
HAL Id: hal-03795937
https://hal.inrae.fr/hal-03795937

Submitted on 4 Oct 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

The pathogenic biomarker alcohol dehydrogenase
protein is involved in Bacillus cereus virulence and

survival against host innate defence
Devon Kavanaugh, Constance Porrini, Rozenn Dervyn, Nalini Ramarao

To cite this version:
Devon Kavanaugh, Constance Porrini, Rozenn Dervyn, Nalini Ramarao. The pathogenic biomarker
alcohol dehydrogenase protein is involved in Bacillus cereus virulence and survival against host innate
defence. PLoS ONE, 2022, 17 (1), pp.1-13. �10.1371/journal.pone.0259386�. �hal-03795937�

https://hal.inrae.fr/hal-03795937
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


RESEARCH ARTICLE

The pathogenic biomarker alcohol

dehydrogenase protein is involved in Bacillus

cereus virulence and survival against host

innate defence

Devon W. KavanaughID, Constance PorriniID, Rozenn Dervyn, Nalini RamaraoID*

Micalis Institute, INRAE, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
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Abstract

Bacillus cereus is a spore forming bacteria recognized among the leading agents responsi-

ble for foodborne outbreaks in Europe. B. cereus is also gaining notoriety as an opportunistic

human pathogen inducing local and systemic infections. The real incidence of such infection

is likely underestimated and information on genetic and phenotypic characteristics of the

incriminated strains is generally scarce. We have recently analyzed a large strain collection

of varying pathogenic potential. Screening for biomarkers to differentiate among clinical and

non-clinical strains, a gene encoding an alcohol dehydrogenase-like protein was identified

among the leading candidates. This family of proteins has been demonstrated to be involved

in the virulence of several bacterial species. The relevant gene was knocked out to elucidate

its function with regards to resistance to host innate immune response, both in vitro and in

vivo. Our results demonstrate that the adhB gene plays a significant role in resistance to

nitric oxide and oxidative stress in vitro, as well as its pathogenic ability with regards to in

vivo toxicity. These properties may explain the pathogenic potential of strains carrying this

newly identified virulence factor.

Introduction

Bacillus cereus is an ubiquitous spore forming human pathogen. It is present in soil, foods,

almost all surfaces in hospital settings, and human skin. It is the second leading cause of collec-

tive foodborne outbreaks in France after Staphylococcus aureus and the third in Europe [1–3].

B cereus was associated with 155 outbreaks, 1,636 illnesses and 44 hospitalizations in Europe in

2019 according to reports by 27-member states. B. cereus can induce two types of gastrointesti-

nal diseases, leading to emetic or diarrhoeal syndromes. B. cereus can also cause severe sys-

temic infections, especially in immunocompromised patients leading to patient death in

approximately 10% of cases [4–9]. However, some B. cereus strains can cause severe and even

fatal infections in healthy people [10]. The pathogenic potential of B. cereus is thus extremely

variable, with some strains being harmless and others lethal [11].
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B. cereus produces toxins such as Hbl, Nhe, and CytK that induce cell toxicity [12–14]. In

addition, other factors such as HlyII, InhA1, CwpFM or Mfd have been implicated in B. cereus
resistance against the host immune system [15–21]. These toxins provide an indication of the

strain toxicity potential [13, 22–24]. However, these factors do not allow the discrimination of

strains according to their pathogenicity. Indeed, several studies have shown that the Nhe pro-

duction by hazardous strains is variable and that non-pathogenic strains can also produce it in

large quantities [1, 24]. Moreover, these toxins do not appear to be suitable markers for strains

causing non-gastrointestinal infections [22].

B. cereus strains that induced severe gastrointestinal or non-gastrointestinal disorders do

not carry neither hbl, ces, hlyII, cytK1 nor cytK2 genes and did not produce the Nhe protein,

implying that other still unknown factors were responsible for their pathogenicity [1, 11].

