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Abstract: During biofilm growth, the coexistence of planktonic and sessile cells can lead to dynamic
exchanges between the two populations. We have monitored the fate of these populations in glass
tube assays, where the Bacillus thuringiensis 407 strain produces a floating pellicle. Time-lapse
spectrophotometric measurement methods revealed that the planktonic population grew until the
pellicle started to be produced. Thereafter, the planktonic population decreased rapidly down to a
value close to zero while the biofilm was in continuous growth, showing no dispersal until 120 h
of culture. We found that this decrease was induced by the presence of the pellicle, but did not
occur when oxygen availability was limited, suggesting that it was independent of cell death or cell
sedimentation and that the entire planktonic population has integrated the biofilm. To follow the
distribution of recruited planktonic cells within the pellicle, we tagged planktonic cells with GFP and
sessile cells with mCherry. Fluorescence binocular microscopy observations revealed that planktonic
cells, injected through a 24-h-aged pellicle, were found only in specific areas of the biofilm, where the
density of sessile cells was low, showing that spatial heterogeneity can occur between recruited cells
and sessile cells in a monospecies biofilm.

Keywords: biofilm; Bacillus cereus; Bacillus thuringiensis; recruitment; heterogeneity

1. Introduction

Biofilm growth can be the result of sessile cell division or of the integration of incoming
bacteria (planktonic cell recruitment). Planktonic cell recruitment is extensively described
in some multispecies biofilms, such as the dental plaque. In this oral biofilm, the sequen-
tial recruitment of secondary or tertiary colonizers occurs through specific interactions
with pioneer species [1]. For instance, Porphyromonas gingivalis fimbriae interact with a
glyceraldehyde 3-phosphate deshydrogenase produced by Streptococcus oralis, a primary
colonizer of the tooth enamel [2]. Planktonic cell integration within an existing biofilm
enables bacteria devoid of biofilm-forming capacities, including pathogens, to colonize
and sustain their persistence in numerous environments. Cell immigration into a mature
biofilm has also a significant impact on microbial ecology since it promotes expansion of the
genetic pool in the resident biofilm by horizontal DNA transfer between species [1,3,4]. It
also enhances the resilience to adverse environmental conditions by increasing the variety
of metabolic processes within the community and can lead to spatial heterogeneity of the
biofilm through species stratification, according to their metabolic requirements [5].

Bacillus cereus and Bacillus thuringiensis are motile, facultative aerobic, spore-forming
bacteria that belong to the Bacillus cereus sensu lato group [6]. Both species are genetically
very close, but while B. thuringiensis is used as a natural pesticide, having a wide range
of entomopathogenic activity due to parasporal crystal proteins [7], B. cereus is a human
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pathogen, involved in food poisoning [8] and systemic or local infections [9]. B. thuringiensis
and B. cereus are able to produce dense biofilms at the air–liquid interface [10]. The air–
liquid interface is a suitable environment for the development of aerobic microorganisms,
since it provides access to oxygen. In Shewanella oneidensis or Pseudomonas fluorescens,
oxygen is required for pellicle formation at the air-liquid interface [11,12]. Planktonic
bacteria movement toward the biofilm requires motility. Bacillus subtilis immotile mutant
strain was shown to have a delay in pellicle formation compared to the wild-type strain [13],
and immotile mutants of B. thuringiensis strain 407 do not produce biofilms [10].

Although the recruitment of planktonic cells by the biofilm has been the subject of a
number of reports, dynamic studies of the interaction between the two populations when a
pellicle is produced at an air–liquid interface have been seldom conducted. The objective
of this study was to determine the fate of a planktonic population during the development
of the biofilm at the air–liquid interface, in B. thuringiensis.

2. Materials and Methods
2.1. Strains and DNA Manipulation

Strains used in this study are listed in Table S1. The B. thuringiensis 407 Cry− strain
(Bt407) has been cured of its Cry plasmid [14]. Bt407 forms thick biofilms and is genetically
similar to B. cereus strains [15]. The Bt407 ∆Spo0A strain was constructed by insertion of
a kanamycin resistance cassette in spo0A [16]. The B. cereus strains included in this work
were ATCC14579, AH829 and ATCC10987 [17].

