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Abstract

1. Every year, millions of birds migrate between breeding and non-breeding

habitat, but the relative numbers of animals moving between sites is dif-

ficult to observe directly.

2. Here we propose FlywayNet, a discrete network model based on observed

count data, to determine the most likely migration links between regions

using statistical modelling and efficient inference tools. Our approach ad-

vances on previous studies by accounting for noisy observations and flexi-

ble stopover durations by modelling using interacting hidden semi-Markov

Models. In FlywayNet, individual birds sojourn in stopover nodes for a

period of time before moving to other nodes with an unknown probabil-

ity that we aim to estimate. Exact estimation using existing approaches

is not possible, so we designed customised versions of the Monte Carlo
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Expectation-Maximisation and Approximate Bayesian Computation algo-

rithms for our model. We compare the efficiency and quality of estimation

of these approaches on synthetic data and an applied case study.

3. Our algorithms performed well on benchmark problems, with low abso-

lute error and strong correlation between estimated and known parame-

ters. On a case study using citizen science count data of the Far Eastern

Curlew (Numenius madagascariensis), an endangered shorebird from the

East Asian-Australasian Flyway, the ABC and MCEM algorithms gen-

erated contrasting recommendations due to a difference in optimisation

criteria and noise in the data. For ABC, we recovered key features of

population level movements predicted by experts despite the challenges of

noisy unstructured data.

4. Understanding connectivity places local conservation efforts and threat

mitigation in the global context, yet it has proven difficult to rigourously

quantify connectivity at the population level. Our approach provides a

flexible framework to infer the structure of migratory networks in birds

and other organisms.

Résumé

1. Chaque année, des millions d’oiseaux migrent vers et depuis leurs sites de

reproduction en empruntant différentes routes de migration. Il est difficile

d’estimer comment les oiseaux se répartissent entre ces différentes routes.

2. Nous proposons FlywayNet, un modéle de réseau de migration basé sur

des données de comptage. Le modèle permet de reconstruire les routes

de migration les plus probables en utilisant la modélisation statistique

et des outils d’inférence efficaces. Notre approche améliore les travaux

existants en permettant la prise en compte d’observations bruitées et de

durées de séjour flexibles dans les sites-étape de la migration, à l’aide

de modèles semi-Markoviens cachés, couplés. Dans FlywayNet, chaque

oiseau séjourne dans des sites-étape pendant un certain temps, avant de

s’envoler vers un nouveau site parmi plusieurs sites possibles. Nous util-
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isons les comptage observés afin d’estimer les lois de probabilité des temps

de séjour d’un oiseau dans chaque site et la probabilité de rejoindre cha-

cun des sites suivants. Une estimation exacte par des méthodes classiques

est trop complexe, aussi nous avons construit des versions adaptées des

algorithmes Monte-Carlo Expectation-Maximization (MCEM) et Approx-

imate Bayesian Computation (ABC) permettant une estimation approchée

des paramètres du modèle FlywayNet. Nous proposons une compara-

ison empirique de l’efficacité et de la qualité d’estimation de ces deux

algorithmes, sur des données synthétiques et des données issues d’un cas

d’étude.

3. Les deux algorithmes montrent de bonnes performances sur les données

synthétiques, avec une faible erreur d’estimation et une forte corrélation

entre les paramètres estimés et réels des modèles. Nous avons également

considéré un cas d’étude utilisant des donné d’observations citoyennes con-

cernant le Courlis de Sibérie (Numenius madagascariensis), espèce de ri-

vage menacée migrant le long des rivages entre la Sibérie et l’Océanie. Sur

ce cas d’étude, les approches ABC et MCEM donnent des résultats con-

trastés, liés à la rareté des données d’observations et aux critères optimisés

par les deux approches. La méthode ABC a toutefois permis de retrouver

les mouvements d’oiseaux prédits par les experts, malgré le défi posé par

le manque de données et le bruit les entachant.

4. La compréhension des connectivités entre sites-étape permet de replacer

les efforts de conservation et de réduction des menaces locales dans un

contexte global de conservation. Néanmoins, il est difficile d’estimer les

liens de connectivité entre sites pour des populations entières d’oiseaux.

Notre approche fournit un moyen flexible (basé sur des données partici-

patives d’observations) d’inférer la structure d’un réseau de migration à

l’échelle globale, pour des espèces aviaires, ou autres...

Keywords: Approximate Bayesian Computation, connectivity, East

Asian-Australasian flyway, eBird, Hidden Semi Markov Model, Monte Carlo
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expectation maximisation

1. Introduction1

The seasonal migration of animals around our planet is one of Earth’s great2

natural spectacles. Apart from the inspiration humans draw from the endurance3

of migrants who undertake such arduous journeys across our world, migration4

is critical for connecting ecosystem processes and services across vast distances5

(Semmens et al. 2011, Wilcove & Wikelski 2008). Sadly, the phenomenon of mi-6

gration is threatened and many formerly abundant species are declining globally7

(Clemens et al. 2016, Rappole & McDonald 1994, Robbins et al. 1989, Wilcove8

& Wikelski 2008).9

As well as understanding the drivers of decline, arresting declines in migra-10

tory species requires knowing the degree of geographic linkage between different11

stages of a species’ annual range due to the movement trajectories of individ-12

uals as they complete their migration, referred to as migratory connectivity13

(Marra et al. 2019, Webster et al. 2002). Connectivity determines how changes14

in habitat at one part of a migratory network may influence others. For exam-15

ple, connectivity can explain how poor non-breeding habitat quality will impact16

the breeding population (Sillett et al. 2000), the disproportionate impacts of the17

loss of migratory structure on population size (Iwamura et al. 2013, Runge et al.18

