, that is, dominant Firmicutes taxa (Clostridiales, Erysipelotrichaceae and multiple members
of the family Lachnospiraceae), Treponema and Prevotella. Paired to it, the latter were characterized by
functionally redundant enzymes with respect to lignocellulosic carbohydrate catabolizing machinery
(GH8, GT36, GH51, GH28, GT2, GH5, GH3; Fig. 3c). Although intestinal microbiota members belonging to
the Lachnospiraceae family are known to produce significant amounts of acetate and butyrate 37, none
of these SCFA were significantly increased in the feces or plasma of these athletes (p > 0.05) and the
fecal pH remained unchanged (Suppl Table S15).

An impairment rather than improvement of metabolic flexibility in the less fit individuals was supported
by the reduced expression of genes in β-oxidation (ECI1, SCP2, ACLY), the electron transport chain
(TMEM242, NDFB4, TMEM126B, NDUFV3, NDUFA1, NDUFA10, SURF1, NDUFV1, DLD), Ca2+ translocation
(PMPCA, VDAC2, PHB), protein (MRPL2, PPA1, MRPL49, MRPL17, VDAC2, TARS2, MRPL24, FBXL4,
MRPS18C, PSTK), mitophagy (TOMM40) and mitochondrial biogenesis (SSBP1, ACSS2) (Suppl Fig S6d).
The fact that adipose tissue lipolysis likely exceeded uptake and oxidation mitochondrial capacity in less
fit individuals was confirmed by reduced concentrations of glucose (p = 0.0484, Wilcoxon rank-sum test),
increased accumulation of long-chain acyl-carnitines (i.e., oleoyl carnitine, p = 0.0484; hydroxy oleoyl
carnitine, p = 0.0242, Wilcoxon rank-sum test) and a tendency for augmented non-esterified fatty acids in
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plasma (p = 0.0848, Wilcoxon rank-sum test, see Suppl information). Additionally, less fit individuals
showed depletion of metagenomic KOs involved in the mitochondrial biogenesis (K03593, K07152) and
energy resilience (peroxisome proliferator-activated receptor (PPAR); K00029, K01596, K01897; see Suppl
information). This could consequently decrease fatty acids oxidation but also increase glucose
catabolism and progressively impede longer running times.

It is worth noting that the ciliate protozoal biomass, at up to about 18% of the biomass (~109 cells/g of
stool), was representative of more fit individuals (Suppl Fig S6e). The main observed genera were Stentor,
Stylonychia, Pramecium and Tetrahymensa, although their abundance and composition were much more
variable than bacteria and their role is not well understood.

Altogether, less diverse microbial ecosystems dominated by few Firmicutes-derived phylum (mainly
Lachnospiraceae) appear to set an upper-bound to the host metabolic response to exercise because of
reduced mitochondrial energy production and biogenesis that ultimately constrain aerobic ATP
production and extended cardiovascular fitness.

Frenemies: Lachnospiraceae and rare phylotypes in athletes

To gain insight into the co-occurrence and co-exclusion relationships between multi-kingdom microbial
genera, including organizational features that may contribute to host adaptation to exertion, we applied
an inverse covariance estimation for ecological association inference between microbiome (at the genus
level) and its metabolic potential, regardless of the cardiovascular fitness. This approach identified 12
modules. Among them, we uncovered two extreme assortative modules which were characterized by
strong within microbe-microbe or microbe-functions interactions (Fig. 3d) and recalled the features
identified using DIABLO. The first module was mostly characterized by bacterial interactions within
commensals from the Firmicutes phylum (mostly from Lachnospiraceae family) sharing similar
phylogenetic and functional properties, along with CAZy families that can target the substrate of plant
structural polysaccharides (GH3, GH39, GH51, GH82, GH84). On the other hand, the second extreme
network encompassed widespread yet minor bacteria from the Proteobacteria, Actinobacteria,
Planctomycetes, Verrucomicrobia (including Akkermansia sp.) and rare phyla, together with CAZymes
active on degradation of complex structure of plant cell-wall materials (GH28) and host glycans (GH20,
GH18, GH33; Fig. 3d).

These results suggested again that ecosystems enriched in rare microorganisms are functionally
different from Firmicutes dominant ones and cluster into segregated and distinct communities reflecting
an ecological or evolutionary selective advantage to the microbiome.