Two strains were used for epifluorescence microscopy observations. The GFP-tagged
Bt407 strain, expressing constitutively GFP, was constructed by inserting gfp in the alpha
amylase gene BTB_c12100 of the Bt407 strain (chromosome accession number CP003889).
DNA fragments corresponding to the chromosomal DNA regions upstream and down-
stream of BTB_c12100 were generated by PCR using the primer pairs AmyAFW–AmyARV
and AmyBFW–AmyBRV, respectively (Supplementary Materials Table S1). The gfp coding
sequence, including the SarA promoter sequence, was amplified from pCM11 [18] using
primers sGFPFW and sGFPRV (Table S2). The amplified DNA fragments and the sarA–gfp
fragment were cloned between the HindIII and the BamHI sites of plasmid pRN5101 [19].
The resulting plasmid was used to transform the Bt407 wild-type strain by electropora-
tion [14], and sarA-gfp was inserted into the alpha amylase gene after allelic exchange by
homologous recombination [20]. The corresponding strain was designated strain Bt407-gfp.
The mCherry-tagged Bt407 strain was constructed as follows. A 506-bp SphI-XbaI DNA
fragment containing the aphaIII promoter was amplified from the pDG783 plasmid [21]
by PCR, using the primers pAphaIII-F and pAphaIII-R (Table S2), and inserted in the
pHT1618 plasmid [22]. A KpnI-EcoRI DNA fragment including an optimized RBS sequence
and the mCherryLGC gene was generated by PCR from pHT304-18 mCherry [23] with
the mCherry-F and the mCherry-R primers and inserted in pHT1618-pAphaIII. From the
resulting plasmid, a 1268-bp SphI-EcoRI DNA fragment was amplified by PCR and inserted
in pAT28 [24], giving rise to the pAT28-mCherry plasmid. This plasmid was transformed
in the Bt407 strain to obtain the Bt407-mCherry strain.

2.2. Time-Course of Planktonic and Biofilm Population Growth

A 100-mL Erlenmayer culture flask, filled with 10 mL LB, was seeded with one colony
and grown at 30 ◦C, 175 rpm until the exponential growth phase was reached. These
pre-cultures were diluted to an OD600 of 0.01 into fresh HCT culture medium [25] and
2 mL of this dilution was distributed in UV-sterilized 3.5-mL glass cuvettes (1 × 1 mm
section) sealed with a sterile cotton plug. The OD600 of the planktonic population below the
biofilm was recorded in situ in time-lapse using a Shimadzu UV2501 spectrophotometer,
for a duration of 48 h at 2-min intervals, and at a regulated temperature of 30 ◦C. In
one experiment, 250 µL of sterile mineral oil (paraffin oil) was poured on top of the
culture medium. Each experiment was repeated three times, and representative curves
are shown. Biofilms were produced in glass tubes as described earlier [10]. Briefly, pre-
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cultures, obtained as specified above, were diluted to an OD600 of 0.01 into HCT. Two
milliliters of the diluted culture was distributed in UV-sterilized glass tubes (10.8 mm
internal diameter, 64 mm height). After different times of incubation (from 8 to 60 h) at
30 ◦C, the 2 mL culture medium was removed using a Pasteur pipette and the OD600 of
the floating biofilm, thoroughly resuspended and vortexed in 2 mL PBS, was measured.
The biofilm OD600 is linearly and significantly related to the number of vegetative cells or
spores contained within it, the two latter having the same absorbance [26]. Representative
results of three replications are shown. In the two devices (biofilm and planktonic growth
measurement), the same culture medium, incubation temperature and volume were used.
The cross-section surfaces were similar: 0.92 cm2 vs. 1 cm2. The only difference was
that the cross-section was a square for planktonic culture growth measurement and a
circle for biofilm growth measurement, which makes comparisons between the two sets of
results possible.