2014), or how disease is likely to spread through a migration network (Webster19

et al. 2002). Understanding connectivity places local conservation efforts and20

threat mitigation in the global context. For example, if we know the main routes21

travelled by populations, we can prioritise management of threats in the parts of22

the flyway that are critical habitat for the largest number of migrants. Connec-23

tivity should also be the basis for informed reserve design for migratory species,24

yet recent analysis suggests that existing reserve networks rarely account for25

connectivity of migratory bird species across their annual cycle (Runge et al.26

2015).27

Measuring migratory connectivity is challenging due to the wide geographic28

4



areas and vast numbers of individuals involved (Webster et al. 2002). Great29

progress has been made in recent decades, with sophisticated advances in tradi-30

tional mark-recapture/ banding studies (Cohen et al. 2014), improved satellite31

tracking and geolocator technology, stable isotope analysis and genetic tech-32

niques all providing alternative ways to learn more about where individuals33

move (Webster et al. 2002). Accompanying these advances is an extensive liter-34

ature on movement ecology, including models for analysing tracking data, which35

we do not attempt to review here. Of particular relevance to our study are the36

works of Joo et al. (2013), which used a hidden semi-Markov Model and track-37

ing data to model foraging behaviour, and Kölzsch et al. (2018) which used38

tracking data to infer a migratory network structure. Despite these powerful39

methods and the increasingly clever ways that they are being combined, the40

expense and low scalability of tracking individuals (Webster et al. 2002) means41

that in most species our understanding of migratory routes is still drawn from42

a tiny subsample of the population, often just a few individuals of any given43

species.44

A complementary approach to tracking individuals is to infer connectivity45

from count data at known aggregation sites. Count data, particularly for birds46

using the citizen science database eBird (Sullivan et al. 2009), have been used to47

complement and boost inferences about connectivity from other methods such48

as geolocator data (Hallworth et al. 2015) and stable isotope analysis (Fournier49

et al. 2017). Unlike most tracking data and banding data, count data has the50

tremendous advantage of being widely and freely available, at least for birds,51

but increasingly for other organisms (e.g. Tonachella et al. 2012). There is an52

opportunity to develop more powerful estimation techniques that make greater53

use of count data in its own right.54

Models of migratory networks have been posed to explore theoretical prop-55

erties of migratory structure using assumed parameters (Taylor & Norris 2010),56

and others have used tracking data to infer structure from a few individuals57

(Kölzsch et al. 2018). However, until recently there have been relatively few at-58

tempts to infer migratory network structure using count data, but a handful of59
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studies have attempted to solve the problem for migratory bird networks. The60

most relevant to our study, (Sheldon et al. 2007, Jain & Dilkina 2015), infer61

Markov transition probabilities for a migratory network from eBird data but62

make the unrealistic assumption of perfect observations. Our study advances63

previous attempts because it incorporates imperfect detection (i.e. it allows for64

error in the observed counts) and explicitly estimates the time spent at stopover65

locations.66

As in previous models of migratory networks (e.g. Kölzsch et al. (2018), Jain67

& Dilkina (2015), Taylor & Norris (2010)), we model a migratory system as a68

network consisting of nodes (breeding nodes, non-breeding nodes and stopover69

nodes) connected by edges. Individuals sojourn in stopover nodes for a period of70

time before moving to other nodes with an unknown probability that we aim to71

estimate. From the set of estimated transition probabilities we can reconstruct72

a weighted network which represents connections between stopovers and their73

relative strength. The model also enables us to estimate the mean duration of74

a bird’s sojourn at each stopover (hereafter ‘sojourn time’).75

Since animals are difficult to count precisely, to estimate the characteris-76

tics of the network, we introduce a hidden semi-Markov Modelling (HSMM, Yu77

(2010), Joo et al. (2013)) approach to model imperfectly detected count data.78

The hidden part of the model is the position of each bird at each time step. The79

HSMM is an extension of the well-known hidden Markov Model (HMM). The80

HMM assumes that the sojourn time in a given hidden state follows a geometric81

distribution; extending the HMM to the HSMM relaxes this assumption and82

allows explicit modelling of sojourn times. The geometric distribution assumes83

that the most probable sojourn time is always 1 time unit, which is a limit-84

ing assumption for birds that may spend a few weeks resting at sites before85

continuing their migration. To circumvent this limitation we use a HSMM.86

Due to the dimension of the hidden variables, exact estimation of the model87

parameters using classical approaches is not feasible for even a small number of88

nodes. To overcome this, we present two dedicated estimation algorithms for our89

model: Monte Carlo Expectation-Maximisation (MCEM, Wei & Tanner (1990))90
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and Approximate Bayesian Computation (ABC, Csilléry et al. (2010)). We91

present and compare the efficiency and quality of estimation of these approaches92

on synthetic data before applying them to a case study of a migratory shorebird93

in the East Asian-Australasian flyway.94

2. Methods95

2.1. The model of the migratory system96

We assume that we are following the migration of a population of N birds97

over a set of I distinct sites (i.e. breeding, non-breeding or stopover locations)98

over time. Sites are connected via migration links (‘edges’ in the following) for99

which we have some a priori knowledge, however we do not know the strength100

of the connections, and our goal is to learn the most likely structure from count101

data. We name our model ‘FlywayNet’.102

2.1.1. A priori knowledge of the migratory network103

We introduce some a priori knowledge on the presence or absence of an edge104

between two sites. First, since migration is a directed movement (from North105

to South or from South to North, depending on the season) we assume that106

birds do not fly backward. Although it is known that some birds do terminate107

migration and return to their place of origin (e.g. Driscoll & Ueta (2002)), the108

number of birds returning to their origin sites is very small compared to the109

number completing their migration. So we assume an ordering of the I sites110

such that if i < j then a bird cannot fly from site j to site i. The set of all111

potential connections is given by the set of oriented edges from i to j for every112

i < j. This assumption ensures that the graph is acyclic, simplifying the model113

estimation.114

2.1.2. Semi-Markov model of bird migration115

We consider that each bird trajectory is modeled as a semi-Markov model116

over a finite discrete time horizon H = {0, 1, 2, . . . , T}, and that the N bird117

trajectories are independent. The state of a trajectory at a given time can be118
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one of the I sites, or the state ‘death’ which corresponds to a bird who dies before119

time T . Rigorously, to have a semi-Markov model, one should add the states120

corresponding to a bird flying towards a given site. Since flight durations are121

known and fixed, for sake of simplicity, we do not burden the model description122

with these extra states.123

For bird n (1 ≤ n ≤ N), the trajectory πn can be summarized by the

sequence of visited states and the time of arrival in the state:

πn =
(

(in0 , t
n
0 ), (in1 , t

n
1 ), . . . , (inFn

, tnFn
)
)
. (1)

In expression (1), trajectory πn has Fn stages, bird n starts in site in0 at time124

tn0 = 0, and tnk is the date of arrival of bird n at site ink , for every 1 ≤ k ≤ Fn.125

By convention, inFn
is the last state occupied by bird n, i.e. the bird entered126

state inFn
at time tnFn

≤ T and is still in this state at time T .127

If for some bird n, we have ink = “death”, then tnk < T represents the date128

of death of bird n. In this case, πn is stopped at tnk .129

We assume that for every pair of sites (i, j) such that i < j ≤ I, the flight130

duration between i and j, fi,j ∈ {1, 2, . . .} is known. Under these hypotheses,131

expression (1) defines a unique bird trajectory.132

Then, the semi-Markov model for a bird’s trajectory is defined as follows:133

• Transition probabilities between states. We define the I × I matrix R134

of transition probabilities between states that are sites. The probability135

that any bird leaving site i at any given time goes to site j is R(i, j). If136

i ≥ j then R(i, j) = 0, so R is an upper triangular matrix. Note that,137

accounting for mortality, we may have, for any i < I,138

∑
j∈1...I

R(i, j) =

I∑
j=i+1

R(i, j) < 1.

The value µi = 1−
∑
j∈1..I R(i, j), for i < I is the mortality probability in139

site i which is assumed known. For a bird leaving site i < I, the destina-140

tion is thus selected according to a categorial distribution of parameters141
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k < i i i i i i i − − − j > i

t1 − 1 t1 t1 + 1 . . . . . . t2 − 1 t2 t2 + 1 . . . t2 + fi,j . . .

Sojourn time: t2 − t1 + 1 Flight time: fi,j

Figure 1: Sojourn time definition. The arrow represents time evolution, and the discrete times

are indicated below the arrow. The state of the bird trajectory is indicated above the arrow,

with k, i and j being three distinct sites and ‘−’ coding for a bird flying. In this example, the

duration of sojourn in state i is t2 − t1 + 1.

(R(i, i+ 1), . . . , R(i, I), µi). For the breeding site I, we assume that when142

a bird ‘leaves’ site I, it necessarily moves to death so µI = 1. This as-143

sumption has no influence on the estimation, since the breeding node is144

the terminal node and we do not estimate sojourn time or transitions from145

it.146

• Sojourn time. We assume that the sojourn time distribution in state i ≤ I147

is a shifted Poisson distribution of parameter λi. The shift is equal to one148

to ensure that sojourn time is larger than 0 (as is done in the R package149

mhsmm, O’Connell & Hojsgaard (2011)). Thus the probability that the150

sojourn time τi in site i is equal to d is:151

Pλi
(τi = d) =

(λi)
d−1

(d− 1)!
e−λi ,∀ d = 1, 2, . . .

The sojourn time in state ‘death’ is infinite (‘death’ is an absorbing state).152

The definition for a sojourn of duration d is the following: if the state of153

bird n’s trajectory at time t is i for t = t1, t1 + 1, . . . , t2 and is not state154

i at t1 − 1 and at t2 + 1, then d = t2 − t1 + 1 (see Figure 1). Sojourn155

time distributions depend on the site, but are the same for each bird.156

Furthermore, we assume that sojourn times of two sites are independent.157

• Initial distribution. γ0
i is the distribution of the number of birds at site i at158

time zero. Rigorously, in the semi-Markov model framework, if we wanted159

9



to track the position of each individual bird, we would need to define160

a separate probability distribution for the initial position of each bird.161

However, since our model does not distinguish between birds, it is sufficient162

to summarise these individual distributions with a single distribution for163

site i, γ0
i . In this study we assume that the initial distribution is known.164

These notions are formally defined in Supporting information S1.165

2.1.3. Observation model166

Given the set of trajectories Π = {π1, . . . , πn}, we can determine N t
i , the167

number of birds located in site i at time t (this variable is formally defined in168

Supporting Information S1).169

Observations are observed counts Oti for a set Ω ⊆ {1 . . . I} × {1 . . . T} of170

observed site-times. We will consider that, conditional on the birds’ trajectories,171

these counts are independent. Furthermore the distribution of Oti (for (i, t) ∈ Ω)172

conditional on Π is equal to the distribution of Oti conditional on N t
i . We173

model it as a negative binomial distribution with parameters rti and p where174

rti = δN t
i p/(1 − p) and δ is the probability to report a bird (see Supporting175

Information S2 for details and also for other choices of observation model).176

Since the observed counts may not be discrete (e.g. where they are averaged177

across several observers), observations are rounded to the nearest integer value.178

The joint distribution of all the observations O = {Oti}(i,t)∈Ω given the tra-179

jectories is P (O|Π) =
∏

(i,t)∈ΩNB(rti ,p)
(Oti), where NB(rti ,p)

(.) is the negative180

binomial distribution.181

2.2. Parameter interpretation and estimation182

Let us denote Λ = (R, {λi}1≤i≤I , δ) the set of parameters of the HSMM183

model that we would like to estimate. For the negative binomial observation184

model, we also estimate parameter p from data, but prior to the joint estimation185

of Λ, see Supplementary Information S5.186

Since we want to infer the most likely network of migration links between187

nodes, a parameter of interest is the matrix R of probabilities of transitions188
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between sites. From this matrix, we can build a weighted migratory network189

where there is an edge from site i toward site j if R(i, j) > 0. The weight190

of the edge is R(i, j). For a fixed i, the non-zero R(i, j)’s provide the relative191

importance of the routes i → j. The parameter λi indicates the expected192

duration that a bird stays at site i.193

Estimating the model parameters is difficult for several reasons. First, this194

is a model with hidden data: neither the individual bird trajectories nor the195

real counts N t
i are observed. Second, conditional on the observed counts, the196