Discussion
The current study presents the first horse gut microbiome gene catalog and its association with
endurance performance. We have generated a catalog representing over 25 million non-redundant genes,
expanding the current state of diversity for the equine gut microbiome. The building of this gene catalog
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has also widened twenty-fold the number of genera known to reside in the gastrointestinal tract of horses
12,38,39, uncovering an unprecedented number of prokaryota and eukaryota species mainly coming from
the Ascomycota, Ciliophora, Basidiomycota, Chytridiomycota, Evosea and Apicomplexa phyla.
Interestingly, this catalog captured a wide array of specific functions, suggesting that athlete gut
microbiomes possess functional capacities primed for a greater ability to exploit energy from dietary,
microbial and host resources and tissue repair as previously posited 22. Moreover, we identified 372
MAGs, most of which appear to be novel species. Although much of the gut microbiome likely
represented unobserved diversity as our samples contained a significant proportion of unclassified
sequences, the availability of so many novel genes and MAGs represents a significant step forward in
understanding the composition and function of the horse gut microbiome.

Along with fatigue resistance, cardiovascular fitness is a key indicator of endurance performance in
human athletes 5. Comparably, in horses, the cardiovascular capacity based on heart rate, heart recovery
time after exercise and average speed across the race is considered to be a good indicator of the degree
of peripheral and central fatigue during endurance exercise and thus, athletic performance 40. In our
cohort of elite horses, ~40% of the variation in the gut microbiome composition was accounted for by
this parameter in absence of significant variation in dietary intake and across homogeneous genetic
backgrounds. This finding was validated in an independent cohort of elite horses and echoes the
association found between the cardiovascular fitness of marathon runners and their microbiota (~ 22%
of explained variance 15). Taking a closer look, less fit individuals were associated with Firmicutes taxa
and particularly, the dominance of tightly related Lachnospiraceae spp. which are able to break down
plant polysaccharides easily available in the gut. While this family is abundant in the adult human 41 and
horse gut microbiome 11,42,43; its abundance can be rapidly altered by changes in diet 44. Therefore, in
light of these findings, nutritional interventions to reduce Lachnospiraceae taxa abundance and functions
while creating more space for rare species will be likely required to increase microbiome diversity and
athletic performance. Some possible nutritional interventions could include probiotics and dietary fibers
with higher specificity (i.e., accessible and fermentable by a limited range of microbes). On the other
hand, a recent study proposes that fecal microbiome transplantation 6 as a means to increase exercise
performance in athletes, raising the possibility of fecal modulation as a way to gain an athletic
advantage.

Interestingly, the deep phenomics applied to these horses highlighted the microbiome-mitochondria axis
as one of the most effective ways to modulate the cardiovascular capacity. Metagenomic and
mitochondrial genes involved in the mitochondrial biogenesis and energy resilience were all
simultaneously upregulated in more fit individuals, suggesting improved exercise economy and fuel
sparing during endurance. Additionally, their gut microbiomes, characterized by a greater α-diversity and a
vast range of rare genera, showed highly functional capabilities, spanning many aspects of breaking
down plant polysaccharides and animal glycans such as glycosaminoglycan substrates (i.e., mucins,
hyaluronan, heparin and chondroitin). Conceptually, individuals with improved cardiovascular fitness
shifted the burden of microbiome nutritional support to host mucus glycans, hyaluronic acid and other
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glycoproteins from the intestinal environment and thus offer complementary or unique metabolic
pathways to enhance the mitochondrial functioning and meet the high energy needs during exertion.
Thus, it is speculative but not implausible that rare species (other than Akkermansia) might be able to
degrade and consume mucus-like glycoproteins that reside near the gut mucosa, which allows them to
influence the host adaptation to endurance exercise. In endurance horses, the consumption and
catabolism of N-acetyl moieties of glycoproteins during intense exercise has already been observed 45.
Yet, the role of the bacterial predator Lysobacter, the one with highest discriminative power in our DIABLO
model, is not well understood; however, ecosystems enriched with predatory bacteria are known to be
metabolically more active than other ecosystems and that they have important roles in regulating nutrient
fluxes in microbial food webs 52.

The PPAR pathway might be the main mechanism through which SCFAs and secondary microbial
metabolites from glycans and protein degradation in the lumen engage in multiple converging pathways
to regulate mitochondrial functions in different tissues, including the heart. For example, PPAR-α is highly
expressed in heart tissue where high levels of mitochondrial fatty acid oxidation occur 53. In line with the
increased PPAR metagenomic pathway, more fit athletes showed increased expression of mitochondrial-
related genes belonging to energy mitochondrial metabolism and biogenesis, Ca2+ cytosolic transport as
well as inflammation, all of which are necessary to improve aerobic work capacity, spare glycogen usage
and reduce peripheral fatigue 54. Mitochondria are essential for the physiological activity of the
cardiovascular system due to their crucial role in bioenergetic and anabolic metabolism and their
regulation of intracellular Ca2+ fluxes, which contribute to cardiac muscle contraction 55. Even the
slightest decrease in their efficiency can have a profound impact on cardiovascular capacity 56. Despite
this data, the role the microbiome directly has in mitochondrial function and density during exercise has
yet to be elucidated.

