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Abstract6

1. Evaluating the autocorrelation range of species distribution in7

space is necessary for many applied ecological questions like im-8

plementing protected area networks or monitoring programs. The9

autocorrelation range can be inferred from observations, based on10

a spatial sampling design. However, there is a trade-off between11

estimating the autocorrelation range of a species distribution and12

estimating fixed effects affecting the mean species abundance or oc-13

cupancy among sites. The random sampling design is considered as a14

good heuristic to estimate autocorrelation range, for it contains con-15

trasted pairwise distances that cover a wide array of possible range16

values. The grid design is viewed as a better choice for estimat-17

ing fixed effects, for it eliminates small pairwise distances that are18

more prone to pseudo-replication. Mixing random and grid (‘hybrid’19

designs) has been presented as a way to navigate between both con-20

flicting objectives. We postulated that fractal designs — which have21
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a self-similarity property and well-identified scales — could make a22

compromise, for they preserve some regularity reminiscent of grid at23

each scale, but also browse a wide array of possible autocorrelation24

range values across scales.25

2. We used maximum likelihood estimation within an optimal design of26

experiments approach to compare the accuracy of hybrid and fractal27

designs at estimating the fixed intercept and the autocorrelation28

range of a spatial field of values.29

3. We found that hybrid designs were Pareto-optimal intermediary30

strategies between grid and random for small autocorrelation range31

values only, while classic grid design should always be preferred when32

autocorrelation is large. Fractal designs yielded Pareto-optimal stra-33

tegies specifically good at estimating small autocorrelation ranges.34

However, they were generally not Pareto-optimal for higher values35

of autocorrelation range. At last, when the surveyed area could be36

changed, random designs were sufficient to reach the Pareto front in37

any context.38

4. Fractal designs seemed relevant when specifically aiming at improv-39

ing the estimation of small autocorrelation ranges in a fixed surveyed40

area with a limited sampling budget, which is a quite circumscribed41

scenario. However, they may prove more clearly advantageous to42

analyse biodiversity patterns when covariates are included in the43

analysis and ecological processes differ among spatial scales.44

Keywords: beta-diversity; distance-decay; fractal; maximum likelihood;45

model-based inference; optimal design; sampling design; spatial autocorrelation46
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Introduction47

Autocorrelation has a double status in the study of biodiversity patterns (Leg-48

endre, 1993). It is often seen as a nuisance, generating biases in regression49

models that seek to link covariates to spatial patterns of biodiversity (Lennon,50

2000). Many techniques to control these undesirable effects are available, and51

now well popularized among ecologists (Dormann et al., 2007). However, spa-52

tial autocorrelation may also be viewed as the signature of endogeneous process53

driving biodiversity patterns (McGill, 2010). In particular, it is often interpreted54

through the prism of limited dispersal. For instance, auto-regressive modelling55

of species occupancy in metapopulation ecology (ter Braak et al., 1998; Bardos56

et al., 2015; Prugh, 2009; Ranius et al., 2010) or isolation by distance patterns57

on neutral markers in population genetics (Ouborg et al., 1999; Vekemans and58

Hardy, 2004; Manel and Holderegger, 2013) are often used to draw conclusion59

on species colonization or dispersal abilities. From this perspective, the accu-60

rate assessment of autocorrelation range has important implications in terms of61

conservation biology, especially to assess the functional connectivity of habitat62

networks (Tischendorf and Fahrig, 2000) or build efficient biodiversity monitor-63

ing strategies (Rhodes and Jonzén, 2011).64

Few studies focused on efficient designs to accurately estimate autocorrela-65

tion range of biodiversity. In a simulation study, Bijleveld et al. (2012) showed66

that a grid design was the best choice to estimate spatial or temporal trends on67

the mean of a target field of values while random design was better at estimating68

autocorrelation parameters. The authors further showed that a hybrid strategy,69

mixing randomly chosen sites with a grid, stood as a Pareto-optimal solution70

on the trade-off between the conflicting objectives (i.e. changing to other de-71

signs necessarily generated performance loss on either objective). Following a72

distinct line of research, Marsh and Ewers (2013) suggested that fractal sam-73

3

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 31, 2022. ; https://doi.org/10.1101/2022.07.29.501974doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.29.501974
http://creativecommons.org/licenses/by/4.0/


pling designs may be an efficient option to study the distance-decay pattern of74

β-diversity (Nekola and White, 1999), which can be seen as way to assess the75

autocorrelation range of species composition among communities. Fractal de-76

signs are characterized by a self-similar property (Mandelbrot, 1983; Falconer,77

2003): sub-parts of the design look like a contraction of the total design, and78

natural spatial ‘scales’ can thus be distinguished (see Fig. 1A). Thanks to this79

property, a single fractal design can cover contrasted spatial scales with a low80

sampling effort compared to other sampling strategies, which may offer a prac-81

tical way to studying autocorrelation over a broad set of possible ranges. Based82

on a non-parametric study of distance-decay patterns, the authors found that83

fractal designs lead to estimating higher values of autocorrelation range than an84

intensive control design, while other classic strategies (regular grid and random85

design) tended to yield lower values of autocorrelation range than the control.86