N bird trajectories are no longer independent.197

Direct optimization of the likelihood is intractable, yet realisations of the198

Oti from the model are easy to simulate. Indeed, given parameters Λ we can199

first simulate each bird’s trajectory, then compute the N t
i and finally simulate200

each Oti . We designed two simulation-based methods to estimate the param-201

eters, based on the Monte Carlo Expectation-Maximisation method (MCEM,202

Andrieu et al. (2003)) and the Approximate Bayesian Computation method203

(ABC, Csilléry et al. (2010)) respectively. With MCEM, we obtain a point-204

wise estimate for each model parameter (frequentist approach) while with ABC205

we obtain an approximation of the posterior distribution of each parameter206

(Bayesian approach). The reason to design two estimation algorithms, from dif-207

ferent approaches (i.e. frequentist and Bayesian) and with different optimisation208

criteria, is to help to diagnose the confidence we can have in the estimated pa-209

rameters, i.e. if the algorithms find different parameter values then this should210

prompt further investigation to understand the cause of the difference.211

2.2.1. Monte Carlo Expectation Maximisation212

The Expectation-Maximisation (EM) algorithm is an iterative algorithm213

that maximises the likelihood of the observed data when hidden variables pre-214

clude the use of direct maximisation of the likelihood. For our model, for a215

current value of the estimated parameters, Λold, in the E-step, the conditional216

probabilities PΛold
(Π|O) are computed for all possible sets of trajectories Π.217

Then in the M-step, the parameter estimator is updated to Λnew:218
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Λnew = arg max
Λ

∑
Π

log (PΛ(Π, O))PΛold
(Π|O),

where the sum is taken over every possible sets Π of N independent trajecto-219

ries. So computing Λnew requires the evaluation of the distribution PΛold
(Π|O)220

which is too complex (E-step). It is possible to approximate the updating for-221

mulas using Monte-Carlo techniques (Andrieu et al. 2003, Levine & Casella222

2001) by drawing many samples from PΛold
(Π|O). The corresponding updating223

formulas are equations 6 and 7 in Supporting information S2.224

The challenging part of the Monte-Carlo Expectation-Maximisation (MCEM)225

approach is therefore to draw samples from PΛold
(Π|O). To do this, we used226

a Metropolis-Hastings algorithm (Hastings 1970). This approach, as well as a227

more complete presentation of the MCEM algorithm, is described in detail in228

Supporting Information S2.229

2.2.2. Approximate Bayesian Computation230

The idea of an ABC algorithm (Csilléry et al. 2010, Jabot et al. 2013) is to231

generate parameter values Λ from proposed prior distributions (or in our case,232

a particle filter, since we use a more complex version of ABC; see Supporting233

Information S3), then to generate observations OΛ for these values of the model234

parameters. If the simulated observations OΛ are close to the true observation235

O then the parameter values Λ are accepted. The procedure is repeated a large236

number of times. The histogram of the set of accepted values is then used as237

an approximation of the true posterior distribution P (Λ|O).238

We used the Lenormand sequential sampling method of the EasyABC pack-239

age in R (Jabot et al. 2015) to obtain the posterior distribution of every param-240

eter of the model. We selected the set of all observed counts, O, as the summary241

statistics. Further details of the ABC algorithm, including the particle filtering242

algorithm for drawing candidate parameter values, are included in Supporting243

Information S3.244

12



2.3. Benchmarking245

The performance of the MCEM and ABC algorithms were assessed by esti-246

mating the model parameters from data simulated from the HSMM model for247

several networks with known values of Λ. In these experiments the parameter248

p of the negative binomial distribution was not estimated but was fixed to its249

true value. Because the parameters of these benchmark networks are known a250

priori, we can test the performance of MCEM and ABC by comparing how well251

they recover the transition probabilities, the sojourn times and the reporting252

probability given different numbers of nodes and network structures.253

The network structure tested during these experiments varied depending on254

the number of nodes (4-10 nodes) and the maximum number of outgoing edges255

per node (2-4 outgoing edges/node, where outgoing edges are departure routes256

from a node). We used a range of [1, 3] for generating sojourn times. Five sets of257

parameter values (transition probabilities and sojourn times) were generated for258

each structure. The total population of birds was 10000 and it was distributed259

equally over the set of nodes that have no incoming edge (source nodes). The260

number of parameters to estimate ranged from 6-20 depending on the problem261

structure. The total number of generated problems in this benchmark was262

300. As well as varying the network structure, we tested the effect of missing263

observation data on parameter estimation by removing varying proportions of264

the observed data and re-estimating parameter values.265

Performance was assessed quantitatively by comparing the log likelihood266

of estimated parameters and the mean absolute error (meanAE) of estimated267

parameters rescaled into [0, 1]. Computation of log likelihood as well as the268

meanAE are detailed in the Supporting information S4. ABC provides an esti-269

mate of the posterior distribution of each parameter, so to compute meanAE we270

extracted point estimates from these distributions. Point estimates were repre-271

sented using the mode of each distribution (the mean being less representative,272

in particular for non symmetric distributions). We compared several methods to273

estimate the mode of a distribution. Among them, the Lientz function (Lientz274

(1972)) and the Venter method (Venter (1967)) (both with bandwith 0.2) re-275
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turned similar results and led to the lowest meanAE values. We selected the276