2.3. Recruitment of Gfp-Tagged Planktonic Cells in a mCherry-Tagged Biofilm

Biofilms were produced in the same way as above, except that the glass tube height
was 30 mm instead of 64 mm (same diameter). The m-Cherry labeled Bt407 strain was
used to form the biofilm, and 50 µL of a gfp-labelled Bt407 planktonic cell culture was
injected in the 2 mL culture medium through the 12-h-old pellicle and near the bottom of
the tube, using a 26-needle gauge and a micro-manipulator to avoid pellicle disturbance.
The injected planktonic cells were taken from an exponential growth phase culture in HCT
medium at an OD600 of 1.0. Two mL of this culture was centrifuged at 3000 rpm and
resuspended in 0.1 mL of sterile water (final OD600 after injection: 0.5). The glass tubes
were observed 24 h later with a fluorescence stereomicroscope.

2.4. Time-Course of the Pellicle Formation

A Bt407 wt culture in exponential phase was diluted to an OD600 of 0.01 into HCT
medium. Then, 2.5 mL of the diluted culture was distributed in a sterile 5-mL beaker
(1.8 cm diameter) closed by a sterile glass slide and incubated at 30 ◦C. Pictures were taken
every 10 min with a digital camera for a duration of 48 h. Pictures were processed by
Adobe Photoshop® CS6 to build an mp4 video file showing the pellicle growth over time.

3. Results
3.1. The Planktonic Population Decreases When the Biofilm Grows

The Bt407 wt strain, when cultured in static conditions, produces a floating pellicle
that covers the whole liquid surface [27]. In the glass tube assays, no pellicle was formed
after 10 h of culture but the culture medium was turbid, consecutively to the planktonic
population growth (Figure 1). However, after 36 h or 120 h of incubation, a dense pellicle
was produced and the culture medium reversed to a transparent state similar to the one
observed at the onset of the experiment (0 h).

This observation suggested that the planktonic population vanished while the biofilm
grew. To follow the fate of the planktonic population during biofilm growth, we recorded,
by spectrophotometry, the time-course of bacterial density both in the pellicle and in the
planktonic population (Figure 2A). In the first hours of culture, the planktonic biomass
increased rapidly until it reached a plateau at OD600 0.7, between 6.5 and 12 h of incubation.
At the end of this plateau, the biofilm could be detected for the first time and started its
exponential growth, while the planktonic population density began to decrease. At the
end of the biofilm growth, after 48 h of incubation, the planktonic population density was
nearly down to zero (OD600 0.02). To confirm that the onset of the planktonic population
decrease is simultaneous to biofilm growth, we monitored in the Bt407 strain the pellicle
formation for 41 h, in time-lapse and under a stereomicroscope. Pictures were taken every
10 min and assembled within a video (Video S1, Supplementary Materials). The movie
shows that the pellicle could be seen at the liquid surface between 14 and 15 h after the start
of the culture, and that after 16 h of incubation, the biofilm growth increases exponentially,
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forming thick protrusions. After 30 h of incubation, the biofilm was fully completed. An
analysis of the movie images shows that the surface covered by the biofilm increases
sharply between 14 and 17 h, after which the whole surface is covered (Figure S1). The
subsequent development of the biofilm can therefore be attributed an increase in thickness.
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Figure 1. Biofilm formation and planktonic growth in glass tubes. The Bt407 strain was grown, in
static conditions at 30 ◦C, in HCT medium and in glass tubes. Pictures were taken at the start of the
experiment (0 h), and after 10, 36 or 120 h of incubation.

Microorganisms 2021, 9, x FOR PEER REVIEW 5 of 13 
 

 

 

This observation suggested that the planktonic population vanished while the bio-
film grew. To follow the fate of the planktonic population during biofilm growth, we rec-
orded, by spectrophotometry, the time-course of bacterial density both in the pellicle and 
in the planktonic population (Figure 2A). In the first hours of culture, the planktonic bio-
mass increased rapidly until it reached a plateau at OD600 0.7, between 6.5 and 12 h of 
incubation. At the end of this plateau, the biofilm could be detected for the first time and 
started its exponential growth, while the planktonic population density began to decrease. 
At the end of the biofilm growth, after 48 h of incubation, the planktonic population den-
sity was nearly down to zero (OD600 0.02). To confirm that the onset of the planktonic 
population decrease is simultaneous to biofilm growth, we monitored in the Bt407 strain 
the pellicle formation for 41 h, in time-lapse and under a stereomicroscope. Pictures were 
taken every 10 min and assembled within a video (Video S1, Supplementary Materials). 
The movie shows that the pellicle could be seen at the liquid surface between 14 and 15 h 
after the start of the culture, and that after 16 h of incubation, the biofilm growth increases 
exponentially, forming thick protrusions. After 30 h of incubation, the biofilm was fully 
completed. An analysis of the movie images shows that the surface covered by the biofilm 
increases sharply between 14 and 17 h, after which the whole surface is covered (Figure 
S1). The subsequent development of the biofilm can therefore be attributed an increase in 
thickness. 