Accordingly, we have recently analyzed a large strain collection comparing strains that

induced an infection (intestinal or otherwise) with non-pathogenic strains [11, 25]. The

large strain screening allowed to identify a combination of four as yet undescribed biomark-

ers, wherein their presence/absence allows an accurate identification of clinical B. cereus
strains [26]. Three of these genes are located on the bacterial chromosome, and the fourth

one is located on a large plasmid in a region that could be defined as a novel pathogenicity

island for B. cereus [27]. These findings constitute a huge step in the understanding of the B.

cereus pathogenic potential and complexity and may provide tools to better assess the risks

associated with B. cereus contamination. Among these genes, adhB, was identified as a lead-

ing candidate [26]. This adhB gene encodes an alcohol dehydrogenase-like protein (ADH).

This family of enzymes is involved in oxidation-reduction biological process. ADH are

involved in metabolic and physiological processes in a variety of organisms, including fer-

mentative metabolism [28], the oxidation of alcohols as carbon and energy sources

[29], protection against anaerobic stress [30], and maintenance of the intracellular redox

balance [31].

In this study, the adhB gene was knocked out to better elucidate its function during B.

cereus virulence. Our results demonstrate that adhB plays a significant role in resistance to

nitric oxide (NO) and oxidative stress in vitro, as well as its pathogenic ability with regards to

in vivo infection and toxicity. These properties may explain the pathogenic potential of strains

carrying this newly identified virulence factor.

Materials and methods

Bacterial strains

This study includes 35 B. cereus strains isolated from human patients following systemic or

local infections and 21 non-pathogenic strains (Table 1). The 35 strains of the clinical collec-

tion were isolated from patient samples (biopsy, blood culture, etc) from nine French volun-

tary hospitals between 2008 and 2014. The samples and information were collected for a

previous study and were treated anonymously and thus not subjected to personal consent [22].

The non-pathogenic strains have been isolated from food, where no infection was reported in

humans. They were further tested in cell and animal models and did not induce any patholo-

gies [23, 25]. We have previously shown a correlation between cytotoxicity and virulence [11].

Nevertheless, although these strains had previously been shown to be weakly cytotoxic to

human cells and to have reduced virulence in an insect infection model, this does not rule out

their potential ability to produce symptoms in specific vulnerable populations (i.e. the elderly,

immunocompromised, or premature/new-born babies).
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Table 1. Characteristics of non-pathogenic (A) and clinical (B) strains.

A

Non-pathogenic strains Source adhB
INRA-PF_S09 Milk protein 0

I13_S10 Cooked rice 1

INRA-5_S11 Pasteurized zucchini puree 0

INRA-C64_S12 Pasteurized vegetables 0

ADRIA-I3_S13 Cooked foods 0

INRA-BN_S36 Vegetable 1

INRA-PA_S37 Milk protein 0

INRA-A3_S38 Starch 1

I23_S39 Cooked apple 0

SB_S40 Soil from a vegetable field 0

I11_S41 Cooked food 1

INRA-C1_S42 Pasteurized vegetables 0

INRA-C46_S43 Pasteurized vegetables 0

INRA-SL_S44 Soil 0

INRA-SO_S45 Soil 0

INRA-BC_S47 Vegetable 1

I2_S48 Dried fruit 0

INRA-BL_S49 Vegetable 0

ADRIA I21_S50 Cooked foods 0

INRA-SV_S51 Soil 0

WSBC 10204_S52 Pasteurized milk 0

B

Clinical strains Age of patients Type of sampling Symptoms Outcomes adhB
09CEB13BAC_S6 Premature

newborn

Blood culture Brain abscess Recovery 1

09CEB14BAC_S7 Premature

newborn

Blood culture Bacteremia Recovery 1

09CEB33BAC_S8 Newborn Axilla-later feces Skin infection Recovery 1

12CEB31BAC_S14 Premature

newborn

Blood culture Organ failure and pulmonary and cerebral abscesses Death 1

13CEB06BAC_S15 86 Blood culture from catheter Heart failure, ventilator-associated pneumonia, ischemic

stroke

Recovery 1

09CEB11BAC_S16 Premature

newborn

Blood culture Meningitis, infection in the liver, both lungs Death 1

09CEB16BAC_S17 Newborn Umbilical Local colonization Recovery 1

12CEB30BAC_S18 Premature

newborn

Blood culture Sepsis Recovery 1

12CEB40BAC_S20 63 Blood culture Bacteremia and central venous catheter-linked infection Recovery 1

