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Ensembles species composition through the prism of
metacommunity theory

Adapted from Fauth et al. (1996) and Vellend (2010)



Rephrasing ‘selection’ in terms of coexistence mechanisms

Classic approach of coexistence among J species:(
dxj
dt

= xj(t)gj(x(t))

)
1≤j≤J

where xj(t) is the density of species j at time t.

I generalized Lotka-Volterra: gj(x) = rj + (Ax)j
I differences in rjs and Ajs drives coexistence, potential

equilibria and relative abundances of species

Ex : A =

(
−α11 −α12

−α21 −α22

)
, coexistence iff α12/r1

α22/r2
< 1, α21/r2

α11/r1
< 1

I to be combined with dispersal and drift

E [xj(t + dt)− xj(t)|xj(t)] = (xj(t)gj(x(t)) + mj(x(t))) dt



Assessing the contribution of selection to empirical
patterns

Need for a null hypothesis with no selection effect while keeping
dispersal and drift.

I weak neutral assumption: gj(x) = g(x) for all species j ;
I generalized Lotka-Volterra framework : g(x) = r +t ax

I strong neutral assumption: g(x) = g(
∑J

j=1 xj);

I Generalized Lotka-Volterra framework : g(x) = r + at1x

In all cases, different from the independent species assumption.



The neutral model of Hubbell (2001)

One way to combine dispersal and drift with the strong neutral
assumption.

Figure from Rosindell et al. (2011)

Directly adapted from neutral models of population genetics.



The mathematical side of Hubbell (2001) model

Community size K is a finite deterministic parameter. The
dynamics of species abundances Y is a jump process on the
J-dimensional discrete simplex ∆K .

Ṗ(Y(t) = y)

= Kd

 ∑J
jd ,jb=1

P(Y(t) = y + ejd − ejb)

× yjd +1

K

(
(1−m)

yjb−1

K−1 Iyjb≥1 + mπjb

)
−P(Y(t) = y)


where ej is the vector with 1 at coordinate j and 0 elsewhere, and π is the
vector of regional relative abundances.



Stationary distribution in Hubbell (2001) model

Stationary distribution P∗ follows detailed balance:

P∗(y)× yj1
K

(
(1−m)

yj2
K−1Iyj2≥1 + mπj2

)
= P∗(y + ej2 − ej1)× yj2 +1

K

(
(1−m)

yj1−1

K−1 Iyj1≥1 + mπj1

)
Defining the effective number of immigrants
I = m(K − 1)/(1−m) (Etienne and Olff, 2004):

P∗(y) =

(
K

y

)∏J
j=1(Iπj)

(yj ;1)

I (K ;1)
with θ(y ,c) :=

y−1∏
k=0

(θ + ck)

which is a Dirichlet-multinomial distribution DM∆K
(Iπ) (Donnelly

et al., 2001; Harris et al., 2017)



Relaxing zero-sum assumption

Community composition y now follows a jump process on NJ .
Birth, death and immigration are distinct events.
Strong neutral assumption =⇒ rates depend only on the total
number of individuals |y|

Ṗ(Y(t) = y) =∑J
jd=1 P(Y(t) = y + ejd)(yjd + 1)d(|y|+ 1)

+
∑J

jb=1 P(Y(t) = y − ejb) [(yjb − 1)b(|y| − 1) + m(|y| − 1)πjb ]

−P(Y(t) = y) [|y|(b(|y|) + d(|y|)) + m(|y|)]

where:

I b(.) and d(.) stand for per capita birth and death rates respectively ;

I m(.) is the immigration rate.

Decomposing stationary distribution into sum and split:

P∗(y) = Q∗(|y|)P∗|y|(y)



The effective number of migrants hypothesis

Stationary distribution does not necessarily follow detailed balance,
an ancillary hypothesis is needed:

∃I ∈ R+, ∀y ∈ N∗,
m(y)

b(y)
= I (1)

I constant immigration of juveniles
I regulation occurs on juveniles

I quite suited for trees

Under hypothesis (1), the split is Dirichlet-multinomial (Haegeman
and Etienne, 2008):

P∗|y|(y) ∼ DM∆|y|(Iπ)

I is still called ‘effective number of migrants’.



Outline

Question: Can we relax of the effective number of migrants
hypothesis (1) to reach more general neutral models ?