This study has revealed for the first time the enormous levels of untapped microbial diversity, biotic
interactions and functional gene potential in the gut of horse athletes. Using this unprecedented catalog
of genes, our findings suggest that the variability of the gut microbiome composition and functions were
associated with cardiovascular fitness in two ways. First, less diverse microbial ecosystems comprising
high amounts of Lachnospiraceae taxa showed lower expression of metagenomic and mitochondrial
related-genes assicuated with mitochondrial energetic activity, thereby leading to reduced amounts of
aerobic ATP and impaired cardiovascular function and thus reduced athletic performance. Second,
ecosystems harboring a large range of rare phylotypes, including the promising probiotic Akkermansia,
were found to be metabolically more active and thus offer complementary or unique metabolic pathways
to enhance the physiological activity of the cardiovascular system via crosstalk between mitochondria in
peripheral tissues. Functional studies of gut microbiome species that are intimately connected with
mitochondria function will be instrumental for the development of novel dietary strategies toward
optimized cardiovascular capacity and therefore athletic performance.

Methods
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Ethics approval
The study protocol was reviewed and approved by the local animal care and use committee (ComEth
EnvA-Upec-ANSES, reference: 11-0041, dated July 12th 2011) for horse study. All the protocols were
conducted in accordance with EEC regulation (no 2010/63/UE) governing the care and use of laboratory
animals, which has been effective in France since the 1st of January 2013. In all cases, the owners and
riders provided their informed consent prior to the start of sampling procedures with the animals.

Animals
Eleven pure-breed or half-breed Arabian horses (3 females, 1 male and 7geldings; mean ± SD age: 10 ±
1.69) trained for endurance were selected from a cohort previously used in our team 17, 57–59. All equine
athletes started their training for endurance competitions at the age of 4 and presented a similar training
history, level of physical fitness and training environment. The 11 horses were selected due to the
following these criteria: 1) enrollment in the same 160 km endurance category; 2) blood sample collection
before and after the race; 3) feces collection before the race; 4) absence of gastrointestinal disorders
during the four months prior to enrollment; 5) absence of antibiotic treatment during the four months
prior to enrollment and absence of anthelmintic medication within 60 days before the race; and 6) a
complete questionnaire about diet composition and intake.

Subject metadata, including morphometric characteristics and daily macronutrients diet intake records
are depicted in Suppl Table S1. Daily nutrient intakes calculations are described elsewhere 57.

Performance measurement
The endurance race was split into successive phases of ~30 – 40 km. At the end of each phase, horses
were checked by veterinarians (referred to as a vet gate). The heart recovery time was the primary
criterion evaluated at the vet gate as it is shown to be a remarkable complement to a physical
assessment of an individual. At each vet gate, the heart rate was measured by the riders and a
veterinarian using a heart rate meter and a stethoscope, respectively. Any horse deemed unfit to continue
(due to a heart rate above 64 bpm after 20 min of recovery) was immediately withdrawn from the event. It
should be noted that the time interval between arrival at the vet gate and the time needed to decrease the
heart rate below 64 bpm was counted as part of the overall riding time. Therefore, the cardiac recovery
time was calculated as the difference between the arrival time (at the end of the phase) and the time of
veterinary inspection (referred to as the “time in” by the FEI endurance rules). The average speed of each
successive phase was calculated at the vet gate.

Changes in these three variables during endurance events have shown to predict whether a horse is
aerobically fit or not 40. In an attempt to estimate cardiovascular capacity, which is linked to performance
capability and achievement, we consider all these variables together. Therefore, these three variables were
first scaled through a Z-score, that is, the number of standard deviation units a horse’s score is below or
above the average score. Such a computation creates a unitless score that is no longer related to the
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original units of analysis (i.e., minutes, beats, Km/h) as it measures the number of standard deviation
units and therefore can more readily be used for comparisons. A composite based on such Z-scores was
then created to estimate cardiovascular fitness. Specifically, the “composite” function (multicon R
package, v.1.6) was used to create a unit-weighted composite of the three variables listed above.

Transcriptomic microarray data production, pre-
preprocessing and analysis
The transcriptome microarray data production, pre-processing and analysis is depicted in Plancade et al.
(20219) and 17. Briefly, blood samples for RNA extraction were collected from each animal at T0 and T1
using Tempus Blood RNA tubes (Thermo Fisher).

Total RNAs were then isolated using the Preserved Blood RNA Purification Kit I (Norgen Biotek Corp.,
Ontario, Canada), according to the manufacturer’s instructions. Transcriptome profiling was performed
using an Agilent 4X44K horse custom microarray (Agilent Technologies, AMADID 044466). All of the
steps were conducted as described previously 60,61. We refer to our previous work for more details on the
pre-processing, normalization and the application of linear models 17. Given our interest in understanding
the role played by mitochondria during exercise, the set of 801 differentially expressed mitochondrial
genes reported by our team 17 was selected for the downstream steps of analysis (Suppl Table S8).