12CEB46BAC _S21 61 Blood culture Sepsis (patient with an acute myeloid leukemia) Recovery 1

12CEB47BAC_S22 43 Blood culture Bacteremia Recovery 1

12CEB51BAC_S23 60 blood culture Sternum abscess, absent fever Sequela of

osteitis

1

13CEB01BAC_S24 31 Prosthesis from tibia No clinical sign of infection Recovery 1

09CEB12BAC_S53 Premature

newborn

Cerebrospinal fluid Meningitis, infection in the liver, both lungs Death 1

09CEB34BAC_S59 Premature-

newborn

Stomach-tube feeding Premature birth Recovery 1

09CEB36BAC_S61 Premature-

newborn

Central venous catheter Bacteremia Recovery 1

(Continued)
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adhB gene detection by PCR

For all the strains, a single colony was picked, resuspended in 100 μL Tris-EDTA NaCl buffer

(TEN) and incubated at 98˚C for 10 min. After centrifugation to pellet cell debris, 1 μl of

supernatant was used as DNA matrix. The PCR mixture for gene detection contained 1 μl

DNA matrix, 0.5 μM primer (forward: TTATTATCTATTCTTTCGTGTGATGC, and reverse

CTATTTGTAGCAGAACATTCRAAACC), 10 μL DreamTaq Green PCR Master Mix (2X)

(Thermo Scientific) in a final volume of 20 μL. Thermal cycling was carried out in a Mastercy-

cler1 nexus (Eppendorf) with the following program: a start cycle of 3 min at 98˚C, followed

by 30 cycles of 20 s at 98˚C, 30 s at 55˚C, and 1 min at 72˚C, and a final extension time of 10

min at 72˚C. PCR fragment sizes were revealed on 1.5% agarose gels containing Midori Green,

and visualised by a UV imaging device as previously described [26].

adhB mutant generation

The Bt407 Cry- with the reference genome Bacillus thuringiensis Bt407: NC_018877.1 was used

as a model for B. cereus and was renamed Bc 407.

Knock-out of the adhB gene (WP_000438843) was accomplished by double-cross over gene

substitution by use of the pMAD vector [32]. Briefly, using the available sequencing informa-

tion of the Bc407 strain, 600 bp regions upstream and downstream of the identified gene of

interest were synthesized surrounding a tetracycline-resistance cassette by the GeneCust com-

pany (Boynes, France). The upstream nucleotide coordinates used are 2,575,680 to 2,576,279,

and the downstream nucleotide coordinates are 2,577,204 to 2,577,802. The synthesized region

was then ligated into the pMAD vector. This vector was further transformed by heat shock

into chemically competent NEB-10 beta cells. The plasmid was then extracted and transformed

Table 1. (Continued)

12CEB34BAC_S64 80 Thoracentesis Pulmonary infection not known 1

12CEB37BAC_S90 30 Blood culture Endocarditis Death 1

12CEB38BAC_S91 65 Blood culture Sepsis Death 1

12CEB39BAC_S92 54 Blood culture Sepsis Recovery 1

12CEB42BAC_S94 63 Blood culture Bacteremia and central venous catheter-linked infection Recovery 1

12CEB43BAC_S95 63 Blood culture Bacteremia and central venous catheter-linked infection Recovery 1