These results suggest that fractal designs have distinct properties, but precise87

conclusions are hindered by the fact that the model used by Marsh and Ew-88

ers (2013) to generate the data is a complex mixture of ecological scenarios89

that does not have a well-defined statistical formulation, which impeded a clear90

definition of estimation errors.91

Here, we aimed at comparing fractal designs with random, grid and hybrid92

strategies with respect to ther ability to quantify autocorrelation range ver-93

sus fixed effects on the mean of a spatial random field. We turned towards94

the framework of optimal design of experiments (Müller et al., 2012), which95

has been repeatedly used to build and compare designs of temporal (Archaux96

and Bergès, 2008) or spatio-temporal [see (Hooten et al., 2009) and references97

therein] biodiversity surveys. However, it has quite rarely been applied to the98

specific problem of quantifying spatial autocorrelation. A noticeable exception99

on that matter is the study by Müller (2007), which focused on the problem of100
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detecting autocorrelation with a test using Moran index (Moran, 1950). How-101

ever, they did not quantify the corresponding range. Here, we focused on esti-102

mation error when simultaneously estimating the mean (i.e. a fixed intercept)103

and the autocorrelation range of a spatial field. We specifically considered the104

maximum likelihood estimation framework which offers a powerful heuristic to105

theoretically explore the estimation accuracy of sampling designs through the106

analysis of the inverse Fisher matrix (Abt and Welch, 1998). Zhu and Stein107

(2005) used this approach to numerically search for sampling designs able to108

recover autocorrelation parameters. They found that designs showing the best109

global performance at estimating autocorrelation parameters differ from random110

design, and tend to conciliate aggregated points at the center of the surveyed111

area with points scattered close to the frontier. Such designs might be viewed112

as harbouring distinct scales and might be well approached by fractal designs,113

hence reinforcing the interest of explicitly assessing fractal design performance.114

When comparing random, grid, hybrid and fractal designs, we had two115

expectations grounded on the litterature previously cited: (i) hybrid designs116

should consitute a continuous set of intermediary Pareto-optimal designs be-117

tween grid and random designs, meaning that when the proportion of random118

points increases from 0 (grid design) to 1 (random design), the accuracy of119

the mean estimate of the random field should decrease while the accuracy of120

the autocorrelation range estimate should increase; (ii) fractal designs should121

be better than other designs at estimating small autocorrelation ranges when122

they are built to harbour contrasted scales, hence creating new Pareto-optimal123

solution focused on autocorrelation range estimation.124
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Methods125

Spatial sampling designs126

All spatial sampling designs harboured N = 27 sampling points (the effect of127

larger N is discussed later on). Sampling points are spread within an area of128

study shaped as an equilateral triangle with a side length of L =
√

3 distance129

units. Random designs were generated by sampling each plot independently130

within the triangle with a homogeneous spatial density. Grid designs were ob-131

tained by first generating a triangular grid matching the area of study with mesh132

size equal to L/6 distance units, hence obtaining 28 sampling points, and then133

removing one point at random. Hybrid designs were characterized by a param-134

eter p, the proportion of sites that are randomly positioned in the area of study.135

A hybrid design was obtained by building a grid design, selecting Np sites at136

random within it and resampling their new position at random in the area of137

study. Note that p = 0 yields the grid design while p = 1 yields the random138

design. Here we consider the N + 1 = 28 values of p ∈ {0, 1/N, 2/N, ..., 1}.139

Following Marsh and Ewers (2013), we simulated fractal designs using an140

iterated function systems (Falconer, 2003) based on three similarities of the141

complex plane: Sk(z) = ρz + (1 − ρ)e
2ikπ

3 −
iπ
6 for k ∈ {0, 1, 2}. A sampling142

design is obtained by iterating three times the system starting from a seed at143

the center of the area, hence yielding a sampling design with N = 33 = 27144

plots. We varied the parameter ρ across designs. The parameter ρ drives the145

ratio between the size of a part of the design and the size of the larger, auto-146

similar set of plots it belongs to. The values of ρ considered in the study are :147

ρ = x
√

3/(2 +
√

3) with 240 distinct x values evenly spaced on a log-scale from148

x = 10−1.5 to x = 1. We call x the ‘contraction parameter’ of fractal design149

below. Note that x > 1 would generate a sampling design with overlapping150

sub-components, which we considered as an undesirable property. The largest151
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value x = 1 yields a sampling design that is a subsample of the regular grid152

with mesh size of c.a. L/10.153

Examples of designs are presented in figure 1.154

Figure 1: Examples of the four types of design considered in our study. The
triangle dashed area is the area of study. Crosses show the position of the 27
sampling points. The fractal design presented here is generated with a contrac-
tion coefficient x = 2/3. The hybrid design is generated using a proportion of
random sites p = 5/27 ≈ 0.19.
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Gaussian random field model155

To study the error of estimation associated to each type of design depicted156

above, we assumed that the vector of observations at each sampling points157

Z = (Z1, ..., ZN ) is taken from a Gaussian random field with an exponential158

variogram (Cressie, 1993) without nugget effect. Formally, it means that there159

exist µ ∈ R and σ, as ∈ R+∗ such that:160

∀i ∈ {1, ..., N}, Zi ∼ N (µ, σ2)

