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Abstract

In mountain areas, long-term snow avalanche risk evaluation is of paramount importance

for land use planning. In avalanche-prone areas, when real estate demand is high, for instance,

building protective structures may be a sensible choice for reaching a compromise between safety15

and development. Specifically, minimizing the risk within a quantitative framework can provide

optimal defense structure configurations (size, localization, construction technology, etc.). How-

ever, existing approaches based on a proper theoretical decision-making framework still suffer

from limitations making them hardly usable in practice. It is herein proposed to account for the

physical, functional, and monetary dimensions of a protective measure within the assessment20

of total risk. Total risk, which is calculated as the mean expected loss, is quantified within a

four-state system in which the failure of the dam and the failure of the dwellings to be protected

are assessed with specific vulnerability relations. Bounds for the risk and subsequent optimal

dam design values are quantified using minimum and maximum (min/max) functional efficiency

relations of the dam. Additional assumptions regarding the functional-structural efficiency rela-25

tion allow for the optimal design and corresponding minimum risk to be reached. An application
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is proposed with a case study from the French Alps. A comprehensive parametric study shows

that the min/max bounds risk quantification is worth implementing in some cases, such as, for

instance: if there is a high uncertainty of the functional efficiency of the dam, of if the assets to

be protected have a monetary value. However, when the failure of the dam is unlikely to occur30

(due to its location or to its material resistance), it is shown that quantification of the inter-

mediate risk without the min/max bounds approach is sufficient. In the future, the framework

could be extended to many other mountain hazards (debris flows, landslides, etc.), more complex

elements at risk, and even to problems going beyond the sole question of land-use planning such

as traffic road regulation.35

Keywords: Risk mitigation; Snow avalanche; Vulnerability; Optimal countermeasures; Functional

efficiency.
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1 Introduction

1.1 Context40

Some countries with densely inhabited mountain areas are threatened by snow avalanches. In these

areas, there is a need to develop quantitative approaches, such as snow avalanche risk quantification,

to manage land use and land occupancy and to set up strategies to lower the short- and long-term

risks. Winter periods with heavy snowfall in the past led to avalanches reaching residential buildings,

causing major damage and in some instances human casualties. For instance, residential buildings45

were strongly impacted by snow avalanches that occurred in February 1970 (Fig.1a) and January

1981 (Fig.1b) in the Maurienne valley located in the French Alps. At the European scale, the winter

of 1998/1999 was marked by catastrophic snow avalanche events in the entire alpine arc, which

reached built environments. The most serious events of this period were: In France, 12 people

died inside residential buildings impacted by a snow avalanche in Montroc village on February 9;50

in Switzerland, 12 people died and extensive property damage was reported in Evolène (canton of

Valais) on February 21; and in Austria, 38 people died and with major property damage being

reported in Galtür on February 23. More recently, on January 18, 2017, the Rigopiano avalanche

struck a hotel in Italy, where 29 people died (Frigo et al., 2018, 2021). Other avalanche events in the

past did not cause fatalities but resulted in heavy damage to residential buildings (e.g., in December55

2008, in southern France; Gaucher et al. (2010); Eckert et al. (2010a)).
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(a)

(b)

Figure 1: Examples of damage caused by snow avalanches to residential buildings in the Maurienne
valley located in the French Alps: (a) on February 24, 1970, in Lanslevillard, Savoie, France (Photo
credits: ©Section d’étude des troupes de Montagne, Chef de Bataillon Talon (1970)); (b) on January
20, 1981, in Saint-Colomban-des-Villards, Savoie, France (Photo credits: ©François Valla/INRAE).

In avalanche-prone areas and within the operational context, hazard intensity and occurrence are

quantified via the analysis of several scenarios, which are then used as a proxy of the risk and as

aids to guide the implantation of protective measures. However, certain limitations of this kind of

approaches were pointed out by Eckert et al. (2018), such as for instance: 1) the reference hazard,60

which is generally based on a given return period, is impossible to define on the basis of deterministic

numerical methods only, requiring additional ad-hoc assumptions to determine its probability; 2) it

does not explicitly account for exposure (only hazard is considered explicitly); and 3) there is no

potential non-linearity between hazard magnitude and damage level, e.g., a vulnerability relation. In

the research context, snow avalanche risk quantification is commonly tackled via approaches closer65

to statistical theoretical definitions, such as the quantification of expected consequences, following

the utility theory based on von Neumann and Morgenstern (1953). In order to bridge the gap

between the two contexts, the aim of this article is to propose a decisional framework that is both

applicable in the operational environment and grounded on theoretical research developments, taking

into account recent works on fragility derivation and the possibility that protective measures do not70

fulfill their protective purpose.
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1.2 Current risk quantification approaches

In the field of natural hazard engineering research, risk is usually quantified via the evaluation of

exposure, hazard, and vulnerability. Regarding snow avalanches, hazard quantification has been by

far the most studied among these three quantities, via studies focusing on triggering processes (e.g.,75

Van Herwijnen et al. (2016); Gaume et al. (2018); Puzrin et al. (2019)), propagation analyses (e.g.,

Naaim (1995); Barbolini et al. (2000); Gaume et al. (2019)) and runout characterization within

the stopping zone (e.g., Lied and Bakkehøi (1980); Ancey et al. (2004); Lavigne et al. (2017)).

Comparatively, exposure (e.g., Fuchs et al. (2015)) and vulnerability have been less studied. Indeed, a

few research studies have assessed the vulnerability to snow avalanches of buildings (e.g., Papathoma-80

Koehle et al. (2012)), people (e.g., Keylock and Barbolini (2001)), or protective structures (e.g.,

Daudon et al. (2013)). However, it was shown that risk quantification demonstrates a high sensitivity

to vulnerability relations (Favier et al., 2014b), which justifies strengthening the consideration of

vulnerability calculations for both the protective measure and the dwellings to be protected in risk

assessment. When individual risk is calculated (such as annual risk of death, serious injury, or loss85

to which specific individuals are exposed), it is often presented in a mapping framework (Keylock

et al., 1999; Cappabianca et al., 2008). Such mapping results could be used as tools to manage land

use and land occupancy or to lower the risk of existing assets by finding out that one configuration of

protective measures is the best option among various protective strategies. For instance, Rheinberger

et al. (2009) found that a hybrid strategy, which combines organizational and physical mitigation90

measures is well suited for snow avalanche risk management in traffic roads. The optimal design

of structural engineering protective measures has already been tackled in a risk framework (Eckert

et al., 2008, 2009, 2012; Favier et al., 2016) under the assumption of a never-collapsing protective

measure. In Switzerland, a practical tool has been developed to quantify the mean expected damage

with and without protective measures (Bründl et al., 2015) for natural hazards such as avalanches,95

torrential floods, or rockfalls . However, in none of the previously described risk approaches was the

failure of the protective measures considered.