 
Figure 2. Time-course of the OD600 for planktonic or sessile populations in glass tube assay. (A): 
Strain Bt407; (B): Bt407∆Spo0A. Plain line: planktonic population; dotted line: sessile population. 
Left y-axis: planktonic population OD600, linear scale; Right y-axis: biofilm OD600, log-scale. 

3.2. The Biofilm Is the Cause of the Planktonic Population Decrease 
Because the start of planktonic population decrease was coincident with the onset of 

biofilm growth, we hypothesized that the planktonic population decrease was related to 
biofilm formation. To test this hypothesis, we used the sporulation-deficient mutant Bt407 
∆Spo0A, which is unable to form a biofilm [28]. As shown in Figure 2B, the planktonic 
population grew rapidly until it reached a plateau at OD600 0.6, and thereafter showed no 
decrease until 48 h of incubation. Therefore, the decrease in the planktonic population is 
a consequence of biofilm formation. To determine if the speed of decrease depends on the 
biofilm biomass, we repeated the experiment with a set of B. cereus strains with variable 
abilities to form a pellicle (Figure 3). 
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Bt407∆Spo0A. Plain line: planktonic population; dotted line: sessile population. Left y-axis: planktonic population OD600,
linear scale; Right y-axis: biofilm OD600, log-scale.

3.2. The Biofilm Is the Cause of the Planktonic Population Decrease

Because the start of planktonic population decrease was coincident with the onset of
biofilm growth, we hypothesized that the planktonic population decrease was related to
biofilm formation. To test this hypothesis, we used the sporulation-deficient mutant Bt407
∆Spo0A, which is unable to form a biofilm [28]. As shown in Figure 2B, the planktonic
population grew rapidly until it reached a plateau at OD600 0.6, and thereafter showed no
decrease until 48 h of incubation. Therefore, the decrease in the planktonic population is a
consequence of biofilm formation. To determine if the speed of decrease depends on the
biofilm biomass, we repeated the experiment with a set of B. cereus strains with variable
abilities to form a pellicle (Figure 3).
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Figure 3. Steepness of the planktonic population decrease as a function of biofilm formation ability. (A): Strain ATT10987;
(B): strain 1TCC14579; (C): strain AH829. Plain line: planktonic population; dotted line: sessile population. Left y-axis:
planktonic population OD600, linear scale; Right y-axis: biofilm OD600, log-scale. Assays in glass tubes.

The slope of planktonic OD600 decrease was steep for strain ATCC10987, which
produces dense biofilms [29], intermediate for strain ATCC14579, which produces poor
biofilms, and null for strain AH829, which is unable to form a biofilm. The relationship
between the slope of planktonic OD600 decrease and the ability to form a biofilm was linear
(r = 0.98, p < 0.05) (Figure 4).
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AH829. The linear regression (slope vs. biofilm) was significant (p < 0.05, r = 0.98).