12CEB44BAC_S96 34 Blood culture Bacteremia Recovery 1

12CEB45BAC_S97 newborn Blood culture Kidneys and urinary infections Recovery 1

12CEB48BAC_S98 66 Blood culture Bacteremia (patient with a colorectal cancer) Recovery 1

12CEB49BAC_S99 24 Blood culture+ skin infection Sepsis and aplastic anemia caused by drugs Recovery 1

12CEB50BAC_S100 77 Blood culture Bacteremia (patient with breast cancer) Recovery 1

12CEB52BAC_S101 40 Blood culture Bacteremia (immunocompromised patient) Recovery 0

13CEB03BAC_S102 76 Blood culture Community acquired pneumonia Recovery 1

13CEB07BAC_S105 24 Blood culture Abdominal pain, shivering, vomiting, fever, diarrhea Recovery 1

13CEB09BAC_S106 85 Liver abscess Sepsis, hepatitis c and liver abscess, abdominal pain, diarrhea Recovery 1

13CEB30BAC_S107 not known Blood culture Nausea, abdominal pain and vomiting not known 1

14CEB16BAC_S114 Premature

newborn

Blood culture from peripheral

veins

Septic shock, multiple organ failure, pulmonary and cerebral

abscesses

Death 1

14CEB17BAC_S115 Premature

newborn

Bronchial aspiration (lung) Septic shock and pneumonia Death 1

pulmonary necrotic abscesses, recurrent pneumothorax

14SBCL987_S116 not known Biopsy (kidney) Vomiting and diarrhea Death 1

The absence (0) or presence (1) of the adhB gene was detected by PCR.

https://doi.org/10.1371/journal.pone.0259386.t001
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into E. coli strain ET to facilitate de-methylation of the plasmid, increasing subsequent trans-

formation into B. cereus Bc407 as previously described [16]. Resulting colonies were then sub-

jected to temperature stress at 40˚C to force the incorporation of the resistance cassette leading

to the stable knock-out of the adhB gene, which was verified by PCR with oligonucleotide

sequences flanking the cloned region. The mutation was stable and sequencing revealed that

the mutation occurred at the corrected place and did not affect the flanking regions. The

resulting strain was designated as ΔadhB.

Wild type and mutant strains were streaked onto BHI agar from 20% glycerol stocks to

obtain isolated colonies. Colonies were inoculated into BHI broth and grown at 37˚C, 200 rpm

until mid to late-exponential phase for phenotypic analysis. Cultures in mid-exponential phase

were used for microscopy to determine cellular morphology. For growth assays, stocks were

inoculated into BHI broth and followed by sampling for CFU/ml at regular intervals.

Nitric oxide (NO) stress survival

B. cereus Bc407 and the ΔadhB mutant were grown to late-exponential phase. Cultures were

harvested and diluted 1:1000 in RPMI (Gibco Glutamax, Fisher Scientific, Illkirch Cedex,

France) and further grown at 37˚C without agitation with differing doses of the NO donor,

NOC-5 (3-[2-hydroxy-1-(1-methylethyl)-2-nitrosohydrazino]-1-propanamine (Calbiochem,

Sigma-Aldrich, Saint-Louis, MO, USA). NOC-5 was dissolved in NaOH 0.01 M and used at

the following concentrations: 0, 15.6, 25, 31.25, 50, 62.5, 100, 125, 250, 500 μM. After 1 h,

bacteria were agitated to avoid sedimentation and the survival rate was quantified after 4 h by

plating serial dilutions on LB agar plates. Data are pooled from two to four independent exper-

iments and presented as % survival = (NO-treated/Buffer-treated) × 100.

Oxidative stress survival

Oxidative stress-resistance was determined as previously described [33]. Briefly, wild-type and

ΔadhB mutant strains were grown and 2 h post-inoculation, 500 μl of each culture was added

to 100 μl of either sterile water or hydrogen peroxide at final concentrations of 2 mM or 10

mM. Treated (2 mM or 10 mM H2O2) and control (H2O) cultures were incubated for 10 min

at 37˚C and then serially diluted in phosphate-buffered saline (PBS) and plated on BHI to stop

the reaction and count CFU/ml. Data are pooled from two independent experiments and pre-

sented as % survival = (H2O2-treated/H2O-treated) × 100.