1.3 Protective measure damage and functional models state of the art

Past experiences have shown that protective measures can fail when subjected to certain snow

avalanche scenarios (e.g., avalanche-deflective walls in Berthet-Rambaud et al. (2007), avalanche-100

retaining dam in Barbolini et al. (2009), snow-supporting structures in Margreth (2019)). Indeed,
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snow avalanches apply pressure on structures (Thibert et al., 2008; Thibert and Baroudi, 2010; Sovilla

et al., 2016), which can lead to various damage levels, i.e., from partial to total collapse (De Biagi

et al., 2015). For instance, some of the protective measures of the Taconnaz protective device

were found to be in various levels of damage during the winter of 2005/2006 (Fig. 2). Currently,105

quantitatively assessing the effect of countermeasures in reducing hazard intensity and occurrence is

based on the assumption that the dam has not experienced physical damage and is always fulfilling

its protective role. For instance, experimental approaches via laboratory studies provide empirical

relations to quantify the runout length decrease function of the design of a given protective dam

(Hákonardóttir et al., 2003; Faug et al., 2008). After a snow avalanche event, the structural states110

of each dam are determined in a straightforward manner by expert visual examination; however, the

functional efficiency of the damaged dam is rarely defined after the event and uncertainties remain

regarding fulfillment of its protective role during the event when structural damage is observed

(e.g., did the dam fulfill its functional protective role even if it is assessed as being structurally

damaged after the event?). Recent research works proposed using numerical calculation via Finite115

Element Modeling (FEM) together with reliability algorithms to reproduce and predict the damage

to structures in the snow avalanche context (Bertrand et al., 2010; Ousset et al., 2015; Favier

et al., 2014a; De Biagi et al., 2016; Favier et al., 2018). In Ousset et al. (2016), the damaged

state of the dam was quantified via FEM and via a single degree of freedom model, which was

metamodeled through a chaos polynomial expansion (PCE) approach in order to decrease the run-120

time consumption of the model. In particular, a time-efficient computation is obtained using the

Least Angle Regression Sparse (LARS) algorithm, which provides the PCE. Casting the models

within a reliability framework made it possible to obtain fragility curves for the protective measure,

i.e., the probability of the protective measure collapsing conditioned to the intensity of the snow

avalanche expressed in snow avalanche pressure (Ousset et al., 2015). In the end, the physical125

damage of protective measures was observed and modeled, but the resultant functional issues were

still poorly known.

1.4 A lack of protective device failure consideration in risk assessment

Risk assessment regarding the failure of protective measures applied to natural hazards in mountain

environments has not been studied extensively. Ballesteros Cánovas et al. (2016) applied models130

of the life-cycle performance of structures subjected to multiple deterioration mechanisms (e.g.,
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Sanchez-Silva et al. (2011)) due to debris flows. The approach consisted in integrating the failure

effects of extreme events and the progressive degradation affecting torrential protective structures

in a risk assessment framework. For instance, torrent check dams for debris-flow protection are

subjected to successive events and periodic draining maintenance is regularly needed to remove135

debris that is trapped above the protection. Thus, it is very important to consider the maintenance

costs for periodic draining. Regarding rockfall hazard, a rockfall gallery failure has already been

introduced into rockfall risk calculation by Straub and Schubert (2008): The calculation took into

account structural failure but did not take into account any costs, neither functional failure nor

optimal design study. Awareness regarding the protective role of forests in gravitational natural140

hazards has increased in the past few decades (Berger and Rey, 2004; Brang et al., 2006; Moos

et al., 2018), for rockfall engineering protection purposes (Dorren et al. (2007); Dupire et al. (2016))

or snow avalanches (Bebi et al., 2009). For snow avalanches, the forest can play two protective roles

depending on where it is situated: 1) it can be an obstacle in the path of the avalanche (Anderson

and McClung, 2012; Takeuchi et al., 2011), and 2) a snowpack stabilizer preventing the initiation of145

large slabs in release areas (Viglietti et al., 2010; Teich et al., 2012). However, Moos et al. (2018)

stated that although the evolution of the protective effect of forests after disturbances has been

widely analyzed (i.e., events that decrease the protection capacity of forests such as wind storms or

gravitational hazardous processes), there is still no study that takes into account these disturbances

and the modifications induced in protection capacity in risk models. Passive protective measures150

for snow avalanches are usually placed at low altitudes, where snow material infilling is unlikely

to occur without a large snow avalanche event, and draining maintenance is usually not planned,

contrary to debris-flow events. When dealing with the effectiveness of mitigation measures against

snow avalanches, upwards infilling of snow avalanche protective measures is sometimes seen as a

serviceability issue threatening the effectiveness of the measure (Margreth and Romang, 2010), its155

structural safety, and its durability. To the authors’ knowledge, no attempts have been made to

quantify the influence of the failure of snow avalanche protective measures on the basis of risk within

detailed risk quantification approaches.

1.5 Overview of the work done

In what follows, a methodology is presented to quantify long-term snow avalanche risk considering160

a protective dam and its potential failure. Structural damage, functional efficiency, and costs are
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(a) (b)

(c) (d)

Figure 2: Overview of damage caused by a snow avalanche to different elements of the Taconnaz
reinforced concrete structure during the winter of 2005/2006. Damage intensity is sorted in four
states: (a) without damage; (b) fully destroyed; (c) partially destroyed; (d) with cracks (Photo
credits: ©François Rapin/INRAE).

addressed. The risk for a given studied element is quantified by integrating the distribution of the

avalanche hazard for various dam designs. Quantification of snow avalanche hazard consists in de-

termining the distribution of the flow heights and velocities at any abscissa in the avalanche path,

the distribution of the runout distances, and the frequency of occurrences within the avalanche path165

considered. For the sake of simplicity, the residential area is reduced to one building to be protected.

The protective measure and the building to be protected can be in two states of physical damage,

i.e., undamaged or fully destroyed, and for each damage state, a loss of value is allocated. Thus, the

dam-building system is composed of four states: both the dam and the building are undamaged,

either the dam or the building is damaged, both are damaged. In order to take into account the170

structural damage states, fragility curves were used. Various efficiency relations are tested, which
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are expressed as a function of the structural state of the dam through a single parameter heff

quantifying the structural-functional relation. Losses are quantified with an economic approach.

The main output is to build risk curves depending on the dam height for each of the functionality

relations proposed through the quantification of heff . Figure 3 sums up the general idea of the175

approach. The study is composed of three blocks: 1) the snow avalanche hazard (first column enti-

tled "Avalanche" of Fig. 3), 2) the functional and structural response together with the associated

loss of the protective measure (“Damage state”, “Functional efficiency”, and “Loss” of the “Protective

measure” column of Fig. 3, respectively), and 3) the structural response and loss of the building

to be protected (“Damage state” and “Loss” of the “Building to protect” column of Fig. 3, respec-180

tively). Note that in Fig. 3, a line referring to a “partially damaged” state is included: this “partially

damaged” state is not explicitly taken into account hereafter in the calculations but exists in reality.