Proton magnetic resonance (1H NMR) metabolite analysis in plasma

As described elsewhere 57,58, the plasma metabolic phenotype of endurance horses was obtained from
1H NMR spectra at 600 MHz. Blood was collected from each horse the day before the event and within 30
minutes from the end of the endurance race using sodium fluoride and oxalate tubes in order to inhibit
further glycolysis that may increase lactate levels after sampling. The 1H NMR spectra were acquired at
500 MHz with an AVANCE III (Bruker, Wissembourg, France) equipped with a 5 mm reversed QXI Z-
gradient high-resolution probe. Further details on sample preparation, data acquisition, data quality
control, spectroscopic data pre-processing and data pre-processing including bin alignment,
normalization, scaling and centering are broadly discussed elsewhere 62. Details on metabolite
identification are described in our previous work 17,57.

Biochemical assay data production
Blood samples for biochemical assays were collected before and after the race using 10 mL BD
Vacutainer EDTA tubes (Becton Dickinson, Franklin Lakes, NJ, USA). As detailed in 57, after clotting the
tubes were centrifuged and the harvested serum was stored at 4°C until analysis. Sera were assayed for
total bilirubin, conjugated bilirubin, total protein, creatinine, creatine kinase, β-hydroxybutyrate, aspartate
transaminase (ASAT), γ-glutamyltransferase and serum amyloid A levels on a RX Imola analyzer
(Randox, Crumlin, UK).

Blood acylcarnitine profiling
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The serum acylcarnitine profiles, as a proxy for mitochondrial β-oxidation, were produced and analyzed
as described elsewhere 59. Briefly, blood samples were collected in plain tubes prior to and within 30
minutes of the end of the ride. After clotting, the tubes were centrifuged and the harvested serum was
stored at 4°C for no more than 48 hours and subsequently stored at -80°C. Free carnitine and a total of 27
acylcarnitines in plasma were analyzed as their butyl ester derivatives by electrospray tandem mass
spectrometry (ESI-MS-MS) in the positive mode and detected on a triple quadrupole mass spectrometer
(Xevo TQ-S Waters, Milford, MA, USA) using deuterated water.

Fecal measurements: SCFA, DNA extraction and
microorganism concentrations
Fresh fecal samples were obtained while monitoring the horses before the race. One fecal sample from
each animal was collected off the ground immediately after defecation as described previously 57,63 and
three aliquots (200 mg) were prepared. Since most of the horses experienced dehydration after the race,
the gastrointestinal emptying was significantly delayed and therefore it was not possible to recover the
feces immediately after the race. Aliquots for SCFA analysis and DNA extraction were snap-frozen.

SCFAs levels were determined by gas chromatography using the method described elsewhere 64.

Total DNA extraction from the 11 samples was performed as previously described 17. Briefly, DNA was
extracted from ~200 mg of fecal material using the EZNA Stool DNA Kit (Omega Bio-Tek, Norcross,
Georgia, USA) and following the manufacturer’s instructions. DNA was then quantified using a Qubit and
a dsDNA HS assay kit (Thermo Fisher).

As detailed in our previous studies 17,57, concentrations of bacteria, anaerobic fungi and protozoa in fecal
samples were quantified by qPCR using a QuantStudio 12K Flex platform (Thermo Fisher Scientific,
Waltham, USA). Primers for real-time amplification of bacteria (FOR: 5’-CAGCMGCCGCGGTAANWC-3’;
REV: 5’-CCGTCAATTCMTTTRAGTTT-3’), anaerobic fungi (FOR: 5’-TCCTACCCTTTGTGAATTTG-3’; REV: 5’-
CTGCGTTCTTCATCGTTGCG-3’) and protozoa (FOR: 5’-GCTTTCGWTGGTAGTGTATT-3’; REV: 5’-
CTTGCCCTCYAATCGTWCT-3’). Details of standard dilutions series, the thermal cycling conditions and
the estimation of the number of copies are detailed in 57 and 17.

Fecal microbiota: V3–V4 16S rRNA gene sequencing and
data pre-processing
Detailed description of the DNA isolation process, V3-V4 16S rRNA gene sequencing-PCR amplification is
presented by our group 11,12,17,57,63,65,66.