1. Closure property of neutral stationary distributions

2. Presence-absence distributions through transfer functions

3. Polynomial transfer functions : interpretation and simulation



Closure property of stationary distribution

Let species indices l ,m ∈ {1, J} with l < m. For x ∈ RJ , define
x̃ ∈ RJ−1 such that:

x̃j = xj if j < l

x̃j = xl + xm if j = l

x̃j = xj if l < j < m

x̃j = xj+1 if m ≤ j

Then :

Ṗ(Ỹ(t) = ỹ) =∑J
jd=1 P(Ỹ(t) = ỹ + ejd)(ỹjd + 1)d(|ỹ|+ 1)

+
∑J

jb=1 P(Ỹ(t) = ỹ − ejb) [(ỹjb − 1)b(|ỹ| − 1) + m(|ỹ| − 1)π̃jb ]

−P(Ỹ(t) = ỹ) [|ỹ|(b(|ỹ|) + d(|ỹ|)) + m(|ỹ|)]

which implies the closure property of the stationary distribution:

P̃∗π(ỹ) = Pπ̃(ỹ)

all other parameters being kept constant.



Testing closure in abundance data with the DM split

DM split implies closure property (Peyhardi et al., 2021).

I testing functional groups through comparing estimates of I
with various levels of species agregation

I example in tropical trees ensembles

Lumping into deciduous/evergreen yields lower Î
Suggests species sorting along rainfall gradient

Ramesh et al. (2010); Laroche et al. (2020)



The transfer function driving neutral occupancies

What if not working on tropical trees ? Characterizing a general
set of distributions with closure property ?
I start simple: presence-absence (PA) distributions

Let a neutral jump process. Closure property implies that there
exists a transfer function f : [0, 1]→ [0, 1] such that:

∀J ∈ N∗, ∀π ∈ ∆J ,P(Yj = 1) = f (πj)

Closure property implies that for all S ∈ P({1, ..., J}):

P(dj∈S{Yj = 1}) = f

∑
j∈S

πj


which is sufficient to determine the multivariate PA distribution
(Teugels, 1990).
I Proposal : forget the underlying process and focus on the

transfer function ?



Necessary and sufficent conditions for valid transfer
functions

Not all f : [0, 1]→ [0, 1] yields a valid mulitvariate PA distribution.
Focusing on smooth functions, f is a valid transfer function iff :

f (0) = 0

f (1) ≤ 1

∀k ∈ N∗, ∀π ∈ [0, 1] , (−1)k−1f (k)(π) ≥ 0

Biologically speaking :

I f (0) = 0 makes sense;

I f monotonically increasing over [0, 1] also makes sense;

I f (1) is the occupancy of the full ensemble.

Example : f (π) = 1− e−θπ, θ ∈ R+ is a valid transfer function
that yields to independent marginals



Split-polynomial transfer functions : biological
interpretation

Let f a polynomial transfer function. Its degree K can be
interpreted as the maximum number of individuals within the
community.

Example : f (π) = θπ, θ ∈ [0, 1] is a valid transfer function that
yields to no co-occurrences.

Further assuming that f is split on R, then ∃1 = λ1 ≤ ... ≤ λK :

∀π ∈ [0, 1] , f (π) = 1−
K∏

k=1

(1− π

λk
)

Taking λk = 1 + k−1
I , I ∈ R+∗ yields Hubbell (2001) model

I other profiles of λk can be chosen;

I 1/λk may be understood as a probability of immigration along
a backward process.



Split-polynomial transfer functions : urn simulation
algorithm

The interpretation of λk in terms of immigration along a backward
process yields a simulation algorithm for split-polynomial f :

1. initialize a ∈ ({1, ..., J})K at ai = 0,∀1 ≤ i ≤ K ;

2. draw a1 ∼M(1,π);

3. set i to 2;

4. if i > K go directly to step 9

5. draw B ∼ B( 1
λi

);

6. if B = 1, draw ai ∼M(1,π) else draw ai at random in
{a1, ..., ai−1};

7. set i to i + 1;

8. go back to step 4;

9. let x ∈ {0, 1}J such that ∀j ∈ IJ , xj = 0 if {ai , ai = j} = ∅,
xj = 1 otherwise ;

10. return x.



Take-home messages

I The essence of neutral hypothesis is the closure property (CP)
of associated multivariate count distributions → we propose
to build null distributions from CP directly, rather than
considering specific dynamical neutral models.

I Multivariate presence-absence distributions with CP can be
parsimoniously described through a single transfer function
that relates regional relative abundance of any species to its
local occupancy.

I Split-polynomial transfer functions are biologically
interpretable as a backward process, are easy to simulate
through an urn algorithm, and extend classic neutral models.



Next steps

I clarifying the link between λk and
assumptions on immigration in
split-polynomial f

I determining whether transfer functions can
be non-split polynomial (on R);

I implementing statistical routines to fit
split-polynomial transfer functions;

I adapting the approach of Laroche et al.
(2020) to detect distinct neutral clusters in
presence-absence datasets;

I apply this framework to saproxylic beetles
communities within tree-related
microhabitats.
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