∀i, j ∈ {1, ..., N}2,E
[
(Zi − Zj)2

]
= 2σ2

(
1− e−

dij
as

) (1)

where dij is the distance between sampling points i and j and E [.] denotes161

the expectation of a random variable. The covariance between Zi and Zj is162

Cov [Zi, Zj ], is:163

Cov [Zi, Zj ] = σ2e−
dij
as (2)

which renders the simulation of Z straightforward.164

Parameter as corresponds to a characteristic length of the autocorrelation,165

and we call it ‘autocorrelation range’ below. The parameter µ corresponds to166

the mean of the random field. Although one could include effects of covariates167

on this parameter, we followed previous studies [e.g. (Zhu and Stein, 2005)] and168

considered a simple fixed-intercept model, where the mean is a single parameter169

constant across space that one wants to accurately estimate it.170

We considered 160 distinct as values evenly spaced on a log-scale between171

10−3 and 102.5. As we will show below, the values of µ and σ did not affect172

estimation errors considered in our analysis, and we could therefore set µ = 0173

and σ = 1 without loss of generality.174
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Estimation variance of maximum likelihood estimates175

We assimilate the problem of assessing autocorrelation range to accurately esti-176

mate as and the problem of assessing the mean of the field of values to accurately177

estimating α = eµ. We considered the exponential mean to compare estimation178

error of parameters that are defined on the same domain R+∗. Estimation error179

on a parameter θ (= α or as) is quantified through the relative root mean square180

error:181

RRMSE(θ) =

√
E
[
(θ̂ − θ)2

]
/θ

The statistical model used to estimate as and α matches the one used to generate182

the data (i.e. we assume no error on model specification):183

Z = µ1 +E

where 1 is a N -dimensional vector with all coordinates equal to 1, and E is184

a N -dimensional gaussian vector with mean 0 and variance-covariance matrix185

Σ following the exponential model presented in (2). Parameters of this model186

can be summarized in a vector θ = (α, σ, as). We focused on the maximum187

likelihood estimate θ̂ = (α̂, σ̂, âs) of θ.188

In the context of stationary Gaussian random fields without nugget, it is189

known that the diagonal terms of I(θ)−1, where I(θ) is the Fisher informa-190

tion matrix of the model with true parameters θ, yield a qualitatively good191

approximation of the quadratic error on parameters in θ. By ‘qualitatively’,192

we mean that it allows to correctly rank designs according to their accuracy,193

even for moderate sample sizes (Abt and Welch, 1998; Zhu and Stein, 2005).194

We therefore use the diagonal terms of I(θ)−1 as a theoretical approximation195

of quadratic error of θ̂ below.196
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Results197

Derivation of Fisher information matrix and predicted er-198

rors199

The Fisher information matrix associated to parameters θ = (α, σ, as) in model200

(1) is [see Article S1 in Supporting Information, section 1; Zhu and Stein (2005);201

Müller (2007)]:202

I(θ) =


1
α2 1′Σ−11 0 0

0 N
2σ4

1
2σ2 tr(Σ−1 ∂Σ

∂as
)

0 1
2σ2 tr(Σ−1 ∂Σ

∂as
) 1

2 tr(Σ−1 ∂Σ
∂as

Σ−1 ∂Σ
∂as

)

 (3)

From equation (3), one obtains the relative root mean squared error associated203

to âs and α̂ (see Article S1 in Supporting Information, section 1):204

RRMSE(α) = 1√
1′Σ−11

RRMSE(as) = 1
as

√
2

tr(Σ−1 ∂Σ
∂as

Σ−1 ∂Σ
∂as

)− 1
N tr(Σ−1 ∂Σ

∂as
)tr(Σ−1 ∂Σ

∂as
)

(4)

Equation (4) implied in particular that RRMSEs did not depend on α (or205

µ), hence justifying that we set α = 1 throughout the study without loss of206

generality. Recalling that we also set σ = 1, equation (4) shows that RRMSE(as)207

did not depend on σ but that RRMSE(α) was proportional to σ, which implies208

that quantitative predictions on RRMSE(α) should vary when changing the209

value of σ. However, we were mostly interested in the ranking of designs, which210

should remain identical up to a multiplicative constant. Therefore, setting σ = 1211

did not imply any loss of generality on our results either.212
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Theoretical analysis of asymptotic errors213

When as → 0 Our theoretical analysis (see Article S1 in Supporting Informa-214

tion, section 2) yielded that RRMSE(as) should increase towards +∞ as as be-215

comes small, irrespective of considered design. The increase is quite abrupt, pro-216

portional to as/dmin × exp(dmin/as) where dmin is the smallest distance among217

two distinct sampling points. Although the proportionality constant depends on218

the sampling design, the feature of designs with strongest effect on RRMSE(as)219

when as becomes arbitrarily small is dmin : designs with smaller dmin should220

yield markedly smaller RRMSE(as). The grid design tends to maximize dmin221

for a given sampling effort N (see Article S1 in Supporting Information, section222