3.3. The Planktonic Population Is Recruited within the Biofilm

Planktonic population decrease might be attributed to cell lysis, cell sedimentation or
cell integration within the growing biofilm (recruitment). We measured the optical density
of cells sedimented at the bottom of the tube. When resuspended in the initial culture
volume, the sediment had an OD600 of 0.16 ± 0.02. It should be noted that this sediment
includes not only cells from the planktonic population but also biofilm pieces detached
from the floating pellicle, which makes sedimentation unlikely to explain, by itself, the
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drop in planktonic OD600. Cell mortality was difficult to estimate through measurement of
released DNA or stable cytosolic proteins, because B. thuringiensis secretes a high number
of degradative enzymes, including proteases and nucleotidases [30]. However, the reason
that the biofilm could induce planktonic bacterial mortality is likely to be the limitation of
oxygen exchanges, consecutively to the presence of a pellicle covering the whole surface
since, even in the absence of a pellicle, the consumption of oxygen by the planktonic
population leads to a low oxygen concentration in the culture medium (Figure S2). To test
this hypothesis, we followed over time the OD600 of the planktonic population in a glass
cuvette, in which the culture medium was covered by a layer of mineral oil, to suppress
oxygen exchange. In this condition, the planktonic population grew until it reached a
peak at OD600 0.7, but did not decrease afterward (Figure 5A). After 48 h of incubation,
no biofilm was produced and the culture medium was turbid, showing the presence of a
planktonic population (Figure 5B). Therefore, the micro-aerobiotic condition which prevails
beneath the biofilm does not induce bacterial mortality, which means that the planktonic
population decrease observed during biofilm growth is a consequence of recruitment.
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Figure 5. Growth of Bt407 in micro-aerobic condition. The culture was performed in static condition
at 30◦, in HCT medium and in a glass cuvette. (A): Time-course of the OD600 of the planktonic
population. (B): Picture of the cuvette after 48 h of incubation.

3.4. Recruited Bacteria Are Located in Specific Areas of the Biofilm

To observe the integration of planktonic bacteria within the biofilm, we injected a
GFP-tagged planktonic population through a 12-h-aged mCherry-tagged biofilm pellicle,
in the culture medium beneath the biofilm. The biofilm was observed 24 h later with a
fluorescence binocular microscope. The pellicle structure as seen in white light was hetero-
geneous, with clusters of high biomaterial density surrounded by material of lower density
(Figure 6). Live cells in the resident biofilm appeared as red fluorescent macrocolonies
scattered throughout the whole biofilm, in areas of high biomaterial density. Interest-
ingly, green fluorescent macrocolonies were found in specific areas, where the density of
biomaterial was high, but the density of red fluorescent cells was low (Figure 6, lower row).
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4. Discussion

During the formation of a biofilm in a closed environment, two populations, sessile
and planktonic, coexist and can exchange. Cells from the biofilm can migrate to the
planktonic population while cells from the planktonic population can enter the biofilm.
We found that, in the B. thuringiensis strain Bt407, which produces a floating pellicle, the
planktonic population density drops to nearly zero when the biofilm reaches a steady state
of growth. We used spectrophotometric methods to follow, in separate experiments but
in very similar devices, the time-course of both populations. The planktonic population
decrease starts when the biofilm initiates its growth. This observation is supported by
time-lapse photography of the pellicle formation, which reveals that the pellicle enters its
exponential growth phase at the time when the planktonic population starts its decrease.
However, the planktonic growth curve has already reached a maximum before the biofilm
growth started, which suggests that planktonic bacteria were already in the stationary
phase of growth because of a deficiency in nutrients or in oxygen. However, since the
planktonic population decrease did not occur in the Spo0A mutant, unable to produce a
biofilm but motile [28], it should be a consequence of the pellicle formation. Using a set of
strains with variable abilities to form a biofilm, we found that the rate of the planktonic
population decrease was significantly correlated to the amount of biofilm produced, which
confirms further that the biofilm is the cause of the planktonic population decrease.

The pellicle, which contains a high density of cells, is likely to reduce dramatically the
dissolved oxygen in the culture medium, a situation which could lead to cell sedimentation
or cell death. In P. fluorescens, pellicle colonizers consume oxygen, resulting in anoxia at a
depth below 1.2 mm after a few hours [31]. However, B. cereus, which is closely related
to B. thuringiensis, is a facultative aerobic bacterium shown to survive, although with a
very low growth rate, in anaerobic conditions [32]. To determine if low oxygen availability
could, in B. thuringiensis, explain the planktonic population decrease, we limited air–liquid
exchange with a layer of mineral oil applied on the culture medium surface, a method
already used in P. fluorescens to show that oxygen availability is a limiting factor for pellicle
formation [12]. Despite oxygen limitation, the planktonic population did not decrease, at
least until 48 h of culture, showing that the decrease observed when a pellicle is formed
is independent of biofilm-induced changes in oxygen concentration. Therefore, the most
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likely explanation for the planktonic population decrease is its recruitment in the biofilm.
However, recruitment is only part of the biofilm growth in B. thuringiensis, since the biofilm
continued its growth while the planktonic population was already very low. In contrast,
in some species such as Legionella pneumophila, the biofilm development relies mainly on
continuous recruitment rather than on sessile cell division [33].