Venter method because the bandwidth parameter is easier to interpret.277

Wilcoxon tests (Wilcoxon 1945) were performed on the meanAE and log278

likelihoods obtained for each of the benchmark networks. The tests compared279

the differences between the results of ABC and MCEM algorithms. The Wilcoxon280

method was used because we did not want to make any assumption on the dis-281

tribution of the differences and the pairing option was chosen when we could282

focus on differences within benchmark problems. Common notations were used283

when displaying the p values computed by the test, i.e.: ns if p > 0.05, ∗ if284

p ≤ 0.05, ∗∗ if p ≤ 0.01, ∗ ∗ ∗ if p ≤ 0.001 and ∗ ∗ ∗∗ if p ≤ 0.0001.285

2.4. Case Study: Eastern Curlews in the East Asian-Australasian flyway286

We applied our model to infer the northward migration of the Eastern Curlew287

(Numenius madagascariensis) population in the East Asian-Australasian Fly-288

way (EAAF). Eastern Curlews are the largest migratory shorebirds in the289

world, making an annual migration from their breeding grounds in Siberia and290

Kamchatka through east Asia to their predominantly Australian non-breeding291

grounds, before returning to breed. Approximately 80% of the population is es-292

timated to utilise the Yellow Sea during the northern migration Department of293

the Environment (2015), making the Yellow Sea a critically important stopover294

site for the species.295

The global population of Eastern Curlews was estimated to be 32000 birds296

in 2021 (Wetlands International 2021). The population is declining at a rate of297

81% over three generations, leading to the species being listed as Endangered298

globally (BirdLife International 2017) and critically endangered in Australia299

(Department of the Environment 2015). An identified priority information need300

is to better quantify the dependence of the species on key migratory staging301

sites (Garnett et al. 2011).302

Individual Eastern Curlews are known to follow different routes on their303

northward and southward migrations (Minton, Jessop, Collings & Standen 2011).304

To demonstrate our approach, we focus on the northward migration, which is305

14



Node name Description

SAUS Southern Australia

SEAUS Southeastern Australia

NWAUS Northwestern Australia

NAUS Northern Australia

MSIA-IND Malaysia, Indonesia

JPN-SK Japan, South Korea

YS-NK Yellow Sea, North Korea

BREED Breeding

Table 1: Description of defined migration network nodes

better understood (Minton, Jessop, Collings & Standen 2011). Birds depart306

the Australian nonbreeding grounds in late February and March, with more307

southerly birds departing and arriving at their destinations earlier. Most birds308

make a non-stop, long-distance flight to the southern parts of Japan, Korea and309

the Yellow Sea, in 3-4 weeks, arriving in late March or early April. Birds depart310

the Yellow Sea and Korean peninsula and arrive on their breeding ground dur-311

ing April and early May. The 10000km journey from the southerly Victorian312

non-breeding grounds to the breeding grounds is completed in 6-8 weeks, while313

the shorter trip from the South-Eastern (8000km) and North-Western (7500km)314

Australian non-breeding areas to the breeding grounds takes roughly 5-6 weeks315

(Minton, Jessop, Collings & Standen 2011). For our case study of northward316

migration, we model the first 26 weeks of the year (i.e. 1 January- late June)317

with a weekly timestep.318

Although the major migration linkages are known from recaptures and re-319

sightings, as well as some satellite tracking and count data, little is known about320

the timing or the duration that curlews spend at stopover sites (Minton, Jessop,321

Collings & Standen 2011) or how the individual sightings data can be extrapo-322

lated to the population level.323

In our case study we model the migration network using 8 nodes representing324
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the major known stopover regions for Eastern Curlews (see table 1), connected325

by 12 edges (Figure 6). Nodes and edges are based on observed sightings and326

descriptions (Minton, Jessop, Collings & Standen 2011, Minton, Wahl, Gibbs,327

Jessop, Hassell & Boyle 2011), an expert-derived network (Iwamura et al. 2013),328

distribution maps (BirdLife International 2017) and eBird observations for East-329

ern Curlew. eBird sample data are incomplete and spatially biased (Strimas-330

Mackey et al. 2020), so to obtain estimates of total observed count (Oti) within331

each node i at time t, we completed the following steps:332

1. Drew approximate node boundaries based on the expert-derived network333

(Iwamura et al. 2013). The geographical extent of the approximate nodes334

were defined to capture the Internationally Important Sites designated on335

the basis of Eastern Curlew numbers (Bamford et al. 2008) and include336

as many eBird checklists as practicable.337

2. Clipped the geographical extent to the intersection of the approximate338

node boundaries and the Birdlife species distribution maps (BirdLife In-339

ternational 2017) to give a refined node area.340

3. Overlaid these intersected areas with a hexagonal grid (cell size 100km2,341

which roughly coincides with the 10× 10km grid cell sizes used to extrap-342

olate populations in Hansen et al. (2016)).343

4. Within each hexagon, computed the mean count observed in each hexagon344

in each week. This step aimed to reduce the impacts of double counting345

and spatially variable survey effort.346

5. Obtained an extrapolated count estimate for the node by assigning the347

mean count per hexagon (from hexagons with observed records) to all348

hexagons. The sum of counts over all hexagons was assumed to be an349

estimate of Oti .350

Weekly extrapolated count estimates were extracted for the first 26 weeks of351

2018 and 2019. Initial node counts were assigned based on expert estimates352

from Iwamura et al. (2013). See Supporting Information S5 for additional details353

regarding node and edge definition as well as how eBird count data was assigned354
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to the nodes.355