The Divisive Amplicon Denoising Algorithm (DADA) was implemented using the DADA2 plug-in for QIIME
2 (v. 2021.2) to perform quality filtering and chimera removal and to construct a feature table consisting
of read abundance per amplicon sequence variant (ASV) by sample 67. Taxonomic assignments were
given to ASVs by importing Greengenes 16S rRNA Database (release 13.8) to QIIME 2 and classifying
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representative ASVs using the naive Bayes classifier plug-in 68. The phyloseq (v.1.36.0) 69, vegan (v.2.5.7)
70 and microbiome (v.1.14.0) packages were used in R (v.4.1.0) for the downstream steps of analysis. A
total of 364,026 high-quality sequence reads were recovered for the 11 horses of the study (mean per
subject: 33,093 ± 17,437, range: 12,052 – 62,670). Reads were clustered into 5,412 chimera- and
singleton-filtered ASVs at 99% sequence similarity. The ASV taxonomic assignments and ASV counts for
each individual are presented in the Suppl Table S4).

Fecal metagenome: Shotgun sequencing data production
and analysis
Metagenomic sequencing was performed using the same DNA extractions. For each individual, a paired-
end metagenomic library was prepared from 100 ng of DNA using the DNA PCR free Library Prep Kit
(Illumina, San Diego, CA, USA) and size selected at about 400 bp. The pooled indexed library was
sequenced in an Illumina HiSeq3000 using a paired-end read length of 2x150 pb with the Illumina
HiSeq3000 Reagent Kits at the PLaGe facility (INRAe, Toulouse).

MAG assembly and annotation
Raw metagenomics reads were quality-trimmed, assembled, binned and annotated using the ATLAS
pipeline, v. 2.4.4 71. In short, using tools from the BBmap suite v.37.99 72, reads were quality trimmed and
contamination from the horse genome were filtered out (available at NCBI sequence archive with the
accession number GCA_002863925.1; Equus_caballus.EquCab3.0). Reads were error corrected and
merged before assembly with metaSPAdes v.3.13.1 73. Since a high diversity between individuals was
described through 16S rRNA amplicon analysis, we first assembled each sample independently. QUAST
5.0.2 74 was used to evaluate the quality of each sample assembly. Contigs from single samples were
binned using MetaBAT 2 (v.2.14) 75 and Maxbin 2.0 v.2.2.7 76 and their predictions were combined using
DAS Tool v.1.1.2-1 77.

The quality of the metagenome-assembled genomes (MAGs) was then assessed using checkM v.1.1.3 78.
The predicted MAGs presented at least 50% completeness and < 10% contamination. Because the same
MAG may be identified in multiple samples, dRep v.2.2.2 79 was used to obtain a non-redundant set of
MAGs by clustering genomes to a defined average nucleotide identity (ANI, default 0.95) and returning the
representative with the highest dRep score in each cluster. dRep first filtered genomes based on genome
size (default > 5,000 bp) and quality (default > 50% completeness, < 10% contamination). MAGs were
scored on the basis of completeness, contamination, genome size and contig N50, with only the highest
scoring MAG from each secondary cluster being retained as the winning genome in the dereplicated set.
The abundance of each MAG was then quantified across samples by mapping the reads to the non-
redundant MAGs and determining the median coverage in 1 Kb windows along each genome.

For the taxonomic annotation, ATLAS predicted the genes of each MAG sequence using Prodigal v.2.6.3
80 with default parameters. Robust taxonomic annotation was assigned to bins according to the genome
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taxonomy database (GTDB-tk 81) release 95, v.5.0 (July 17, 2020). As such, GTDB-Tk taxonomy names
are used throughout this paper. In addition, MAG phylogenetic trees were built based on markers from
GTDB-Tk and CheckM and visualized using ggtree (v.3.0.2) in R package.

To assess the contribution of the constructed MAGs to the functional potential of the gut microbiome, the
predicted gene and proteins extracted by Prodigal during the CheckM pipeline were compared to the
EggNOG database 5.0 using eggnog-mapper (v2.0.1). From this output, KEGG annotation (Kyoto
Encyclopedia of Genes and Genomes) and CAZymes annotation (Carbohydrate-active Enzyme) were
extracted. Since the detection of KOs and CAZymes families are likely to be influenced by sequencing
depth, we first normalized their abundance relative to the abundance of the MAG they derived from.
Pathways attributed to each KO were annotated from the KEGG

Database (downloaded 23-October-2021; https://www.genome.jp/brite/ko00001).

The uniqueness of our predicted MAG catalog was confirmed by dereplicating them with the 121 MAGs
produced by (Gilroy et al., 2021) and 3 reported by (Youngblut et al., 2020) using dRep v.3.2.0 79. dRep
performed pairwise genomic comparisons by sequentially applying an estimation of genome distance
and an accurate measure of average nucleotide identity. The visualization and comparison of highly
similar genomes were performed using the CGView family of tools
(http://wishart.biology.ualberta.ca/cgview/).

Construction of the integrated gene catalog
The establishment and assessment of the quality and representation of the microbiome gene catalog
was performed through the metagenomic ATLAS pipeline (v.2.4.4) 71. As described above, we first
assembled the clean reads into longer contigs.