Insect infection trial

B. cereus Bc407 and the ΔadhB mutant were grown to exponential phase. Cultures were har-

vested and serially diluted 1:4 in peptone water prior to injection. 10 to 20 last instar Galleria
mellonella larvae were used following a 24 h fast as previously described [34, 35]. 10 μl of bacte-

rial preparations at various doses were injected between the second and third body segment

from the rear of the insect. Injected insects were incubated at 37˚C for 24 h, following which

survival was assessed. Peptone water was injected as negative control. Data are pooled from

three independent experiments and presented as % survival = (injected with strain/injected

with water) x 100.

Protein bioinformatic analysis

The protein sequences of the ADH protein (WP_000438843) was analysed with Pfam to find

functional domains. E-values are based on searching the Pfam-A family against UniProtKB

2018_04 using HMM search.
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Statistical analysis

Statistical analysis was performed with GraphPad Prism version 7. Insect survival curves were

assessed by non-linear regression, constraining the bottom to 0.

Bacterial survival rate following stresses were also analysed by non-linear regression, and

the statistical differences were calculated with a Wilcoxon test between the conditions with or

without stress.

Results

adhB as a marker of clinical B. cereus strains

The presence/absence of the adhB gene was assessed by PCR on a collection of strains of vary-

ing pathogenic potential: 21 non-pathogenic strains and 35 clinical strains (Table 1). adhB was

present in 34/35 (97%) clinical isolates, whereas it was present in 5 of 21 (24%) non-pathogenic

isolates. We thus hypothesised that adhB may be a new and important virulence factor of B.

cereus.
The amino acid sequences of the Bc407 gene WP_000438843 coding for a protein of the

AdhB family was analysed using the Uniprot database (Fig 1). This enzyme of 308 amino

acids belongs to the zinc-containing alcohol dehydrogenase family. The software identified

two domains, with the catalytic domain of the alcohol dehydrogenase containing an inserted

zinc-binding domain. This domain has a GroES-like structure [36, 37]. The co-factor-bind-

ing domain of the enzyme is located proximal to the C-terminus. Structural studies indicate

that it forms a classical motif called Rossman fold that reversibly binds NAD(H) as a co-fac-

tor [38, 39].

Growth characteristics and morphology

B. cereus Bc407 and the ΔadhB mutant were grown in BHI medium at 37˚C, 200 rpm and bac-

terial growth was followed by measuring the OD600, and CFU/mL determined by serial dilu-

tion and plating (Fig 2A and 2B). The two strains presented similar rates of growth with no

significant differences in growth curves. The strains were observed under the microscope and

bacterial morphology shows that the two strains are similar in cellular shape and size, with the

adhB mutant often making longer chains of cells (6–8 cells) (Fig 2C and 2D).

Fig 1. Structural domains of AdhB. The AdhB protein of B. cereus is composed of a catalytic domain with an inserted zinc-binding domain (green

box) and a co-factor-binding domain at its C terminus (red box). E-values are based on searching the Pfam-A family against UniProtKB 2018_04 using

hmmsearch.

https://doi.org/10.1371/journal.pone.0259386.g001
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Nitric oxide (NO) and oxidative stress resistance

To assess the role of AdhB in the resistance to the host immune system response, B. cereus
Bc407 and ΔadhB strains were incubated with the NO donor to test their resistance against

NO stress (Fig 3). Several doses of NO were assessed and the dose inhibiting 50% of bacterial

growth (IC50) was calculated. The IC50 of B. cereus wild type (WT) strain is approximately 4

times higher than that of the mutant (193 vs 45 μM of NO) and the survival rate of the mutant

is lower at each concentration of NO tested. Thus, the mutant adhB is more sensitive to nitric

oxide than the wild type strain.