It is indirectly considered in the calculations via the probabilistic estimation of two damage states

(conditioned to a given snow avalanche intensity). Also, even if the formal framework throughout

the paper is mathematically continuous, the calculation was made considering discretization through185

the integration over N avalanche scenarios for which M chosen dam heights were tested. Besides,

in order to ensure the convergence of the risk results obtained by discretization, Monte Carlo error

quantification was performed. Bounds for the risk, which is calculated as the mean expected loss,

are proposed based on the minimum and maximum functional efficiency of the dam. An additional

intermediate annual risk value is quantified when it is assumed that the dam does not necessarily190

fully lose its functional role even if damaged. Optimal designs are obtained for each risk quantifi-

cation configuration. Figure 4 provides an overview of the risk quantitative computational steps

in a flowchart. The article comprises four sections on: presentation of the theoretical integrated

framework to design optimal countermeasures (Sec. 2), a numerical application (Sec. 3), the main

results (Sec. 4), and the discussion, conclusion, and outlook (Sec. 5).195
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Figure 3: Schematic overview of the approach: 1) the first column corresponds to the hazard
quantification, i.e., quantification of the release frequency of snow avalanches and of their velocity
and flow depths, spatiotemporal fields on site (the latter are resumed to their maximal values on
a 2D topography); 2) the second column corresponds to the estimation of the structural failure
via an assessment of damage state, the evaluation of the functional protective efficiency, which is a
function of the damage state, and the economic losses of the protective dam, which is also a function
of the damage state; 3) the third column corresponds to the estimation of structural failures and
the resultant economic losses of the building at stake; and 4) the last column corresponds to the
calculation of total losses. The green text is the best-case scenario and the red text is the worst-case
scenario.

2 A framework for risk and design quantification of optimal coun-

termeasures considering the vulnerability of both the counter-

measure and the building at stake

2.1 Risk quantification of the dam-building system

2.1.1 Physical failure of the dam-building system200

The system under study is composed of the protective measure, e.g., a protective dam, and the

element at risk to be protected, e.g., an asset at stake such as a residential building. When a snow

avalanche reaches the system with a given intensity, it is assumed that the dam, and the building,
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Generate M dam
heights hm, set m=0

Generate N avalanche
scenarios, n=0

Define dam interme-
diate efficiency heff

Calculate the pressure
at abscissas xb and
xd with null dam

efficiency (heff = 0),
with intermediate

dam efficiency (0 ≤
heff ≤ hm), with full
efficiency (heff = hm)

Assess damage to the
building and the dam

via corresponding
fragility curves

Quantify the
economic loss

n+ = 1

Calculate risk

m+ = 1

Build risk function
of the M dam height

n > N

m > M

n ≤ N

m ≤ M

Figure 4: Flowchart of the risk quantification framework. As stated in the text, the risk for a given
studied element is quantified by integrating over N avalanche scenarios for each of the M chosen
dam heights, for which an efficiency is determined by heff , i.e., a fictitious height that simulates the
decrease in the dam protection efficiency when damaged. The optimal dam height is obtained by
minimizing the risk function of the M dam height. Operator x+ = y means x = x+ y. An optimal
dam height minimizing losses can then be determined for each functional-structural relationship.

can only be in one of the two following physical states, also called "damage states": undamaged

or fully collapsed. The physical state of the dam, written DSd, equals 0 if the dam is undamaged205

and 1 if fully collapsed. The physical state of the building, written DSb, equals 0 if the building

is undamaged and 1 if fully collapsed. The space of possible states of the system is defined by

the combination of the previous states: Ω = {(DSd = 0;DSb = 0), (DSd = 0;DSb = 1), (DSd =
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1;DSb = 0), (DSd = 1;DSb = 1)}.

2.1.2 Structural damage210

Physical failure is quantified as the structural damage state of the element studied, i.e., element d

when the dam is considered and element b when the building at stake is considered. The probability

of failure for each element is defined by its own specific fragility curve. The fragility Vd(yd) (resp.

Vb(yb)) provides the probability for the dam d (resp. the building b) to physically surpass a given

damage state ds knowing the intensity yd (resp. yb) of the event reaching the dam (resp. the215

building):

V{d,b}(y{d,b}) = P (DS{d,b} ≥ ds|y{d,b}), (1)

where DSd (resp. DSb) is the aleatory damage state of the dam d (resp. the building b) given the

intensity yd (resp. yb) of the event reaching the dam (resp. the building). Herein, as expressed

before, only two damage states are considered, i.e., undamaged without any failure or fully collapsed

with failure. The interpretation of a fragility curve is summarized in Figure 5, i.e., the fragility curve220

expresses a probability of physical failure given the value of the snow avalanche intensity measure,

for instance, the pressure.

1
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Figure 5: Interpretation of the fragility curve of a structure with two damage states (i.e., either
with failure or without any failure), as a failure probability function of the impact pressure, which is
later detailed and quantified in Sec.3. Notation DS stands for damage state, where DS = {failure,
no failure}, and PR stands for pressure.

2.1.3 Risk quantification as a monetary loss

The loss is expressed in monetary value. Then, the risk, expressed in current e, is calculated as the

mean expected loss over the amortizing period T . Even if alternative quantile-based risk measures are225
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now emerging (Farvacque et al., 2021), this remains by far the most standard approach for natural

hazards. This classic risk measure assumes that the protective system, and thus the residential

building to be protected, is rebuilt identically in the case that it has suffered any damage after a

snow avalanche event. The actualized total loss of the system is the sum of the initial cost of the

countermeasure, e.g., the dam construction cost at year one, C0hd, the dam mean reparation cost230

over the amortizing period, λAC0hd
∫
Ωyd

Vd(yd)p(yd)dyd, and the mean residential building cost over

the amortizing period, λAC1

∫
Ωyb

Vd(yb)p(yb)dyb. This yields:

R = C0hd + λAC0hd

∫
Ωyd

Vd(yd)p(yd)dyd + λAC1

∫
Ωyb

Vd(yb)p(yb)dyb, (2)

where C0 [e.m−1] is the linear cost of the protective dam, hd [m] is the height of the protective

dam, λ [year−1] is the annual rate of snow avalanche occurrence, C1 [e] is the cost of the element

to be protected, e.g., the residential building, A [.] is the actualization rate and is calculated over235

the amortizing period T expressed as

A =
T∑
t=1

d(t), (3)

where d(t) is a current value factor for the year t, the subscripts d and b, respectively, refer to

the protective dam and the residential building, yx refers to the avalanche intensity characteristics

such as the velocity, density, and height of the flow affecting element x, and p(yx) refers to its

distribution. Note that Eq 2. which describes the behavior of the avalanche-dam-building system240

is extremely general, almost independent of any choice of statistical or deterministic model, and

potentially applicable to many risk mitigation problems. The only underlying assumption is in fact

that the considered system can be realistically described with the four states of the Ω space.