3) and should thus yield consistently higher RRMSE(as) than other designs as223

as → 0. Fractal design can harbour arbitrarily small dmin values by decreasing224

contraction parameter x. As a result, there should exist a threshold on x below225

which fractal designs yield lower RRMSE(as) than hybrid sampling designs, and226

thus become Pareto-optimal.227

In the meantime, RRMSE(α) should converge to σ/
√
N irrespective of the228

sampling design. This corresponds to the expected standard error on the mean229

when sampling points are independent. When σ2 = 1 and N = 27, this yields230

RRMSE(α) ≈ 0.19.231

Both results suggest that fractal design with low contraction parameters may232

exclude hybrid designs from the Pareto front, since the accuracy at estimating233

autocorrelation range should become the major difference among designs.234

When as → +∞ RRMSE(as) converges towards
√

2N/(N − 1) (≈ 1.44 when235

N = 27), irrespective of the sampling design (see Article S1 in Supporting236

Information, section 2). In the meantime, RRMSE(α) converges to σ (= 1 in237

our example), irrespective of the sampling design. This is the expected result for238

a single observation, hence illustrating the fact that all the sampling points are239
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perfectly correlated. Both results suggest that all the sampling designs should240

converge towards very similar performance as as → +∞, hence rendering their241

ordination impossible.242

Numerical analysis of Pareto fronts for hybrid designs243

Figure 2: Relative root mean square error of estimation of exponential mean (α)
and autocorrelation range (as) for hybrid designs along a gradient of as values.
For each as value, we present a line of dots showing the RRMSEs for the 28
hybrid designs. Dots color indicates the value of p, increasing from blue (p = 0;
grid design) to red (p = 1; random design).The lines of dots shift towards the
right as as increases, following a U-shaped global pattern. We presented results
for 13 values as out of the 160 values explored, for readibility. Those values are
reported above each line of dots. The vertical dotted line shows the predicted
asymptote when as → 0, the cross shows the predicted limit when as → +∞.
We obtained the same qualitative pattern when assessing the quadratic error
of estimation through a Monte-Carlo approach (see Article S1 in Supporting
Information, section 4). The four grey rectangles show the lines of hybrid designs
that are further considered in fig. 3.

In line with the asymptotic study when as → 0 detailed above, the predicted244

RRMSE(as) of hybrid designs rapidly increased at the lower margin of explored245
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as values. It exceeded standard numerical precision of computers and software246

when considering designs with high dmin (e.g. grid design). Below, we focused247

our analysis on the range of as values for which RRMSE(as) could be computed248

for all designs. This led us to ignore as values smaller than 10−2.101 (26 values249

out of the 160 initially considered).250

Some patterns were common to all hybrid designs (fig. 2). The RRMSE(α)251

increased with the autocorrelation range, starting from the expected value of252

0.19 towards the predicted value upper limit of 1. This increase was quite253

expected : stronger autocorrelation increases pseudo-replication and makes the254

mean of the field harder to estimate. The RRMSE(as) showed a non monotonic255

profile first decreasing from infinity, then increasing again towards the expected256

limit of 1.44.257

Increasing the degree of randomness p within hybrid designs consistently258

increased the RRMSE(α) along the gradient of as (see fig. 2). By contrast, the259

ordination of RRMSE(as) among hybrid designs with various degree of random-260

ness p changed as as increased. For small as values (as ≤ 10−0.786), increasing p261

decreased the RRMSE(as). Therefore, any hybrid design along the gradient of p262

was a Pareto-optimal strategy (see figs. 3A, 3B, 4A). For intermediate as values263

(10−0.752 ≤ as ≤ 10−0.579), the RRMSE(as) harboured a U-shaped pattern as p264

increased. Therefore, there existed a threshold on as above which increasing p265

too much did not lead to Pareto-optimal strategies anymore (see figs. 3C, 4A).266

For larger as values (as ≥ 10−0.544), the RRMSE(as) increased with p, making267

grid design (p = 0) the only Pareto-optimal strategy among hybrid designs (see268

also figs. 3D, 4A). We retrieved those three types of patterns for small, inter-269

mediary and large values of as when estimating RRMSEs from simulations in a270

Monte-Carlo approach (see Article S1 in Supporting Information, section 4).271

Considering the intermediate range of as values where the effect of p grad-272
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ually changes from all hybrid designs being Pareto-optimal to grid design only,273

we observed that it contained the as value corresponding to the mesh size of274

the grid design (
√

3/6 ≈ 10−0.540). In practice, the transition might therefore275

occur when the autocorrelation range reach values close to the mesh size of the276

grid design. For simulated RRMSEs, the three ranges of as values associated to277

distinct patterns seemed to be positioned later on the autocorrelation gradient278

(see Article S1 in Supporting Information, section 4), but the rule of thumb279

that transition occurs for autocorrelation range values close to mesh size was280

not rejected.281

Numerical comparison of fractal designs to the Pareto front282

of hybrid designs283

For small as values (as ≤ 10−1.893), fractal designs with intermediate to high284

contraction parameter (10−0.969 ≤ x ≤ 1; fig. 4B) excluded all the hybrid de-285

signs from the Pareto front except the pure grid design (p = 0; fig. 4A), which286

remained the most efficient design to estimate the mean of the field. We had287

the theoretical conjecture — derived from our theoretical analysis of asymp-288

totic errors above — that fractal designs with low contraction parameters x289

could become unilaterally better that hybrid designs at small autocorrelation290

range, because the performance of all designs at estimating α should become291

similar while fractal design with low x should be better at estimating as. The292

observed exclusion of most hybrid designs can be seen as a result of this process.293

However, the conjecture was not fully verified over the range of as values ex-294

plored: first fractal designs with very low contraction parameters (x < 10−0.969)295

were not Pareto-optimal among fractal designs, second grid design still persisted296

as a Pareto-optimal option. Maybe smaller as values would have matched the297

theoretical conjecture better, but as explained above, they could not be explored298
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Figure 3: Comparing the relative root mean square errors of fractal designs to
the Pareto front of hybrid designs in four typical situations. Panels A, B, C
and D correspond to increasing values of as (values of log10(as) are reported
at the upper right corner). They were identified as grey rectangles in figure 2.
In each panel, the RRMSEs of fractal designs are presented as a line of grey
dots. The grey level of dots indicates the value of the contraction parameter
x, increasing from black (x = 10−1.5) to white (x = 1). Only a sub-sample of
the 240 explored values on x were presented, to improve readibility. RRMSEs
of hybrid strategies are presented using the same caption as in figure 2 with
blue-to-red gradient. The Pareto front associated to hybrid designs is presented
as a green polygon. When fractal designs reach the green area, they offer a new
Pareto-optimal design compared to hybrid strategies.