Then, oxidative stress resistance of B. cereus Bc407 WT and ΔadhB strains was determined

after exposure to 2 mM or 10 mM H2O2 for 10 min at 37˚C (Fig 4). Wildtype Bc407 demon-

strated increased resistance at both concentrations, with survival percentage being 14-fold

higher at 2 mM, and 20-fold higher at 10 mM.

Insect model of B. cereus toxicity

The role of AdhB in the pathogenicity of B. cereus was assessed in an insect model of infection.

B. cereus Bc407 and ΔadhB mutant strains were injected at various doses into Galleria mello-
nella larvae (Fig 5). At 24 h post-injection, survival of the insects was assessed. Insects infected

with the ΔadhB mutant strain demonstrated higher rates of survival in relation to the wildtype

strain, demonstrating a reduced virulence of the mutant strain. Further, statistical analysis of

the survival curves reveals a significant difference in the LD50 values between the strains: 4.2

103 CFU/injection for the wildtype and 1.5 104 CFU/injection for the ΔadhB mutant. HillSlope

determined the curves to be distinct at 99.94% probability.

Fig 2. Bacterial growth curves and cellular morphology. Bacterial growth was determined by calculating CFU/mL (A) or following

optical density at 600 nm (B) for the wildtype B. cereus Bc407 (▲; solid line) and the ΔadhB mutant (●; dashed line) strains.

Representative bacterial morphology of Bt407 WT (C) and adhB mutant (D) are viewed at 100x magnification. The scale bar

represents a length of 10 μm. All graphs represent one representative experiment out of three biological replicates.

https://doi.org/10.1371/journal.pone.0259386.g002
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Discussion

Alcohol dehydrogenase (ADH) is an enzyme involved in oxidation-reduction biological pro-

cess. It catalyses the reversible oxidation of alcohols and induces the formation of their corre-

sponding acetaldehyde or ketone with the reduction of NAD (Fig 6). This class of enzyme

typically has a broad spectrum of action [40, 41]. Here we characterized AdhB as a protein

involved in B. cereus resistance to nitric and oxidative stresses, two major components of the

host immune system, and in its pathogenicity.

Currently three types of alcohol dehydrogenases are known, that differ structurally and cat-

alytically: Zinc-containing ’long-chain’ alcohol dehydrogenases, ’short-chain’ alcohol dehydro-

genases, and iron-containing alcohol dehydrogenases [42, 43]. The AdhB (WP_000438843)

protein in B. cereus is a zinc-containing ADH. These enzymes are typically dimeric or tetra-

meric proteins, which require two atoms of zinc per subunit to be functional, however, cata-

lytic activity is maintained in the presence of a single zinc atom. The zinc atoms interact with

either cysteine or histidine residues; the catalytic zinc being coordinated by two cysteines and

one histidine. Zinc-containing ADH’s are found in bacteria, mammals, plants, and fungi. Nor-

mally, there is more than one isozyme per species (e.g. humans possess at least six isozymes

and yeast have three). Consistently, we identified three Zinc-containing ADH’s in the Bc407

strain (WP_000438843, WP_000649129.1, WP_000645827.1). These three isozymes share

common structures with two identified domains (not shown). The first is the catalytic domain

that might contain an inserted zinc-binding domain. This domain has a GroES-like structure;

a name derived from the superfamily of proteins with a GroES fold. Proteins with a GroES

fold structure have a highly conserved hydrophobic core and a glycyl-aspartate dipeptide,

Fig 3. NO sensitivity. The wild type and ΔadhB mutant strains were cultured and incubated for 4 h in the presence of different concentrations of

NO donors. Bacterial survival was quantified by plating and bacterial resistance to NO was measured and normalized with respect to the control

condition, without NO. Data points correspond to the mean ± SEM of the values obtained from 2 to 4 biological replicates. The calculation of the

IC50 of NO was performed using Graphpad.