2.1.4 Considering the functional efficiency of the dam in the risk quantification

In Equation 2, the mean residential building cost over the amortizing period is quantified as245

λAC1

∫
Ωyb

Vd(yb)p(yb)dyb, where yb is the intensity of the avalanche at the building position, xb.

The intensity of the avalanche at position xb is a function of the initial magnitude of the avalanche

and the efficiency of the protective measure to weaken the avalanche intensity. Herein, it is assumed

that if the dam resists the avalanche impact, the efficiency of the dam is linked to its original height

hd. In that particular case, the intensity at the building location is a function of hd: y(h = hd).250

However, if the dam collapses, the efficiency is not known and it is herein assumed to be linked to an
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efficiency height heff , with condition 0 ≤ heff ≤ hd. In the latter case, the intensity at the building

location is a function of heff : y(h = heff ). The calculation of the mean residential building loss over

the amortizing period can be split into two sub-calculations as a function of the dam efficiency, i.e.,

a calculation if the dam remains physically unaffected and its efficiency is quantified as a function255

of hd, and a calculation if it does not remain unaffected and its efficiency is quantified as a function

of heff . Equation 2 is then rewritten as:

R = C0hd + λAC0hd

∫
Ωyd

Vd(yd)p(yd)dyd

+ λAC1

∫∫
Ωyd,yb

[Vd (yd)Vb(yb(h = heff )) + (1− Vd (yd))Vb(y(h = hd))] p(yd, yb)dyddyb.

(4)

2.2 Bounds for risk depending on the functional efficiency of the protective dam

Bounds for the annual risk are calculated considering different rates of functionality efficiency of

the protective dam. The minimum bound for risk is calculated considering the “best-case scenario,”260

i.e., when the dam is destroyed by an event and fulfills its intended protective functional purpose

(cf. 2.2.1). The maximum bound for risk is calculated considering the “worst-case scenario,” i.e.,

when the dam is destroyed by an event and loses its functionality of protection (cf. 2.2.2). The

destruction rate of the dam is calculated using the fragility curve of the dam.

An intermediate calculation of risk is made considering that when the dam is destroyed by an265

event, it loses its functionality of protection only partially (if not destroyed, it fulfills its intended

protective functional purpose). This intermediate calculation is presented in Section 2.3, where the

functionality of the dam after damage is sampled from a distribution or deduced from an analytical

relation.

2.2.1 Minimum bound for risk270

The minimum annual risk bound is quantified when it is considered that the dam can be destroyed

and thus needs to be repaired but has fulfilled its functionality purpose. The minimum annual risk

is thus calculated as:

Rmin = C0hd
(
1 + λAVd

)
+ λAC1

∫
Ωyb

Vb(yb(h = hd))p(yb)dyb, (5)
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where Vd is the expected value of Vd(yd) over yd, i.e. Vd =
∫
Ωyd

Vd(yd)p(yd)dyd.

2.2.2 Maximum bound for risk275

The maximum annual risk bound is quantified when it is considered that the failure of the dam

implies its inefficiency, i.e., in the calculation, the height of the dam is set to h = 0. The maximum

annual risk is thus quantified as:

Rmax =C0hd
(
1 + λAVd

)
+ λAC1

∫∫
Ωyd,yb

[Vd (yd)Vb(yb(h = 0)) + (1− Vd (yd))Vb(yd(h = hd))] p(yd, yb)dyddyb.
(6)

2.3 Intermediate risk calculation using additional assumptions regarding the

functional-structural efficiency relation280

An intermediate annual risk value is possible to quantify if it is assumed that the dam does not

necessarily fully lose its functional role even if damaged. As it is an intermediate quantification

step (conceptually far from the previous approach of the classic minimum and maximum bounds),

several calculation proposals are herein exposed. First, a fictitious height heff is allocated to the

dam height in order to simulate its protection efficiency. It yields:285

Rinterm =C0hd
(
1 + λAVd

)
+ λAC1

∫∫
Ωyd,yb

[Vd (yd)Vb(yb(h = heff )) + (1− Vd (yd))Vb(yb(h = hd))] p(yd, yb)dyddyb.
(7)

The functional analysis consists in quantifying the efficiency of the dam knowing the physical damage

state. The efficiency of the dam is expressed via the value of an effective height heff . This value

can be deterministically or stochastically determined knowing the remaining height of the damaged

dam, the pressure of the avalanche at the dam abscissa, and the damage state of the dam.

Thus, as a second step, various relations are set to quantify heff . To obtain the value of heff , it is290

proposed to use the probability of failure conditioned to avalanche pressure, such as:

heff (pr) = hd (1− p(DSd = failure|PR = pr)) , (8)
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or,

heff (pr) = hd (1− p(DSd = failure|PR = pr))β , (9)

Statistically, one can propose any statistical distribution that is supported on the bounded interval

[0, hd] such as a truncated normal distribution on [0, hd], a beta distribution defined on [0, hd] or as

considered herein a uniform distribution [0, hd],:295

heff (pr) ∼ U (0, hd) . (10)

With regards to Eq. 2, Equations 3 to 7 remain rather general. Eqs. 3 and 7 rewrite Eq. 2,

computing some integrals and introducing the heff quantity that materializes the link between

structural damage and the functional efficiency of the dam (or, potentially, of another mitigation

measure). Eqs. 5-7 introduce some bounds corresponding to the undamaged and fully damaged

cases that frame an intermediate “best guess case”. Hence, with regards to Eq. 2, the only true300

additional assumption is that a dam failure cannot increase damages to the building with regards

to the original unprotected case, see Sect. 5 for discussion. By contrast, Eqs. 8-10 introduce

much stronger assumptions regarding the quantification of the link between structural damage and

functional efficiency of the dam. Such assumptions are necessary if one wants to say more than only

“the best guess Rinterm is somewhere in between the bounds”.305

2.4 Optimal design

Risk is quantified to calculate the amount of loss of a system threatened by a given hazard at a

given time, e.g., a mean expected value of loss, a standard deviation or a quantile of the value of

loss. It can also be calculated in a prospective way, i.e., when adding a protective measure to the

system, the optimal design of the protective measure can be defined as the one minimizing the risk.310

Herein, it is assumed that the search for the optimal design of a snow avalanche protective dam can

be summarized as the search for its optimal height. In this framework the optimal design is given

by minimizing Eq. 4 over variable hd, or, depending on the functional role given to the protective

dam, by minimizing Eq. 5, Eq. 6, or Eq. 7.
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3 Application315

To make the computation of Equations 5-7 feasible, additional modelling assumptions are required

regarding avalanche hazard, avalanche dam functional efficiency and vulnerability relations for the

dam and the potentially exposed building. Those used in our application are detailed in what follows,

but other choices could be used instead within the same formal framework, see Sect. 5 for discussion.

