Which data assimilation method and data source for a multi-compartment hydrology/water quality model? Application on the PESHMELBA model in a small agricultural catchment

Emilie Rouzies (Inrae, France), Claire Lauvernet (Inrae, France) and Arthur Vidard (LJK/Inria, France)
Introduction

Development of the PESHMELBA model (Rouzies et al. 2019) to simulate pesticide transfers and fate on small agricultural catchments

✓ Simulations of heterogenous landscapes (plots, vegetative filter zones, hedges, ditches and rivers)

✓ Modular structure to explore landscape management scenarios (decision-making tool)

Introduction

Development of the **PESHMELBA** model (Rouzies et al. 2019) to simulate pesticide transfers and fate on small agricultural catchments

✓ Simulations of heterogenous landscapes (plots, vegetative filter zones, hedges, ditches and rivers)

✓ Modular structure to explore landscape management scenarios (decision-making tool)

How to reduce uncertainties on PESHMELBA outputs?

⇒ Development of a data assimilation framework to integrate different data sources

Case study

Virtual simplified catchment inspired from La Morcille catchment (Beaujolais region, France)
Case study

Virtual simplified catchment inspired from La Morcille catchment (Beaujolais region, France)

Data sources (virtual) available:

- ✓ Surface moisture images (radar)
 - 6 days
 - 12 days
 - 18 days
 - 24 days

- ✓ Ponctual vertical moisture profiles (EMI)

- ✓ Pesticide concentrations in the river
Comparison of DA methods

Assimilation of surface moisture images to correct vertical moisture profiles (freq=6 days) and comparison of 3 DA methods:

- **a) Ensemble Kalman Filter**
- **b) Ensemble Smoother-Multiple DA**
- **c) iterative Ensemble Kalman Smoother**
Comparison of DA methods

Assimilation of surface moisture images to correct vertical moisture profiles (freq=6 days) and comparison of 3 DA methods:

The b) ES-MDA best improves surface moisture estimates but no strong effect of DA to correct deeper moisture.
Multi-source assimilation

DA based on b) ES-MDA + Integration of other sources of data

Surface moisture from radar + moisture profile

Catchment-averaged CRPSS score (the closer to 1, the better DA performs) on outlet pest concentration ⇒ inclusion of pesticide observation necessary to improve simulation of pest concentration.
Multi-source assimilation

DA based on b) ES-MDA + Integration of other sources of data

...but no effect to improve simulation of pest. concentration at the outlet
Multi-source assimilation

DA based on b) ES-MDA + Integration of other sources of data

...but no effect to improve simulation of pest. concentration at the outlet
Multi-source assimilation

DA based on b) ES-MDA + Integration of other sources of data

...but no effect to improve simulation of pest. concentration at the outlet

⇒ inclusion of pesticide observation necessary to improve simulation of pest. concentration at the outlet
Conclusion

✓ DA framework set for pesticide transfer model PESHMELBA
✓ Ensemble Smoother with Multiple Data Assimilation identified as most efficient method for this case study
✓ Correction from a compartment hard to propagate to other compartments: ⇒ need for various data sources
⇒ Paves the way for future applications of DA at the scale of a real catchment

Thank you!

Any question? Contact: emilie.rouzies@inrae.fr