We found that, in a young biofilm and while the planktonic population is still high,
immigrant cells were located in specific areas of the biofilm, where the density of sessile cells
was low. In Listeria monocytogenes, the biofilm exopolysaccharide matrix has been reported
to prevent the immigration of planktonic cells [34], which could lead, in B. thuringiensis,
to the confinement of incoming cells in areas of low biomaterial density. Alternatively,
the heterogeneous distribution of immigrant cells might be due to the presence in the
pellicle of areas in which nutrients and oxygen are present in higher quantities. Aerotaxis
and chemotaxis could attract, in these micro-environments, cells from elsewhere in the
pellicle or from the culture medium beneath the pellicle. Since we observed the pellicle
with a fluorescence stereomicroscope, because confocal microscopy could not be used
on a live floating pellicle, we did not determine the position of immigrant cells on the
Z-axis. Therefore, planktonic cells could have migrated in the whole pellicle and reached
secondarily suitable areas (Figure 7A). Because the fluorescence microscopy observations
took place 12 h after the injection of planktonic cells in the culture medium beneath the
pellicle, the motile cells had enough time to join suitable areas of the pellicle and turn
into sessile cells. Alternatively, planktonic cells could have migrated directly to suitable
areas located on the pellicle basal side (Figure 7B). Immigrant cells were indeed shown to
remain motile within the biofilm, at least for a few hours in B. thuringiensis [35], and were
reported to migrate to the pellicle in an oxygen gradient-dependent way in B. subtilis [13].
Interactions of freshly recruited bacteria with the biofilm matrix, as described in Vibrio
cholerae [36,37], are unlikely to occur in the Bt407 biofilm, since these interactions would
limit bacterial movements.
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Figure 7. Hypotheses to explain the integration of planktonic cells in specific areas of the biofilm. (A): Planktonic cells enter
deeply in the pellicle, are motile, and settle in suitable areas. (B): Planktonic cells enter the pellicle directly in specific spots,
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While planktonic cells migrated to the surface to form a pellicle, there was no bacterial
dispersal from the Bt407 biofilm, at least until 120 h of culture (Figure 1). In addition, no
rise in the planktonic population was observed, even after 48 h of culture. Cell dispersal
from the biofilm in B. cereus was shown to be strain-dependent. The ATCC14579 and the
ATCC10789 strains were both capable of forming pellicles in Y1 medium, but only the
ATCC14579 biofilm dispersed after 48 h of culture [38]. Bacterial dispersal from the biofilm
in B. subtilis usually occurs during biofilm maturation, when cells “escape” the biofilm
because nutrient availability becomes scarce [39]. The Bt407 biofilm appears to be quite
resilient to nutrient deprivation and can survive for at least 96 h of culture in the same
conditions as those used here [26]. One possible explanation for this high resilience is that
in this strain, the biofilm, after 48 h of culture, contains mainly matrix components and
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spores [26], and could therefore be a long-lasting structure in which the biofilm protective
properties enhance spores’ resistance to antimicrobials and to adverse environmental
conditions.

5. Conclusions

In conclusion, we have shown in this work that, during the formation of a biofilm
in static conditions at the air–liquid interface, one-way exchanges occur between the
planktonic population and the biofilm. In the Bt407 strain, the whole planktonic population
is integrated in the biofilm while no biofilm dispersal is observed. Once integrated, the
planktonic population does not mix with sessile cells but is located in specific clusters of
the biofilm pellicle. These results provide a useful example of the massive immigration
of planktonic cells in specific areas of the biofilm, therefore contributing to its spatial
heterogeneity.
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the biofilm as a function of time, Figure S2: Dissolved oxygen concentration in the culture medium
during planktonic growth.
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