In addition, the application case study is a path situated in the French Alps, in the village Bessans320

in the Savoie department in the Maurienne valley. It has been described in depth in Eckert et al.

(2010b). The main characteristics to be recalled are that the path is 2300 m long from the top of

the path to its lower part, with an altitude ranging from 3200 m to 1700 m. Most of the observed

avalanches stopped at the end of the path between 1900 m and 2090 m.

3.1 Avalanche hazard model325

Assuming stationarity of avalanche activity in the path studied, the occurrence of events is assumed

to follow a Poisson distribution with parameter λ. Let us write λ the annual rate of occurrence of the

avalanche in the given path and λP (Xstop0 ≥ xd) the annual rate of occurrence of the avalanche for

which the runout xstop0 exceeds abscissa xd. With 41 avalanches observed in 44 years, an estimator

of λ is 0.93.330

Using the statistical-dynamical model developed by Eckert et al. (2010b), the joint distribution

of velocity at any abscissa of the avalanche path is known through the generation of a sample,

e.g., p(υ(xd), υ(xb)). The pressure distribution is deduced assuming that

pr = Cx
1

2
ρυ2, (11)

where Cx is the drag coefficient and ρ the density of the avalanche flow. Note that Cx is considered

as a constant in the present study. It can depend on some factors like the obstacle shape (Cx is335

typically equal to 2 for an impact against a dam) or the snow type (see Barbolini et al. (2009)).

More complicated expressions can be used for Cx to take into account some effects that come into

play at low velocity flow regimes, for instance associated with materials stored upstream of the dam.

This point will be further discussed in Section 5.
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3.2 Functional efficiency of the countermeasure: pressure distribution with dam340

In accordance with previous studies (Eckert et al., 2012; Favier et al., 2016), the energy dissipation

relations from Faug et al. (2008) are used herein. Faug et al. (2008) established a relation – proved

to be consistent either for small-scale experiments with granular materials or for full-scale avalanche

experiments – that relates the overrun length to the speed of the approaching avalanche and the

effective height of the catching dam. The energy dissipation relation consists in providing the345

decrease in the avalanche velocity at the abscissa of the dam of height hd in the path:

υ2hd
(xd)

υ20(xd)
= 1− αhd

2h0
, (12)

where h0 stands for the avalanche flow height of the reference flow without a dam at the same

location, υhd
(xd) and υ0(xd) stand for the velocity at abscissa xd with a dam of height hd and

without a dam, respectively. The above relation is generally valid for flows with relatively high

Froude numbers, and is compatible with Eq. 11, in particular when storage effects upstream of the350

dam are not considered as dominant (see further discussion in Section 5). For any abscissa below

the dam in the path, such as xb, it is assumed that the velocity decrease is propagated, keeping its

inertial properties such as:

υhd
(xb) = max (υ0(xb)− (υ0(xd)− υhd

(xd)), 0) . (13)

The joint distribution of pressure is hence known for any abscissa and thus particularly for xd and

xb abscissa with and without a dam, i.e., p(PR(xd), PRhd=0(xb), PRhd=h(xb)).355

3.3 Element at risk and physical damage of the dam

Physical failure is assessed via fragility curves. Three fragility curves for each element of the system

were considered and are depicted here: in Figure 6a for the protective dam, and in Figure 6b for

the building. For the current study, it is considered that the building or the dam can be in only

two states (Fig. 5). It was herein assumed that the economic loss of the building is 100% when360

the building surpasses its elastic structural capacity. The three fragility curves in Figure 6b are

defined as follows: the minimum and maximum fragility curves are the minimum and maximum

elastic limit state fragility curves (Favier et al., 2014a), respectively, and the intermediate fragility
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curve is the one associated with the elastic limit state of a wall with four supported edges impacted

by an avalanche (Favier et al., 2014a). The three fragility curves in Figure 6a are defined as follows:365

the intermediate fragility curve is the one derived in Ousset et al. (2016), and the minimum and the

maximum are obtained by multiplying the x-values of the intermediate fragility curve by 0.5 and 2,

respectively. By using this numerical trick, the spread of the dam fragility is visually in accordance

with the spread of the building fragility, whose derivation was physically grounded. However, their

respective pressure ranges are quite different, i.e., ranging from a few kilopascals to 30 kPa for the370

building fragility, and a few dozen kilopascals to 800 kPa for the dam fragility.

(a) (b)

Figure 6: Fragility curves of (a) the protective dam (derived from Ousset et al. (2016)), and (b) the
RC building (Favier et al., 2014a).

3.4 Loss analysis

The loss analysis consists in calculating the cost for each of the cases previously described. The

building that is aimed to be protected costs C1 [current e], the construction of the protective dam

is calculated as a linear cost function of the built height C0hd [current e]. Two damage states are

considered here in the analysis: without damage or damaged. If either the dam or the building is

damaged, the repair cost is set to the construction cost, e.g., the damaged dam is replaced by an

identical new dam, whose cost of implementation is the same as the initial construction cost. It

should be noted that renovation and maintenance costs have not been explicitly considered, neither

the costs such as the loss of human lives inside the building nor the indirect costs (e.g., environmental

costs), but these could have been included when quantifying C0 (e.g., adding the cost of human lives

to the initial building cost) or C1 (e.g., adding an annually amortized maintenance cost to the initial

construction cost). To express future costs in [current e] unit, a current value factor for the year t
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is calculated as:

d(t) =
1

(1 + it)
t ,

where it expresses the annual interest – or discount rate – for the year t and is commonly assumed

to be steady in time and equal to 4% over the next 50 years.

3.5 Default values and parametric study375

For seven parameters comprising the risk equations, default values were defined (Tab. 1, Col. 2).

Parameters of interest are: the costs of the protective measure and the building (C0, C1), their

abscissas (xd, xb), their vulnerability (Vd, Vb), and the functional efficiency of the protective measure

(heff ). The last column in Tab. 1 provides the minimum and maximum values for each of the seven

parameters in order to run parametric studies.

Parameters [Unit] Default values Parametric study
C0 [present e.m−1] 10, 000 2, 000; 50, 000
C1 [present e] 5, 000, 000 1, 000, 000; 25, 000, 000
xd [m] 1, 900 1, 800; 2, 000
xb [m] 2, 125 2, 064; 2, 164
Vd [-] From Ousset et al. (2016) Adaptation of Ousset et al. (2016)
Vb [-] From Favier et al. (2014a) From Favier et al. (2014a)
heff [m] heff ∼ U [0, hd] Eqs. 8, 9

Table 1: Default values and parametric study allocated to seven parameters of risk quantification:
the costs of the protective measure and the building (C0, C1), their abscissa positions (xd, xb),
the vulnerability relations for the protective measure and the building (Vd, Vb), and the functional
efficiency relation for the protective measure (heff ).