15

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 31, 2022. ; https://doi.org/10.1101/2022.07.29.501974doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.29.501974
http://creativecommons.org/licenses/by/4.0/


because the theoretical prediction of grid design error on as parameter exceeded299

computer limits.300

Then we observed a narrow range of as values (10−1.858 ≤ as ≤ 10−1.513)301

where all the hybrid designs gradually came back to the Pareto front as as302

increased, starting from pure random design (p = 1; fig. 4A). Nearly simulta-303

neously, as as increased above 10−1.789, fractal designs within a range of inter-304

mediary contraction parameter values x became excluded from the Pareto front305

by hybrid designs. The range of excluded x values initiated at x = 10−0.306 and306

expanded while shifting towards high x values, until encompassing the higher307

end of the range (x = 1; fig. 4B). Fractal designs with high contraction param-308

eters (x > 10−0.1) could sporadically become Pareto optimal again at larger as309

values but, in those cases, they were quantitatively very close to hybrid design310

in terms of error (see for instance the fractal design with x = 1 in fig. 3C).311

By contrast, fractal designs with lower x values (e.g. x < 10−0.306) were312

not excluded from the Pareto front when as increased above 10−1.789 (fig. 4B),313

and remained Pareto-optimal over a larger range of as values. These designs314

came as an extension of — rather than in competition with — the Pareto front315

associated to hybrid designs. They were associated to lower error on as but316

higher error on α (as illustrated in fig. 3A). However, when as values increased317

above 10−0.924, this type of Pareto-optimal fractal strategies based on accurate318

as estimation were excluded by hybrid designs, as illustrated by the transition319

between fig. 3A and fig. 3B.320

For larger as values (as > 10−0.682), fractal designs became excluded from321

the Pareto front by hybrid designs, irrespective of x value (figs. 3D, 4B).322
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Figure 4: Intersection between Pareto fronts associated hybrid and fractal de-
signs. Panel A presents the impact of fractal designs on the Pareto front of
hybrid designs. Colored pixels (either blue or red) show, for each explored as
value, the values of the proportion of random observations (p) that lead to a
Pareto-optimal hybrid design. White ‘holes’ on the left side of the graph are
artifacts due to limits in the numerical precision at very high errors on as.
Among those Pareto-optimal values of p, red pixels show which values are not
Pareto-optimal anymore when adding fractal designs, while blue pixels show
the p values that remain Pareto optimal. Panel B presents the impact of hybrid
designs on the Pareto front of fractal designs. Colored pixels (either green or
red) show, for each explored as value, the values of the contraction parameter
(x) that lead to a Pareto-optimal fractal design. Among those Pareto-optimal
values of x, red pixels show which values are not Pareto-optimal any more when
adding hybrid designs, while green pixels show the x values that remain Pareto
optimal. In both panels, the shaded area (left on panel A, upper-left on panel
B) shows designs where the RRMSE(as) is above 2. Vertical dotted lines show
the positions of examples detailed in figure 3.

Theoretical analysis of changing the size of the surveyed323

area or the sampling effort324

In this section, we used the shorthand notationsEa(as, L,N) [resp. Eα(as, L,N)]325

for the RRMSE(as) [resp. RRMSE(α)] when true autocorrelation range is as,326

surveyed area side length is L and sample size is N .327
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Surveyed area Until now, we considered the problem of sampling within328

a fixed triangular area constraining designs to cover the whole surface. We329

relaxed this assumption and allowed the side length L of the surveyed area to330

vary as a free parameter. A re-scaling argument (see Article S1 in Supporting331

Information, section 5) yielded that:332

Ea(as, λL,N) = Ea(as/λ, L,N)

Eα(as, λL,N) = Eα(as/λ, L,N)

where λ > 0 is the dilatation factor applied to side length. In words, changing333

the size of the area, through dilatation or contraction, is exactly equivalent to334

changing the value of as while keeping the size of the area to its original value.335

Therefore, when the surveyed area can freely change, Pareto fronts of sam-336

pling strategies can be obtained directly through merging RRMSEs previously337

obtained at distinct as values, and computing the Pareto front of the pooled338

dataset. By doing so, we can compare hybrid and fractal sampling strategies339

and see their respective contributions to a global Pareto front (fig. 5A).340

Grid design was never a Pareto-optimal design (fig. 5A). It was consistently341

excluded from the front by other hybrid designs including some degree of ran-342

domness and by fractal designs. By contrast pure random designs alone reached343

a Pareto front very similar if not identical to the Pareto front of all hybrid de-344

signs, suggesting that when the size of the area can be adapted it may not be345

useful to add regular elements within the random design. Fractal and random346

designs showed quantitatively very close Pareto fronts, which both contributed347

to the global Pareto front. Fractal designs seemed slightly more performant348

when seeking intermediary error levels on the mean and the autocorrelation349

range, but we reckoned that the magnitude of the difference was too reduced350

to justify a deep interpretation. Focusing on random designs (p = 1), the tran-351

sition from designs oriented towards estimating the mean to designs oriented352
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towards estimating the autocorrelation range occured when L decreased from353