Genes were predicted by Prodigal v.2.6.3 and then clustered using linclust 82 to generate a non-redundant
gene catalog. Redundant genes were removed (≥ 95% identity and ≥ 90% overlap) with linclust. The
quantification of genes per sample was done through the “combine_gene_coverages” function in the
ATLAS workflow, which aligned the high-quality clean reads to the gene catalog. Taxonomic and function
annotations were done based on the EggNOG database 5.0 using eggnog-mapper (v.2.0.1). From these,
the eggNOG numbers corresponding to CAZymes based on homology searches to the CAZyme database
were retrieved. We used the derived eggNOG abundance matrix to obtain a CAZyme profile per sample.
Similarly, KEGG annotation was retrieved from the EggNOG output. KEGG gene IDs were mapped to KEGG
KOs and used to obtain the KEGG functional pathway hierarchy.

Annotation of metagenome using Kaiju
The k-mer-based kaiju v. 1.8.0. (https://github.com/bioinformatics-centre/kaiju) 20 approach was used for
microbial taxonomic profiling of the shotgun metagenomes. Paired reads after quality trimmed and
decontamination from the horse genome were used and annotated against the NCBI nr reference
database (released on May 25th 2020) containing all proteins belonging to archaea, bacteria, eukaryota



Page 16/31

and virus for classification in Greedy run mode with -a greedy -e 3 allowing for maximum three
mismatches. By default, Kaiju returned a “NA” if it could not find a taxonomic classification at certain
ranks.

Resistome
The high-quality clean paired reads were aligned to the ResFinder database (accessed March 2018, v.4.0)
using bowtie2 (v.2.3.5). ResFinder is a manually curated database of horizontally acquired antimicrobial
resistance (AMR) genes and contains many genes with numerous highly similar alleles (i.e., β-
lactamases). To avoid random assignment of read pairs on these high-identity alleles, the database was
clustered at 95% of identity level, over 200 bp using CDHIT-EST (options -G 0 -A 200 -d 0 -c 0.95 -T 6 -g 1)
83 and a reference sequence was attributed to each cluster. Two successive mappings were done: (i) a
first mapping with standard parameters (bowtie2 --end-to-end --no-discordant --no-overlap --no-dovetail --
no-unal) on the complete ResFinder database and (ii) a second mapping on the clustered database using
the reads from the first mapping, with less stringent parameters (bowtie2 --local --score-min L,10,0.8).
More than 99% of the reads from the first mapping correctly aligned on a cluster reference sequence in
the second mapping.

Counts from the second mapping were normalized by computing the RPKM (reads per kilobase reference
per million bacterial reads) value for each ResFinder reference sequence. The RPKM values were
computed by dividing the mapping count on each reference with its gene length and the total number of
bacterial read pairs for the samples and multiplying by 109. A minimum of 20 mapped reads was
considered to validate the presence of an AMR gene cluster.

Biodiversity and richness analysis: α- and β-diversity
The microbiome R package allowed us to study global indicators of the gut ecosystem state, including
measures of evenness, dominance, divergences and abundance. Comparison of the gut α-diversity
indices between groups was performed by two-tailed Wilcoxon test (pairwise comparison). Benjamini-
Hochberg multiple testing correction p < 0.05 was set as the significance threshold for the comparisons
between groups.

To estimate β-diversity, Bray-Curtis dissimilarity was calculated using the phyloseq R package. All
samples were normalized using the “rarefy_even_depth” function in the phyloseq R package, which is
implemented as an ad hoc means to normalize features that have resulted from libraries of widely
differing sizes. The PerMANOVA test (a non-parametric method of multivariate analysis of variance
based on pairwise distances) implemented in the “adonis2” function from the vegan R package allowed
testing the global association between ecological or functional community structure and groups.

The core microbiome of individual samples was calculated using a detection threshold of 0.1% and a
prevalence threshold of 95% in the microbiome R package.
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The inter-individual variations in the gut microbiome
composition and function
The inter-individual variations in the gut microbiome composition and function were studied based on the
conceptual framework of community types 84. According to this framework, the samples were clustered
into bins based on their taxonomic similarity 85. Briefly, clustering was performed with PAM 86 using Bray-
Curtis distance of the normalized feature counts. The optimal number of communities was chosen by the
maximum average silhouette width, known as the silhouette coefficient (SC) 87.