380

3.6 Monte Carlo convergence analysis

To check that the number of samples of snow avalanche hazard is adequate for quantifying the risk

at each dam height hi, the 95% (i.e., α = 0.05) confidence interval half-width of the estimated mean

expected loss was calculated as:

HWα,i = zα/2
σi√
N

, (14)

where zα/2 is the value of the 97.5 percentile point of the standard normal distribution, i.e., 1.96,385

σi is the standard deviation of the loss obtained considering the ith dam height, and N is the total

number of samples of snow avalanche hazard, i.e., N = 500, 000. The confidence interval around

mean µi is defined as [µi −HWα,i, µi +HWα,i].
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4 Results and analysis

In this section, the results are presented as follows: Section 4.1 highlights the default case and390

Monte Carlo convergence results; Sections 4.2, 4.3, 4.4, and 4.5 show how risk quantification and

optimal design evolve with the dam and element at risk locations, the costs, the fragility relations,

and the dam functional efficiency, respectively; and Section 4.6 points out the dispersion of risk

quantification and optimal design values for each of the study cases.

4.1 Default case and Monte Carlo convergence results395

The risk quantification with default case values (Tab.1) is depicted in Fig. 7a. The intermediate

curve is calculated considering the functional efficiency of the dam as a uniform distribution with

parameters ranging in [0, hd]. This uniform sampling induces the observed slight noise on the inter-

mediate curve. Minimum and maximum risk curves bound the intermediate curve well. The optimal

dam height corresponding to the maximum risk curve is lower than the one from the intermediate400

risk curve, which is lower than the one from the minimum risk curve, i.e., 14 m< 15.4 m< 21 m. The

optimal design values obtained by minimizing the minimum and maximum risk curves (21 m and

14 m, respectively) bound the optimal design from the intermediate curve (15.4 m). The maximum

risk curve is computed assuming that physical failure of the dam makes its functional efficiency null.

The results show that under the assumption that physical failure of the dam makes its functional405

efficiency null, the optimal dam height is lower than under the assumption that the dam is always

fulfilling its functional protective role.

Monte Carlo confidence intervals calculated from Eq. 14 are depicted in Fig. 7b. Fig. 7b shows

that quantifying the risk with 500,000 snow avalanche simulations results in the confidence intervals

being very narrow around risk estimates. This latter observation is valid for any of the three risk410

quantification approaches proposed herein, i.e., quantification of minimum, maximum, or interme-

diate risk values. Such results argue for having confidence in the risk values analyzed hereafter. In

what follows, the Monte Carlo intervals are not shown any further.

4.2 Influence of the respective locations of the dam and element at risk

The influence of the dam location is depicted in Fig. 8a. Risk curves with dam locations at 1, 800 m415

and 1, 900 m display the same general behaviors (i.e., shapes and values are similar), whereas risk
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x106 x106

Figure 7: Risk quantification: (a) with default values and relations from Tab. 1 highlighting mini-
mum and maximum risk bounds from Eq. 5 and 6, and intermediate “best guess” value from Eq. 7
with heff sampled from a uniform distribution U [0, hd] (red dots point to the minimum values of
each risk curve, and the shaded blue area the complete range of possible risk curves between the min-
imal and maximal bounds); (b) with 95% confidence interval to check Monte Carlo convergence over
500, 000 snow avalanche simulations, where “Min.,” “Interm.,” and “Max.,” stand for the minimum,
intermediate, and maximum risk values, respectively, as described in figure (a) here.

curves with dam locations at 2, 000 m follow a different general behavior. Locating the dam at the

abscissa 1, 800 m in the path leads to higher risk values than the abscissa 1, 900 m. When assuming

a 2, 000-m dam location, minimum and maximum risk curves are mixed up with the intermediate

risk curve. Such observations seem to show that locating the dam further down in the path reduces420

the occurrence of its structural failure. As a consequence, the uncertainty of its functional efficiency

plays a smaller role than for the other two locations.

Fig. 8b shows risk curves when the dam is located at default location 1, 900 m and the residential

building to protect is located at 2, 064 m, 2, 125 m, and 2, 164 m. Maximum and minimum risk

bounds are slightly visible as the general behavior of each curve is controlled by the effect of the425

building abscissa, which is the steady parameter in this case. The maximum and minimum risk

bounds are negligible in the differences in values due to the building abscissa.

4.3 Sensitivity to cost values

Figures 9a and b show the sensitivity of risk quantification to dam and building cost values. Through-

out the tested cost values, risk quantification is greatly controlled by the assumed cost values, and430

the influences of the minimum and maximum risk bounds are negligible. For instance, no overlap

is observed between minimum and maximum risk delimited areas from each cost value scenario.

This latter observation indicates that changing the cost values significantly of either the dam or the
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Figure 8: Risk quantification for (a) three positions of the dam, and (b) three positions of the
considered building; costs, vulnerability, and dam height efficiency are the default values from Tab. 1.

building to be protected has more more influence on risk quantification than does uncertainty on

the efficiency of the protective dam.435

In Fig. 9b, risk quantification with building cost value C1 = 25, 000, 000 e shows a greater absolute

minimum and maximum risk bounds width than the two other risk curves related to building cost

value. Hence, having uncertainties on the functional efficiency of the dam has more influence when

considering a building asset with a very high cost value.

x106 x106

Figure 9: Risk quantification for (a) three values of C0, and (b) three values of C1.

4.4 Sensitivity to fragility relations440

In what follows the sensitivities of risk to dam fragility curves (cf. Fig. 6a) and building fragility

curves (cf. Fig. 6b) are depicted and analyzed via Figures 10a and b, respectively.
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x106 x106

Figure 10: Risk quantification for (a) the three relations of the dam vulnerability, and (b) the three
relations of the building vulnerability; costs, position abscissas, and dam height efficiency values are
the default ones from Tab. 1.

4.4.1 Dam fragility

In Fig. 10a, it is observed that absolute risk bounds are higher for the most “fragile” dam depicted by

“Min. Vd” curve (i.e., “fragile” is used to characterize the dam with fragility curves having the highest445

failure probabilities for a given snow avalanche intensity) than the bounds calculated with the two

other fragility relations. In fact, the more “fragile” the dam, the greater the difference between the

minimum risk and the maximum risk. Furthermore, when the dam is assumed to be very “fragile”

and when its functional efficiency is assumed to be null as soon as it fails, the risk curve has a very

low dam height optimum. For “the least fragile” dam depicted by “Max. Vd” curve (i.e., “the least450

fragile” is used to characterize the dam with fragility curves having the lowest failure probabilities

for a given snow avalanche intensity), the functional efficiency relations do not matter much as long

as the dam is nearly never physically damaged.