Flight durations between nodes (Supporting Information S5) were estimated356

using the distance between key aggregation sites in nodes and assuming a mi-357

gration flight speed of 50km/h (ground speed) consistent with Driscoll & Ueta358

(2002) (estimated flight speed of 50km/h); and Minton, Jessop, Collings &359

Standen (2011), Minton et al. (2013) (median tracked speed 50.2km/h). Flight360

durations were rounded to the nearest week with a minimum assumed travel361

time of 1 week.362

For our case study, we assume that mortality during the migration is zero.363

In the absence of mortality estimates during migration for Eastern Curlew, and364

most other species, it remains an open question whether the impacts of loss365

of staging habitat impact species directly during the migration, or indirectly366

through reduced breeding success or survival while at breeding or non-breeding367

sites. However if future analyses are able to determine mortality during migra-368

tion, it would be simple to include this estimate in our analysis.369

Parameter p of the negative binomial distribution was estimated directly370

from the data prior to the estimation of the other model parameters with MCEM371

or ABC (see Supplementary Information S5).372

Our objective is to estimate the edge strength between nodes (R(i, j)), pro-373

viding estimates of population connectivity during migration, and the sojourn374

durations at each node. The uncertainties tested in the case study are the routes375

taken by birds migrating from Southern, Southeast and Northern Australia–376

specifically the proportions of internal migration along the eastern and north-377

ern Australian nodes and the relative proportions of birds using stopovers in378

the Yellow Sea compared to those using South Korea and Japan (Figure 6).379

3. Results380

3.1. Benchmarking the MCEM and ABC algorithms381

Both algorithms performed well on the benchmark experiments. Across382

all benchmark problems, MCEM and ABC estimates of the parameters were383
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associated with mean absolute errors of 0.07 and 0.13 respectively. Parameter384

estimates were well correlated with the true parameters, with a correlation of385

0.84 and 0.65 respectively (p < 2.2e−16 for the Pearson’s correlation tests).386

MCEM statistically performed better than ABC. Increasing the number of nodes387

(Figure 2) and the maximum number of outgoing edges (Figure 3-a) increased388

the error of estimation, however mean absolute errors remained reasonably low389

across all benchmark problems.390
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Figure 2: Mean absolute error (above), and log likelihood (below) of estimated parameters

using ABC and MCEM, according to the number of sites. Mean absolute error is computed

using the average error over all sojourn, transition and observation parameters. The statis-

tical tests performed were paired Wilcoxon tests since the differences are based on the same

benchmark problems. Significance test symbols ∗ ∗ ∗ and ∗ ∗ ∗∗ refer to a p-value less than

0.001 and 0.0001 respectively.

Missing observations did not substantially impact the quality of estimation391

(Figure 3-b). Transition probabilities were estimated with lower error than392

sojourn mean times and appeared less sensitive to the number of sites (Figure 4).393

Error on the estimation of the observation parameter δ was close to 0 regardless394

of the number of sites (Figure 4). An additional illustration of the estimation395

results on a benchmark problem is provided in Supporting information S6.396

In terms of number of simulations, MCEM required a median number of397
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Figure 3: Mean absolute error according to the maximal number of outgoing edges (a) and

Mean absolute error according to the percentage of missing observations (b). Mean absolute

error was computed using the combined parameter estimates from the ABC and MCEM

algorithms. The statistical tests performed were unpaired Wilcoxon tests since the differences

are based on different benchmark problems. Significance test symbols ns and ∗ ∗ ∗∗ refer to

a p-value greater than 0.05 and less than 0.0001 respectively.

106650 simulations and a median time of 0.5 hours to reach convergence per398

problem, taking into account the 5 optimizations using different initial values399

of the parameters. ABC was much more expensive with a median number of400

245000 simulations and a median time of 4 hours. ABC is expensive due to a401

high rejection rate of simulated observations. Rejections occur because there is402

a low probability that a sampled parameter set generates observations that are403

close to the true observations.404
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Figure 4: Mean absolute error of estimated sojourn mean time compared to mean absolute

error of estimated transition probabilities and the estimated observation parameter δ according

to the number of sites. Mean absolute error was computed using the combined parameter

estimates from the ABC and MCEM algorithms. The statistical tests performed were paired

Wilcoxon tests since the differences are based on the same benchmark problems. Significance

test symbols ns, ∗∗ and ∗∗∗∗ refer to a p-value greater than 0.05, less than 0.01 and less than

0.0001 respectively.
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3.2. Case Study: The Eastern Curlew405

MCEM and ABC estimates of parameters for the migratory network sup-406

ported different hypotheses about the routes taken by Eastern Curlews (Figure407

5; Figure 6; Venter mode parameter estimates are included in Supporting Infor-408

mation S7 ). ABC results estimated strong reliance on the Yellow Sea in both409

2018 and 2019, with only small proportions visiting the Japan-South Korean410

node. Although the majority of birds flew directly to north Asia from their411

origin, ABC estimated that many birds staged in a more northerly Australian412

node before undertaking their migration, particularly in 2018.413

In 2018, MCEM estimated that Australian birds flew to the Yellow Sea, but414

in 2019 most birds instead flew to the South Korean-Japanese node. In MCEM,415

the amount of staging in a more northerly Australian node was much stronger416

than in ABC. Unlike in ABC, where many birds flew directly to the Yellow Sea417

from their origin node, in MCEM large majorities of birds (70-90%) “hopped”418

north to the Northern Australian node before undertaking their long flight to419

the Yellow Sea or Japan-South Korea.420

For both algorithms, sojourn time parameter estimates were stable between421

years. MCEM estimated sojourn times at Southern (13 weeks) and North-422

western Australia (13 weeks) that were longer than expected, suggesting a later423

start to migration than expected for the species. In contrast, ABC estimates for424

these two nodes were approximately 8 weeks for both nodes, matching the late425

February departure expected from observations. MCEM also predicted unusu-426

ally short sojourn times (∼ 0 weeks) for both the Yellow Sea and Japan-South427

Korean nodes (ABC predicted 2 weeks for both nodes).428

To further highlight the differences between the two algorithms we simu-429

lated trajectories using FlywayNet with either MCEM or ABC estimators and430

computed the number N t
i of birds at site i and time t from these trajectories431

(Figure 8). Reasonable departure times were estimated from the ABC simulated432

trajectories (approximately week 8; February/March). For MCEM, birds began433

departing Southeastern Australia slightly early (mean departure week 5), and434

left Southern Australia later than expected (mean departure week 12). Since435
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Figure 5: The marginals of the posterior distribution for each parameter estimated with ABC

for the Curlew problem using the (a) 2018 and (b) 2019 datasets; the black lines represent

the Venter mode of the marginals of the posterior distribution. Red vertical lines represent

the estimated parameters computed by MCEM.

the majority of birds originate in Southeastern Australia, this had the effect of436

causing the migration to be shifted earlier for MCEM. Consequently, combined437

with very short estimated sojourn times at the Yellow Sea and South Korean-438

Japanese nodes (mean sojourn durations for both nodes < 1 week), MCEM439

estimated trajectories had very early arrivals at the breeding node (first ar-440

rivals late January). With ABC estimators, trajectories were closer to observed441
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Figure 6: Estimated Eastern Curlew networks using 2019 eBird records and (a) ABC and (b)

MCEM algorithms. Edge widths depict the relative transition probabilities between nodes;

node sizes represent relative sojourn time lengths. Dotted lines depict the node boundaries.