L = 100as to L = 10as (fig. 5B).354

Figure 5: Pareto front of relative root mean square error of estimation of expo-
nential mean RRMSE(α) and autocorrelation range RRMSE(as) for four sam-
pling strategies when allowing to change surveyed area, hence removing the
dependence on as. The ‘hybrid’ Pareto front corresponds to considering all
the values of p simultaneouly (hence encompassing grid and random designs
as particular cases). The ‘fractal’ Pareto front corresponds to considering all
the values of x simultaneouly. Hybrid (pink) and random-only (red) Pareto
fronts are nearly exactly super-imposed. Panel A shows the Pareto fronts for
the different types of design. Panel B relates the position on the random-only
Pareto front to the value of log10(as/L), where L is the length of the side of the
triangular area.

Sampling effort We now theoretically explore the implication of increasing355

sample size N by a factor η = 3q with q ∈ N∗. For fractal designs, the increase356

of sample size is done by further iterating q times the iterating function system357

depicted in methods. For hybrid designs, the increase of sample size is done by358

increasing the density of sampling points by a η factor. We propose the following359

approximation for a design i (see Article S1 in Supporting Information, section360
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5 for a justification):361

E
(i)
a (as, L, ηN) ≈ η− 1

2E
(i)
a (as × η

1
δi , L,N)

E
(i)
α (as, L, ηN) ≈ η− 1

2E
(i)
α (as × η

1
δi , L,N)

where δi is known as the ‘fractal dimension’ of the design i, equal to 2 for hybrid362

designs and to − log (3)/ log (ρ) for fractal designs (always strictly lower than 2).363

The first effect of increasing sample size should thus be to decrease RRMSEs by364

a factor η−
1
2 , irrespective of the design, which should not change the ordination365

of designs, and suggest considering rescaled RRMSEs to discuss the question of366

ordination :367

η
1
2E

(i)
a (as, L, ηN) ≈ E(i)

a (as × η
1
δi , L,N)

η
1
2E

(i)
α (as, L, ηN) ≈ E(i)

α (as × η
1
δi , L,N)

These rescaled RRMSEs suggest that the effect of increasing sampling effort on368

designs ordination is equivalent to increasing as. The equivalent increase on as369

depend on the fractal dimension, it is larger for fractal designs than for hybrid370

designs.371

We previously observed that RRMSE(α) tended to increase with the degree372

of randomness p of hybrid designs (fig. 2) irrespective of as value. Because373

hybrid designs all have the same fractal dimension, this pattern should persist374

as sampling effort increases. The effect of increasing sampling effort on the375

ordination of RRMSE(as) among hybrid design is harder to predict since the376

variation of RRMSE(as) along the as gradient is non-monotonic. However, using377

previous results (fig. 2), one expects that when sampling effort has increased378

enough to ensure that the mesh size of grid sampling design has become lower379

than autocorrelation range as, the grid design would become the best hybrid380

design with respect to RRMSE(as), and therefore the unique Pareto-optimal381

design among hybrid designs.382
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Combining the facts that (i) grid design consistently outperformed fractal383

designs on RRMSE(α) at the same as value (e.g. fig. 4A), (ii) fractal designs384

have higher ‘equivalent’ as than hybrid designs when sampling effort increases385

and (iii) RRMSE(α) of fractal designs increased with as (fig. 6A), one can386

expect that increasing sampling effort preserves grid design as the best design387

among all with respect to RRMSE(α). When the autocorrelation range as is388

higher than the mesh size of grid sampling design, RRMSE(as) of fractal designs389

increases with as (fig. 6B). This tends to suggest that when sampling effort has390

increased enough to ensure a mesh size of grid sampling design lower than as,391

the grid design may also outperform fractal designs with x > 10−1.5 in terms of392

RRMSE(as), and thus be the unique Pareto-optimal design among all designs.393

Figure 6: RRMSEs of fractal designs as a function of autocorrelation range
as. Panel A shows RRMSE(α), panel B shows RRMSE(a[s]). In both panels,
the vertical dotted line shows the grid design mesh size. The grey level of
curves indicates the value of the contraction parameter x, increasing from black
(x = 10−1.5) to white (x = 1). Only a sub-sample of the 240 explored values on
x were presented, to improve readibility.
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Discussion394

Within a fixed surveyed area, hybrid designs are not always inter-395

mediary Pareto-optimal strategies between grid and random designs396

For autocorrelation range smaller than the grid mesh size, we retrieved the ex-397

pected continuum of Pareto-optimal hybrid designs between grid and random398

designs. In this context, pairwise distances among sampling points smaller than399

the grid mesh size were needed to accurately estimate the autocorrelation range,400

and such smaller distances were provided by the introduction of random points.401