Inference and Analysis of SPIEC-EASI Microbiome
Networks
The SParse InversE Covariance Estimation for Ecological Association Inference method (SPIEC-EASI) 88

was used to identify sub-populations (modules) of co-abundance and co-exclusion relationships between
dominant phylotypes and CAZy classes abundances matrices. Specifically, the method allows
microorganisms and functions to interact in a number of different ways, from bidirectional competition to
mutualism or to not interact at all. The statistical method SPIEC-EASI comprises two steps, first a
transformation for compositionality correction of the feature matrices and second an estimation of the
interaction graph from the transformed data using sparse inverse covariance selection. The sparse
graphical modeling framework was constructed using the “spiec.easi” function of the SpiecEasi package
(v.1.1.1). The features were clustered using the method = mb, lambda.min.ratio = 1e-5, nlambda = 100,
pulsar.params=list (thresh = 0.001). Regression coefficients from the SPIEC-EASI output were extracted
and used as edge weights to generate a feature co-occurrence network R igraph package (v.1.2.6) and
Cytoscape (v.3.8.2).

Integrative statistical analysis
Data integration was carried out using several approaches and different combinations of data sets. Prior
to the integration, we applied some additional pre-processing steps on our explanatory data sets. In
particular, to eliminate intra-individual variability and focus on the respective differential signals between
T1 and T0, we considered Δ values (T1–T0) for each of these data sets, namely biochemical assay data,
metabolome data, acylcarnitine profiles and gene expression data, as previously described 17. For the
transcriptome, we constructed a matrix of log-transformed expression values between T1 and T0 (i.e., the
difference in log2-normalized expression between T1 and T0, equivalent to the log2 value of the T1/T0
ratio) for the differentially expressed mitochondrial-related genes (Suppl Table S8).

The integration of data was then performed using complementary methods and working with different
data sets available, namely: (1) Δ values of mitochondrial-related genes; (2) Δ values of 1H NMR
metabolites; (3) Δ values of the biochemical assay metabolites; (4) Δ values of plasmatic acylcarnitines;
(5) the fecal SCFAs at T0; (6) the bacterial, ciliate protozoal and fungal loads at T0; (7) the dominant gut
phylotypes at T0; (8) the CAZymes profiles at T0; (7) the KOs at T0 and the (8) athletic performance data.
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As a first integration approach, a global non-metric multidimensional scaling (NMDS) ordination was
used to extract and summarize the variation in microbiome composition using the “metaMDS” function in
the vegan R package. To determine the number of dimensions for each NMDS, stress values were
calculated.

The explanatory data sets were then fit to the ordination plots using the “envfit” function in the vegan R
package 89 with 10,000 permutations. The effect size and significance of each covariate were determined
and all of the p-values derived from the “envfit” function were Benjamini-Hochberg adjusted. Variation
partitioning was performed using the “varpart” function in vegan in R. The “varpart” function uses linear
constrained ordination to assess the shared and independent (partialling out the others) contributions
(adjusted R2) of several covariates on microbiome composition variation.

As a second integrative approach, the N-integration algorithm DIABLO of the mixOmics R package
(http://mixomics.org/, v6.12.2) was used. It is to be noted that, in the case of the N-integration algorithm
DIABLO, the variables of all the data sets were also centered and scaled to unit variance prior to
integration. In this case, the relationships existing among all data sets were studied by adding a further
categorical variable, i.e., the cardiovascular fitness of horses. Horses that had poor cardiovascular fitness
(n = 8) were compared to horses that had enhanced cardiovascular fitness (n = 3). DIABLO seeks to
estimate latent components by modelling and maximizing the correlation between pairs of pre-specified
datasets to unravel similar functional relationships between them 90. A full weighted design was
considered. To predict the number of latent components and the number of discriminants, the
“block.splsda” function was used. In both cases, the model was first fine-tuned using the leave-one-out
cross-validation by splitting the data into training and testing. Then, classification error rates were
calculated using balanced error rates (BERs) between the predicted latent variables with the centroid of
the class labels using the “max.dist” function.

Additionally, the DESeq2 (v. 1.32.0) 91 R package was used to test for differential abundances analysis
between groups for each independent omic dataset. DESeq2 assumes that counts can be modeled as a
negative binomial distribution with a mean parameter, allowing for size factors and a dispersion
parameter. Next to the group, the horse dependency was included in the generalized linear model. The p-
values were adjusted for multiple testing using the Benjamini-Hochberg procedure. DESeq2 comparisons
were run with the parameters fitType = “parametric” and sfType = “poscounts”.