Colours depict edges from the same origin.
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Curlew behaviour (Figure 7): there was a peak departure for both Northwest-442

ern and Southern Australian nodes near the end of February and a peak in bird443

numbers at the Yellow Sea in April. The mean migration time for ABC was444

7.0 weeks in 2018 and 6.2 weeks in 2019, close to the 6-8 weeks estimated in445

the literature Minton, Jessop, Collings & Standen (2011); for MCEM it was 5.1446

weeks and 5.7 weeks for 2018-19 respectively.447

Estimated proportion of 
birds using Yellow Sea ~80%2.

2018 estimate: 77%
2019 estimate: 86%

Most Australian birds fly direct to 
Yellow Sea or Japan/South Korea1,3.

The estimated % of birds 
flying direct was:

2018 estimate: 57%
2019 estimate: 70%

Southeast Australia (5-6 weeks)

2018 estimate: 8.4 weeks 

2019 estimate: 7.2 weeks

 Southern Australia (6-8 weeks)

2018 estimate: 8.6 weeks 

2019 estimate: 6.4 weeks

Mean total flight time to Breeding node1 from:

1 Minton et al 2011a
2 Dept. of the Environment 2015
3 Minton et al 2013

Figure 7: Comparison of estimated ABC results with values derived from the literature

4. Discussion448

When tested on benchmark problems, both the ABC and MCEM algorithms449

performed well and recovered parameter values with good accuracy across vari-450

ous sized networks and numbers of connected neighbours. This suggests that, if451

our HSMM model assumptions hold and sufficiently accurate counts are avail-452

able, our algorithms provide a powerful way to recover network structure (i.e.453
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Figure 8: Simulated weekly trajectories for the Eastern Curlew in 2018 (left) and 2019 (right).

Plots show (top) observed counts, (middle) trajectories simulated using ABC estimators and

(bottom) trajectories simulated using MCEM estimators.

the relative importance of edges and the durations of stopovers). Unlike previ-454

ous approaches (Kölzsch et al. 2018), using this approach enables us to account455

for error on count data and provides a flexible framework that can make infer-456

ence with incomplete spatiotemporal count data. In contrast to previous studies457

which require high-resolution data which is difficult to obtain for species that458

are not included in formal monitoring programs (Kölzsch et al. 2018, Jain &459

Dilkina 2015), our approach requires only a basic network structure and count460

information, which is more widely available than individual trajectories (e.g.461

from satellite tagging of birds), providing a useful complementary source of in-462

ference to traditional bird tracking studies. Count data is the default method463

of data collection for bird watchers globally, so harnessing this data source is a464

powerful way to make best use of a global citizen science network.465

Although our algorithms worked well for connectivity estimation on bench-466

mark problems, we obtained contrasting results when we attempted to estimate467

real Eastern Curlew networks from eBird data. In contrast to our benchmark468
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testing results where MCEM had lower estimation error, the ABC results for469

the case study appeared to better match existing knowledge about curlew move-470

ments, particularly in terms of reproducing the dependence on the Yellow Sea471

rather than South Korea-Japan. This could be partly due to how the node472

boundaries are selected, however the different estimates make it hard to con-473

clude which algorithm best estimates the true migratory behaviour of Eastern474

Curlews.475

We have two main hypotheses that could explain the differences between476

the algorithm estimations for Eastern Curlews. Firstly, they have different477

objective functions: MCEM maximises the likelihood while ABC optimises a478

customised set of statistics (here we minimise a weighted sum squared error479

between observed and simulated data). We investigated this hypothesis by480

changing the ABC acceptance criterion to better match the MCEM likelihood481

and obtained results that were closer to the MCEM estimates (see Supporting482

Information S8). This suggested that some of the difference between algorithms483

may be due to different optimisation criteria, however it does not suggest which484

results are closer to the real bird network dynamics.485

Secondly, the eBird count data could be too noisy for the algorithms to486

reach a common estimation. Given that our benchmark performances were487

similar despite their different optimisation criteria, we believe that this is the488

most probable explanation for the discrepancy between algorithms. Although489

some nodes had substantial observed count data and we used the best available490

estimates of suitable range to develop weekly count estimates, geographic and491

temporal coverage is variable in all nodes and our node abundance estimates492

had high week-to-week variability for all nodes (Figure 8, top panel). The vari-493

ability was evident in the posterior distributions of the ABC results, which were494

relatively flat for several nodes (Figure 5). Further, our model assumes that the495

initial population size at each node is known, but we drew this information from496

expert knowledge rather than count data. We pursued data from the Interna-497

tional Waterbird Census (IWC, Delany, S 2005), which is a highly promising498

dataset since it contains systematic count data recorded at the same time of year499
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(January; which roughly corresponds to the beginning of our simulation period500

in our migration model). However, the IWC data has incomplete spatial cover-501

age and variable survey effort in different areas, so additional research is needed502

to use IWC data to generate node abundance estimates that could be used in503

this study. Further research to better estimate node abundance from count data504

would likely greatly improve our estimation ability. Potentially useful methods505

may include smoothing the weekly observed data to infer observations at miss-506

ing locations (e.g. Sheldon et al. 2007) or clustering to test the locations of the507

node boundaries (Jain & Dilkina 2015). Although we deliberately tested how508

well we could estimate using very minimal data from eBird, another promising509

approach may be to incorporate additional datasets, such as tracking and/or510

banding data, to guide the simulated trajectories. Formally incorporating envi-511

ronmental covariates such as habitat type, temperature or the results of species512

distribution modelling may provide additional information to improve abun-513

dance estimates. Including covariates would also be useful for predicting other514

parameters, most notably sojourn times, since birds make stopover decisions515

based on environmental conditions such as the time of year and wind conditions516