https://doi.org/10.1371/journal.pone.0259386.g003
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Fig 4. H2O2 sensitivity. The wild-type and ΔadhB mutant strains were grown and subsequently exposed to either 2

mM or 10 mM of hydrogen peroxide for 10 min at 37˚C. Bacterial survival was assessed by plating and normalized

against buffer-treated controls. Data points correspond to the mean ± SEM of the values obtained from 2 biological

replicates.

https://doi.org/10.1371/journal.pone.0259386.g004

Fig 5. Insect infection. Bacterial virulence was determined as Galleria mellonella survival percentage following injection with

varying CFU/mL of wild type (triangles, black line) or ΔadhB (circles, dashed line) mutant strains. Survival was measured as live

insects following 24 h post-injection. Calculation of the LD50 was done using Graphpad software.

https://doi.org/10.1371/journal.pone.0259386.g005
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which is thought to maintain the fold. The second is the domain that binds its cofactor NAD

owing to its motif denoted as a Rossman fold [38, 39].

In order to specify the role of AdhB in B. cereus, the virulence of the wild type and ΔadhB
mutant was tested in an insect infection model. G. mellonella larvae were used as a model of

infection as B. cereus is both a human and an insect pathogen [25, 44]. This study reveals that

adhB plays an essential role during B. cereus virulence and could thus be considered as a new

pathogenic factor.

During human or insect infections, B. cereus is able to resist the host immune system and

persist. It can indeed survive phagocytosis by macrophages and can induce their apoptosis [20,

45]. The primary mechanism of macrophage-induced cytotoxicity is through the massive pro-

duction of nitric oxide and oxidative stress at the peak of inflammation leading to bacterial

death [46, 47]. Thus, bacterial response to NO is of major importance for bacterial survival

and several pathogenic bacteria have developed means for detoxification and repair of the

damages caused by NO [48]. We have previously shown that B. cereus is particularly resistant

to NO [15, 18, 45, 49]. Here, we show that the ΔadhB mutant was more sensitive than the wild-

type strain to both oxidative and nitric stresses. Accordingly, this sensitivity may be implicated

in the reduced mutant virulence in the insect model.

The initial step of bacterial response to NO and oxidative response is the detection of reac-

tive oxygen and nitrogen species (ROS and RNS), which will permit to activate the detoxifica-

tion and repair pathways. It has been previously shown that virulence factor production by B.

cereus is dynamic and shaped by cellular oxidation [50]. ADH proteins have been previously

shown to be involved in the reduction of alcohol and the production of NADH. NADPH is

required to maintain and regenerate the cellular detoxifying and anti-oxidative defense sys-

tems [51]. The antioxidant defense system of B. cereus is constituted by an elaborate, often

overlapping network of enzymes [52], but to the best of our knowledge, there was no evidence

of ADH implication in the resistance of oxidative or NO stress. As oxidative and NO response

overlap during the immune response, it is not surprising that mechanisms of bacterial resis-

tance against ROS and RNS share similarities. The reduction capacity of ADH may be involved

in NO detoxification. Bacterial capacity to detoxify NO through reduction is widely distributed

in denitrifying bacteria but is also present in pathogens. For denitrifying bacteria, the reduc-

tion of nitrate to N2 is part of the nitrogen cycle and prevents NO high toxicity; for pathogenic

bacteria, NO detoxification might be a mean to survive under oxygen limited environments

and to survive to nitrogen stress [46, 47, 53].

Taken together, we have identified a new virulence factor implicated in B. cereus resistance

to host immunity whose activities may explain the pathogenic potential of clinical strains car-

rying this newly identified pathogenic biomarker.
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25. Kamar R, Gohar M, Jéhanno I, Réjasse A, Kallassy M, Lereclus D, et al. Pathogenic Potential of Bacil-

lus cereus Strains as Revealed by Phenotypic Analysis. J Clin Microbiol. 2013; 51:320–3. https://doi.

org/10.1128/JCM.02848-12 PMID: 23135929
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