4.4.2 Building fragility

In Fig. 10b, for low values of dam height, the risk is governed by the fragility of the building455

indicating that it is much higher for more “fragile” buildings. On the contrary, for high dams,

the risk is governed by the dam construction cost whatever the building fragility. Hence, similar

risk values are observed for high dams, because the dam is sufficiently high to stop nearly all the

avalanches before they reach and potentially damage the building at stake. The values of risk at the

optimal dam height are in the same order of magnitude for all building fragility considered. The460

optimal values seem to be sensitive to the building fragility.
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4.5 Sensitivity to the structural-functional relation

To check the sensitivity of risk and to refine its quantification (cf. Sec. 2.3), it was chosen to use five

structural-functional relations, which were derived in order to have simple-to-complex relation types.

Figure 11 gathers the risk curves associated with the five structural-functional relations tested. The465

five structural-functional relations consist in quantitatively linking the effective height of protection

of the dam heff to its original physical height: heff ∼ U(0, hd), heff = hd/2, heff = hd × (1− Vd),

heff = hd × (1− Vd)
0.5, and heff = hd × (1− Vd)

2.

x106

Figure 11: Risk quantification for five structural-functional relations of the dam: heff ∼ U(0, hd);
heff = hd/2; heff = hd× (1−Vd); heff = hd× (1−Vd)

0.5; and heff = hd× (1−Vd)
2; costs, position

abscissas, and vulnerability values are the default ones from Tab. 1.

At first glance, various observations are made. The cases where heff ∼ U(0, hd) and heff = hd/2

show similar values of risk, which is logical since E[X] = hd/2 when X ∼ U(0;hd). Hence, when470

the relation is taken as random, some noise is just added to the same estimate. The case where

heff = hd × (1 − Vd)
0.5 decreases rapidly and presents the lowest values of risk. For high values of

dam height, the case where heff = hd× (1−Vd)
2 increases the most rapidly. For high values of dam

height, relations heff ∼ U(0, hd), heff = hd/2, and heff = hd × (1 − Vd) show similar trends. The

exponential cases where heff = hd×(1−Vd)
0.5 and heff = hd×(1−Vd)

2 have atypical behavior. For475

high values of dam height, the non-linearity relations of heff as a function of hd seem to influence

the risk values. The Rmin, Rmax bounds interval proves to be useful here: no matter the chosen

link between heff and hd, and its characteristics, the Rmin, Rmax bounds interval provides a robust

frame for risk and optimal height values to be used in practice.
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4.6 Summary of risk and optimal design values as a function of decisional model480

parameters

For each of the parameters of the sensitivity analysis, risk and optimal height values were collected

and are presented in Fig. 12a, and b, respectively. Figure 12c provides a summary of the main trends,

which are described below. As a general observation, it is worth noticing that the range of dam

heights is congruent to what is implemented as real protective devices in some large avalanche paths485

(e.g., the two 15 − 20 m high deflecting dams of Islandic Flateyri protective device (Jóhannesson,

2001); the 25 m high dam of French Taconnaz protective device (Naaim et al., 2010; Naaim-Bouvet

and Richard, 2015)).

Two cases do not show any difference between the minimum and maximum values, neither for risk

values nor for optimal design values: xd = 2, 000 m and Max. Vd. Both correspond to cases where490

the failure of the dam is unlikely to occur: when xd = 2, 000 m (i.e., in very low altitudes in the

avalanche path, i.e., in the downstream part of the runout zones), overall, snow avalanche intensity

is low enough not to trigger the failure of the dam; and when Max. Vd is assumed, the dam is

“strong” enough not to be destroyed by nearly any snow avalanche intensity occurring.

For C0 = 50, 000 e.m−1 and C1 = 1, 000, 000 e, no difference is observed between the minimum and495

maximum of the risk values, but for the optimal dam height values. The construction of the dam

is, comparatively to the building, very expensive for the whole system considered and the optimum

is obtained for low values of dam height, with the dispersion in risk values found to be very low. It

should be noted that, in both cases, the general behavior of the risk curves is led by the cost of the

dam.500

The highest dispersion of risk values is observed for case C1 = 25, 000, 000 e, i.e., for very high

building costs. The maximum risk value corresponds to the worst-case scenario, during which the

functional utility of the dam is poor, and induces high mean loss values of risk. The corresponding

optimal design dam heights are high, meaning that even if the functional response of the dam is

poor, it is still worth building a high dam due to the high cost of the building to be protected. This505

last observation is also made when C0 = 2, 000 e.m−1, i.e., when the cost of dam construction is

much lower than the cost of the building.

The structural-functional relation has a slight effect on the dispersion of risk and optimal design

values. However, it is useful to state that whatever the structural-functional relation chosen, an

interval for optimal design can be provided: [14, 21] [m], for the default case, heff ∼ U(0, hd),510
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heff = hd/2; heff = hd × (1− Vd), heff = hd × (1− Vd)
0.5, and heff = hd × (1− Vd)

2.

The vulnerability of the building plays a minor role in risk values or in optimal design values

(cf. Min. Vb and Max. Vb in Fig.12). However, assuming that the dam may be “fragile” leads to a

wide range of low optimal height values.

Eventually, placing the building high in the avalanche path results in a higher risk and optimal515

design values than placing it in the lower abscissa in the path (i.e., xb = 2, 164 m). Placing the

protective dam higher in the path than for the default case does not lead to big changes, neither in

absolute risk and optimal height values nor in the spread in the range of values.
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Figure 12: Spread in sensitivity analysis values given by minimum and maximum risk bounds
from Eq. 5 and 6, and intermediate “best guess” value from Eq. 7 with heff = hd

2 for: (a) the
minimization of risk, and (b) the corresponding optimal design. Figure (c) summarizes how changes
in input variables and relations influence risk and dam optimal height values.
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5 Discussion, conclusion, and outlook

This article deals with the theoretical framework of quantitative optimization of countermeasures520

against snow avalanche hazard by minimizing risk, taking into account the structural and functional

response of the protective device (a dam). The approach consists in considering the dam-building

system to be in one of four physical states after an avalanche occurs: both the dam and the building

are undamaged, either the dam or the building is damaged, both are damaged. The risk is quantified

as a total cost, which is decomposed into various contributions: 1) the cost of construction of the525

protective dam, 2) the reparation costs of the dam and building to be protected, and 3) the cost

induced by structural damage on the residential building, which is influenced by the functional

efficiency of the protective dam. The computational approach proposes to quantify the functional

efficiency considering five different structural-functional relations. Bounds for the risk, which are

calculated as the mean expected loss, are proposed based on the maximum and minimum functional530

efficiency of the dam. Thus, the intermediate risk is well framed by the min/max bounds. A

comprehensive parametric analysis was conducted to quantify how risk quantification and optimal

design evolve with the dam and element at risk locations, the costs, the fragility relations, and the

dam functional efficiency.