Increasing the degree of randomness in designs thus lead to a gradual shift in the402

accuracy from estimating the mean of the field to estimating the autocorrela-403

tion range. For larger autocorrelation ranges, we obtained less expected results:404

adding too much randomness could depart from the Pareto front of designs and405

become sub-optimal. The upper threshold of acceptable randomness decreased406

with autocorrelation range and, for large autocorrelation ranges, the grid design407

stood as the unique best strategy among hybrid designs to estimate both the408

mean and the autocorrelation range of the field.409

In practice, choosing among hybrid designs thus relies on a priori knowledge410

about the order of magnitude of the autocorrelation range for the quantity of411

interest. Let us consider the practical case where one wants to define a strategy412

to position 27 sampling plots in a forest of about 3600ha in order to study the413

distribution of saproxylic beetles species living in hollow trees. The mesh size414

of a regular grid spread over the forest would then be of c.a. 1500m (with fluc-415

tuations depending on the geometry of both forest and the chosen shape of the416

mesh). A previous studies based on auto-regressive occupancy models [Ranius417

et al. (2010), fig. 1] suggested that cavicolous beetles often harbour a spatial418

autocorrelation with range below 1000m. One thus expects the mesh size to be419

larger than autocorrelation range in this example. If estimating the autocorre-420
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lation range were a strong priority of the study, random sampling should thus421

be preferred. If one rather looked for a compromise between mean and auto-422

correlation range estimation, truly hybrid strategies should be preferred. In the423

latter case, the shape of the Pareto front seems to be convex when autocorre-424

lation is smaller than mesh size (fig. 2), suggesting that the pay-off of adding425

randomness decreases as the proportion of random points increase. Therefore,426

a choice for a low degree of randomness [e.g. p = 0.1; Bijleveld et al. (2012)]427

could be appropriate.428

Bijleveld et al. (2012) had already identified that the relative performance429

of designs depended on the level of the underlying autocorrelation range. For430

instance, they found that the bias when estimating autocorrelation range was431

minimized by random design for small autocorrelation ranges, but minimized by432

hybrid strategy with p = 0.1 at higher autocorrelation level. However, because433

they averaged the performance of designs out across autocorrelation levels and434

intersample distances explored in their analysis, the authors further concluded435

that, overall, there was a Pareto front of hybrid designs between grid and ran-436

dom. Our findings discourage averaging across autocorrelation ranges, because437

the magnitude of errors on autocorrelation estimation rapidly increases as the438

autocorrelation range decreases. Global averaging thus tends to give too much439

of weight to scenarios with small autocorrelation range compared to intersample440

distance, and may lead to over-generalizing patterns that are in fact specific to441

small autocorrelation range values. Diverging magnitude of error at the lower442

end autocorrelation range raises the same problem for all metrics of perfomance443

integrating over an interval of autocorrelation ranges. For instance, Zhu and444

Stein (2005) mentioned that minimax or average metrics of estimation error445

across the autocorrelation range considered in their study were very unstable446

and hard to optimize, probably due this phenomenon. For this reason, we chose447

23

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 31, 2022. ; https://doi.org/10.1101/2022.07.29.501974doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.29.501974
http://creativecommons.org/licenses/by/4.0/


not to derive global metrics in our study but focused on the qualitative analysis448

of Pareto fronts.449

Within a fixed surveyed area, fractal designs can be Pareto-optimal450

strategy to estimate small autocorrelation ranges At very small auto-451

correlation ranges, all hybrid designs except grid were excluded by fractal de-452

signs, i.e. the latter were more efficient at estimating both the autocorrelation453

range and the mean. Fractal design with intermediate contraction parameter454

seemed particularly interesting because the associated absolute level of error455

on autocorrelation range remained moderate (see non-shaded area on fig. 4A).456

These designs remained Pareto-optimal when autocorrelation range increased up457

to values close to grid mesh size, because they extended the hybrid Pareto front458

towards estimating autocorrelation range more accurately. In other words, they459

offered a way to go further than the random design towards the aim of accurately460

estimating the autocorrelation range while paying a cost on the estimation of461

the mean. Coming back to the example of saproxylic beetles mentioned above, if462

estimating the autocorrelation range were a strong priority of the study, fractal463

designs with intermediate x may be even more interesting than random design.464

Under the assumptions of our study, the figure 4B seems to suggest that taking465

x = 10−0.4 ≈ 0.4 is quite a robust choice. One may object that when accurately466

estimating small autocorrelation ranges is a strong priority of a survey, it may467

be relevant to combine the optimization of sampling design with the reduction468

of the area of study. This specific point is discussed in the next section.469

It should be noted that, in practice, the choice of contraction parameter to470

build sampling design comes with sterical contraints when sampling units can-471

not be too close one from another. This may happen when sampling units have472

a large size (see our example below) or if sampling induces a disturbance than473

would alter the outcome of sampling nearby (e.g. because of organisms have474
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large home range or because they are sensitive to the presence of observers), a475

phenomenon akin to ‘interference among sampling unit’ in causal theory (Kim-476

mel et al., 2021). Considering our example about saproxylic beetles, sampling477

units could be circular plots of 1ha (a radius of c.a. 57m). Then the mini-478

mal distance between two sampling units would have to be of at least 114m479

to avoid overlapping. If one assumes that the forest under study (≈ 3600ha)480

has a diameter of c.a. 7km, building a triangular fractal design with 27 plots481