The validation cohort
The validation set consisted of 22 pure-breed or half-breed Arabian horses (12 females, 3 male and 7
geldings; age: 9.2 ± 1.27) not included in the experimental set to ensure that the observed effects were
reproducible in a broader context (Suppl Table S13). Among the horses in the validation set, five animals
were enrolled in a 160 km endurance competition, while 17 horses were enrolled in a 120 km race. The
management practices throughout the endurance ride and the International Equestrian Federation (FEI)
compulsory examinations, as well as the weather conditions, terrain difficulty and altitude were that of
the experimental set. In fact, all the participants enrolled in the study (experimental and validation set)
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competed in the same event during October 2015 in Fontainebleau (France). The cardiovascular capacity
was created as described in the “Performance measurement” section, that is, as a composite of post-
exercise heart rate, cardiac recovery time and average speed during the race. Then after, the HIGH,
MEDIUM and LOW groups were determined according to the interquartile range of the composite
cardiovascular fitness values, where HIGH included individuals with cardiovascular fitness values above
the 75th percentile, LOW below the 25th percentile and MEDIUM the individuals ranging in between.
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Figure 1

Description of the first horse gut gene catalog: core microbiome and taxonomic annotation

(a) Contribution of different sample sources to gene content of the horse gut catalog. Vertical purple and
blue bars represent the number of genes present in only one sample or shared between pairs of samples,
respectively. Horizontal orange bars in the lower panel indicate the total number of genes contained in
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each sample; (b)Visualization of the taxonomic assignment of Illumina reads in a Krona plot using the
software tool Kaiju; (c) Lollipop plot showing the read counts identified by the Kaiju resolved at the
phylum level. Dots are colored by kingdom; (d) Heatmap depicting the core phylome and their prevalence
at different detection thresholds (relative abundance). The percentage of shared items and the proportion
of shared samples are represented on the y- and x-axis, respectively; (e) Heatmap showing the normalized
counts of antimicrobial resistance (AMR) genes for each individual based on ResFinder database
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Figure 2

Gut microbiome composition and structure in endurance horses

(a) NMDS ordination analysis (Bray-Curtis distance) of dominant phylotypes composition. Points denote
individual samples which are colored according to the clustering group. The shape of the dots indicates
the competition level of horses; (b) Biplot values of the dominant phylotypes driving the NMDS
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ordination. The phylotypes contributing to the distinction between groups on at least one axis are
depicted. Points are colored by phylum; (c) Taxonomic distribution of the relative abundance of phyla in
each individual. Individuals are split by cluster; (d-e) Violin plot representing Shannon Diversity Index and
inverse Simpson index, respectively. In all cases, colors indicate community classification, the community
type 1 (red color) and community type 2 (blue color). Boxplots show median, 25th and 75th percentile, the
whiskers indicate the minima and maxima and the points lying outside the whiskers of boxplots
represent the outliers. Adjusted p values from Wilcoxon rank-sum tests; (f) NMDS ordination plot showing
the covariates that contribute significantly to the variation of dominant phylotypes determined by “envfit”
function. The arrows for each variable show the direction of the effect and are scaled by the
unconditioned r2 value. Dots represent samples, which are colored according to the type of community:
the community type 1 (red color) and community type 2 (blue color); (g) Effect sizes of the main variables
affecting the NMDS ordination. The length of the horizontal bars shows the amount of variance (r2)
explained by each covariate in the model. Covariates are colored according to the type of dataset: athletic
performance are in green and mitochondrial related genes in blue; (h) Violin plot representing the
cardiovascular fitness, which was calculated as a composite of post-exercise heart rate, cardiac recovery
time and average speed during the race. Colors indicate community classification, the community type 1
(red color) and community type 2 (blue color) and boxplots show median, 25th and 75th percentile, the
whiskers indicate the minima and maxima and the points lying outside the whiskers of boxplots
represent the outliers. Adjusted p values from Wilcoxon rank-sum tests.
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Figure 3

Sportomics: data integration supports the link between cardiovascular fitness and microbiome
composition and functionality

(a) Matrix scatterplot showing the correlation between the first components related to each dataset in
DIABLO according to the input design; (b) Microbial genera contributing to the separation along with
component 1 of the microbiome dataset. Microbiome data are centered log-ratio-transformed and bar
length indicates loading coefficient weight of selected phylotypes, ranked by importance, bottom to top.
Columns on the left depict the kingdom and phylum of each discriminant phylotype; (c) CAZymes
contributing to separation along with component 1 of (d). CAZymes profiles are log-transformed median-
scaled values. Bar length indicates loading coefficient weight of selected CAZymes, ranked by
importance, bottom to top. In all cases, colors indicate community classification, the community type 1
(red color) and community type 2 (blue color). Column in the left depict the CAZy class; (d) Co-occurrence
network analysis of dominant phylotypes and carbohydrate-active enzymes (CAZy) classes datasets
using sparse inverse covariance estimation for ecological association inference (SPIEC-EASI). Louvain
clustering was able to generate 12 feature co-occurrence modules. The two extreme assortative modules
are depicted in detail using Cytoscape. A positive correlation between nodes is indicated by red
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connecting lines, negative correlation by blue. Species and CAZymes features are denoted by a circle or
triangle, respectively. Nodes are colored by phyla. Features with higher text size are those revealed as
discriminant along with component 1 by the MixOmics approach. Edge width corresponds to the strength
of the association between features.
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