5.1 Main results and new features535

On one hand, we showed that if the dam is located relatively high in the path, the min/max bounds

approach is worth being implemented as the spread between the bounds is large and thus a range of

risk and optimal values are seen. On the other hand, if it is located lower in the path (where it has a

low probability of being damaged) the min/max approach is less valuable since the spread between

the bounds is very low and thus the range of values offer little information. When the assets to be540

protected represent a large monetary value, we found that the min/max approach is worth following

and provides useful uncertainty bounds. The min/max approach is also worth implementing when

the dam is very fragile, because the difference between the minimum risk and the maximum risk is

very high. Finally it was illustrated that if the functional relation for the dam is hardly assessable,

the bounds intervals provide a safe frame for risk and optimal design values.545

In regard to previous works, the proposed risk framework is consistent with the traditional definition

of the mean expected loss, which has already been accurately reported in the field of snow avalanche
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research. The latest advances that were made on the derivations of fragility curves for snow avalanche

protective dams and residential buildings have been integrated here. The novelty of the approach lies

in the use of such fragility relations for both the protective dam and residential building, all casted550

in a very generic unified quantitative risk assessment framwork. Splitting the quantification of snow

avalanche risk to consider reparation costs, structural damage, and functional efficiency is innovative

where gravitational natural hazards are concerned. The quantification of risk and minimization takes

advantage of propagating the uncertainties in the functional relations of the dam: useful bounds

are proposed and could be of great interest when the functional efficiency of a protective measure is555

insufficiently known. However, these bounds were not found to be useful when the dam was planned

to be located very low in the avalanche path (i.e., where mainly low-intensity snow avalanche reaches

the location) or when the dam was assumed to hardly ever fail structurally.

5.2 Limitations due to the functional relations choice

The aim of the article was to propose this novel framework and illustrate its applicability on a560

real case study. We recall that the modelling of the behavior of the avalanche-dam-building sys-

tem expressed with Eqs. 2-7 is very general and potentially usable for many avalanche problems

and potentially for other issues, see below. However its application requires further statistical and

deterministic assumptions to make computations feasible. We therefore made some more stringent

choices regarding avalanche activity and its interaction with structures. In the future, other as-565

sumptions could be tested, in order to improve the accuracy of the results even more for the tested

case, or to implement/study other configurations potentially useful in avalanche engineering. Such

potential options are reviewed hereafter. First, the functional relations proposed here assumed that

the damaged dam is somewhere between inefficient and fully efficient in fulfilling its protective role.

However, one can ask whether a damaged dam would not worsen the intensity of the avalanche sce-570

nario. Indeed, if a reinforced concrete dam collapses and “explodes” into several pieces of concrete,

the snow avalanche flow would be charged with concrete pieces, and those solid bodies made of con-

crete could impact and severely damage elements at stake in the path. Perhaps to some extent this

latter scenario would be worse than if it had been without concrete pieces and thus dam damage.
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5.3 Limitations due to the uncertainties on parameters575

Second, risk quantification is performed using a collection of numerical sub-models. Hereafter, we

criticize the independence assumption of the variables used in the statistical models, the identical

rebuilding assumption made when a mitigation strategy is destroyed, and the use of a simplified

avalanche-flow interaction law. All parameters are considered to be independent. However, this

is not true in practice since some of them may vary simultaneously, e.g., dam construction cost580

and position, or dam construction cost and its fragility. Furthermore, for each parameter, nominal

values are uncertain. Instead of setting a fixed nominal value as it was done here, a statistical

distribution could be given to each parameter, in order to take into account epistemic and/or aleatory

uncertainties. Another limitation is that the assumption of our model is: after each destructive event,

one rebuilds exactly the same elements at risk and establishes the same mitigation strategy. The585

decision-maker can be described as having a stubborn behavior. In practice, after a destructive

event, rebuilding exactly the same configuration is never done, and past examples prove us right

(e.g., in the Taconnaz protective site in the French Alps). Yet this is not to be disregarded, since

the decision is made conditional to a given state of knowledge. Additional information may lead to

a different decision.590

5.4 Limitations due to hypotheses regarding avalanche regime and activity

Another limitation remains in the use of simplified physics to model the avalanche behavior and the

avalanche-flow interaction law. For instance, no storage upstream of the dam was considered here,

whereas it was shown that depending on the type of snow and the resulting flow regime (low versus

high Froude number flow regime), storage volume can be highly variable and can thus influence the595

runout characteristics of the snow avalanche downstream of the dam (see Favier et al. (2016) and

references therein) as well as the impact pressure. In the latter case, more generalized expressions

than Eq. 11 can be used, where the drag coefficient is no longer a constant. Cx is then defined

as an equivalent drag coefficient, being the sum of a purely drag coefficient C0
x and another term

that strongly increases when the Froude number F of the avalanche decreases: Cx = C0
x + k/F2,600

where F = v/
√
gh and k is a kind of earth pressure coefficient associated with the low Froude

number (quasi-static) regime. Such a general definition for Cx is well supported by previous studies

(Gauer et al., 2008; Faug, 2015; Sovilla et al., 2016) and allows to account for effects such as mass

storage upstream of the dam. Furthermore, the statistical-numerical approach and its calibration
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on the local data are state of the art but certainly include many approximations and uncertainties.605

More importantly, the avalanche–dam interaction and its propagation along the topography are

represented in a very simplistic way and could be improved in the future. Third, in the current

state of knowledge on climate change impacts (Hock et al., 2019), it is known that the assumption

of the stationarity of avalanche activity is not accurate (Eckert et al., 2013; Giacona et al., 2021).

However, since few studies provide non-stationary parameters to calibrate the Poisson process, it610

was herein preferred to keep the well-documented stationarity assumption and to state that future

improvements of our approach would definitely consider climate change impacts in the avalanche

activity.

5.5 Final outlooks

As a final comment, it is important to stress that the framework and methodology presented here615

could in the future be extended to many other other mountain hazards (debris flows, landslides, etc.),

more complex elements at risk, and even to mitigation problems going beyond the sole question of

land-use planning such as traffic road regulation. The decisional output of the model as a monetary

minimization is a realistic variable of interest for stakeholders and is easily transmittable to them.

The generality of the approach comes for the minimal assumptions required to express a mitigation620

problem as a four state system, which easily leads risk bounds and a best guess as functions of

a decisional variable (here the dam height), and subsequent minimal costs that can be evaluated

within a parametric study. This has been highlighted by the last figure of the article summarizing

the parameters of the models that most influence the risk and optimal design outputs, which could

be of great value for decision-makers. For instance, previous research works proved that when625

two rows of braking mounds are installed in an avalanche path, the first line reduces by 20% the

kinetic energy and the second by 10% (Barbolini et al. (2009)). Such results are still used as a rule

when deciding where to place braking mounds in an operational context. Thus, the work presented

here aims to follow the same avenue, i.e., to provide tools and outputs to help decision-making in

conditions of a new implementation of a protective dam in a snow avalanche path in the operational630

context, in the frequent case when finding a good compromise between safety and economic efficiency

is an important constraint. From this perspective, implementing different configurations (hazard,

functional efficiency and vulnerability models) within the same framework may be seen as a promising

issue for novel and useful developments.
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