implies that the largest distance between plots in the design is 114/ρ2 where482

ρ = x
√

3/(2+
√

3). The constraint that this distance must be below 7km implies483

that x cannot be lower than 0.27. Similarly, it is straightforward to show that484

there could not be more than five scales in the triangular fractal sampling design485

without generating overlapping of sampling units (i.e. sampling effort must be486

lower than N = 35 = 243 plots). However, this threshold on sampling size could487

be overcome by considering a more complex geometrical shape of the fractal.488

More generally, the number of sampling sites can be modulated by combining489

the choice of the geometrical shape with subsampling (Marsh and Ewers, 2013).490

If the size of surveyed area can be adapted or sampling effort in-491

creased, fractal designs are outperformed by more classic options492

Assuming that the size of the area of study is not predetermined by exter-493

nal constraints, random design was sufficient to reach — or get very close to494

— the global Pareto front of designs explored in our study through adjusting495

the size of the surveyed area. In this case, moving towards hybrid or random496

designs seems adding complexity without subsequent payoff. The problem of497

knowing the order of magnitude of autocorrelation range a priori is still present498

though, for the size of the area has to be adapted to this quantity. For 27499

sampling point, the typical dimension — side length in our case — of surveyed500

area should be comprised between ten and a hundred times the target autocor-501
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relation depending on whether the main goal is autocorrelation range or mean502

estimation, respectively. Our results about the effect of sampling effort suggest503

that if the number of sampling points is increased e.g. fourfold, then the range504

of side length values to consider for the surveyed area should be shifted upwards,505

and approximately comprised between twenty and two hundred times the target506

autocorrelation range.507

However, there are several reasons in practice for which the area of study508

may not be a real degree of freedom when building the study design. First,509

the area open to sampling may be limited in space either for biological reasons510

(e.g. a spatially-limited habitat, like a lake) or practical reasons (restricted511

access, time of travel, etc.). This would prevent extending at will the area of512

study and potentially limit the opportunities for improving the estimation of513

the mean that way. Conversely, the area study cannot be freely reduced when514

one aims at relating environmental covariates to target biodiversity patterns515

(especially non-linear ones; Albert et al. (2010)), because the range of covariate516

values has to be appropriately covered. This implies e.g. stratifying among517

various type of soil cover (Yoccoz et al., 2001), or to span the full extent of an518

environmental gradient (Field et al., 2009; Albert et al., 2010). Our study does519

not include these constraints, for we did not consider a third criterion that would520

be accurately estimating patterns along an environmental covariate. By taking521

this simplified regression framework, we could easily adress the question of the522

trade-off between estimating a fixed effect and estimating the spatial structure523

of residuals. At that stage, we showed that fractal and random designs showed524

very similar Pareto-fronts when freely adjusting the size of surveyed area (fig.525

5A). Consequently, if fractal designs happened to better estimate the effect of526

gradients by forcing the presence of large pairwise distances, they may exclude527

random design from the Pareto front when including this third axis of evaluation.528
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Our choice of sampling effort N = 27 was done to reflect realistic settings529

that one can observe in many resarch projects on biodiversity, ours included.530

However, when data acquisition at a sampling point is not very demanding, it is531

also frequent to observe larger designs. Sticking with the hollow trees example,532

if one simply aims at describing features of the trees like tree-related microhab-533

itats (Larrieu et al., 2018), which are proxys for saproxylic beetle biodiversity534

(Bouget et al., 2014, 2013), but does not aim at sampling and identifying bee-535

tles themselves, then the sampling budget can considerably increase. In this536

case, our theoretical results tend to suggest that when the sampling budget is537

sufficient for the mesh size of a grid design to become equivalent to or lower538

than the anticipated magnitude of autocorrelation range, a grid design should539

be preferred among the other strategies and fractal designs are excluded from540

the Pareto-front.541

Conclusions542

In the context of our study, the main advantage of fractal designs occured when543

aiming at estimating short autocorrelation ranges while constrained on cover-544

ing a large area of survey with a limited sampling budget. In other situations,545

it seemed more efficient and less complicated to implement more classic de-546

signs. The niche for fractal designs may thus appear quite limited. It should547

nonetheless be noted that we evaluated designs on a simple scenario with a par-548

simonious autocorrelation structure and no effect of covariates. The question of549

jointly estimating the effects of covariates and the autocorrelation range should550

now be further adressed, for it adds new axes to the trade-off among designs.551

In particular, biological patterns often stem from heterogeneous drivers acting552

at different scales (Thuiller et al., 2015; Ricklefs, 2008). Designs that harbour a553

clear hierarchical structure — like fractal designs — may be particularly adapted554
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to capture such heterogeneity (Simpson and Pearse, 2021), provided that the555

scales of variation induced by the hypothesized processed match the geometrical556

constraint of self-similarity inherent to fractals.557
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29

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 31, 2022. ; https://doi.org/10.1101/2022.07.29.501974doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.29.501974
http://creativecommons.org/licenses/by/4.0/


and Wilson, R. (2007). Methods to account for spatial autocorrelation in the601

analysis of species distributional data: a review. Ecography, 30(5):609–628.602

Falconer, K. J. (2003). Fractal geometry: mathematical foundations and appli-603

cations. Wiley, Chichester, England, 2nd ed edition.604

Field, R., Hawkins, B. A., Cornell, H. V., Currie, D. J., Diniz-Filho, J. A. F.,605
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