(Klzsch et al. 2016). It may also be useful to try the method on other well-517

documented animal migratory data, particularly on species which are easier to518

track and count, such as ungulate migration (Sawyer et al. 2009, Convention519

on Migratory Species Secretariat 2021), where observation errors may be lower520

than for shorebirds.521

A key question for application is how to diagnose when the algorithms are522

performing well. Clearly, if the two algorithms estimate very different parameter523

values, users should seek to diagnose the cause of the difference. However,524

there may also be other useful indicators of reliability. For example, in the525

curlew problem, MCEM tended to seek the boundaries of its domain, suggesting526

that the likelihood surface is increasing monotonically (and therefore that it is527

unlikely that parameter estimates will be reliable). The posterior distributions528

estimated by ABC for some parameters were relatively flat, which also acts as a529

simple check to test for parameters that are difficult to estimate. Where users530
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find that MCEM estimates a majority of parameter values on the edge of their531

domain and ABC finds numerous flat posterior distributions, we recommend532

reviewing the data quality rather than accepting parameter estimates.533

For our curlew case study, the difference in the results between algorithms534

means that the findings should be interpreted with reference to the general535

movement patterns of the species. Expert knowledge, such as that used here536

(e.g. Figure 7), should be used to verify the predictions of the algorithms. The537

general migratory behaviour of most bird species is known, and if an algorithm538

does not reproduce this behaviour then it can be said to be performing poorly.539

Where the algorithm results do align with known movement behaviour, the tests540

outlined in the previous paragraph are a useful guide. In particular, for our541

curlew case study, we suggest that although the ABC results are encouraging,542

some parameters have flat marginal posterior distributions (Figure 5) and these543

should be further scrutinised before being used in applied conservation.544

The migratory movement patterns of some bird species are poorly known.545

Our model accommodates this by requiring minimal input information, specif-546

ically: count data, the location boundaries of the nodes, and the suspected547

connections between nodes. Count data is readily available for any species via548

eBird, so this should not be a limiting factor except where there are few observa-549

tions of the species recorded. The locations of the nodes and the hypothesized550

connections between nodes can be obtained from a combination of eBird list551

locations, published studies and expert knowledge (See Supporting Information552

S5). For poorly-known species where studies and expert knowledge are lacking,553

eBird data alone could be used to set the hypothesized network structure, al-554

though further research would be valuable to determine the most robust way to555

set node boundaries (e.g. clustering techniques).556

Our model makes some assumptions that could be improved in future iter-557

ations. First, we assumed that the time spent in a node is the same regardless558

of the origin and destination (i.e. sojourn times are independent of the origin559

and destination). Where nodes are both a nonbreeding origin node as well as560

a stopover node (e.g. SEAUS in our model), this may confound sojourn times561
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that occur between week zero and when the migration starts with sojourn times562

due to true stopovers during migration. If these sojourn times are considerably563

different, then sojourn estimation may be affected. Modelling conditional so-564

journ times is possible within our HSMM framework, however it would increase565

the number of parameters at each node and increase the difficulty of estimation.566

Second, we assumed that sojourn times at different sites are independent.567

Strictly, since we have an idea of the total duration of the migration, the sum568

of the sojourn times along a trajectory should not substantially exceed the ex-569

pected total duration, so the independence assumption may not hold. We expect570

that in practice the observed data will minimise the impacts of this assumption571

by enforcing average movement between nodes at reasonable times (i.e. that572

match the observed movement times), even without explicitly modelling depen-573

dence between nodes. There could be some trajectories that are overly long574

or short due to independent sojourn times, but these should be minimised by575

fitting to observed movements.576

Third, we assumed that migratory birds progress in one direction (north-577

ward migration only) and that migration time between nodes was constant. In578

practice, some birds are known to abort migrations and return to their origin579

(Driscoll & Ueta (2002)), but for modelling reasons we assumed that this pro-580

portion was small. We also only modelled the northward migration; it would be581

theoretically trivial to model the full annual cycle of migration however doing582

so would increase the number of parameters that need to be estimated. It may583

be more practical to model northward and southward migrations separately as584

we have done here.585

Fourth, eBird observations (and count data in general) will tend to be un-586

derestimates of the true population, since at any time it is unlikely that an587

observer will see and record all the birds in an area. This creates the possibility588

of systematic bias in the count data, which is not explicitly captured in our neg-589

ative binomial observation model. However, there are other sources of error in590

the node abundance estimates, most notably the extrapolation process used to591

estimate counts in areas of the node where no lists have been recorded. For the592
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curlew study, the extrapolation process was likely to dwarf the errors caused by593

underestimation due to the area of extrapolation required, minimizing the effects594

of systematic bias. However, for other studies where minimal extrapolation is595

required, further attention (and perhaps alternative observation distributions)596

may be required to deal with systematic under-counting.597

In a situation where we are sure that the variable used for modeling the598

observed count is an underestimation of the real count, we should use a Binomial599

distribution, B(Ni, pi), with Ni the true count, and pi the probability to see a600

bird (this formulation is included in Supporting Information S1). However, the601

drawback of the Binomial formulation is that we don’t avoid overdispersion with602

this distribution. Since we are not certain that the node count estimates are603

underestimates, we use the negative Binomial to manage overdispersion.604

The ABC algorithm estimates marginal modes for each parameter, but605

strictly speaking, the multivariate posterior mode is most comparable to the606

MCEM estimate. The multivariate mode was not used because it is more com-607

putationally expensive to generate (requires estimation of a multivariate kernel608

density function and optimization of the density function) than the straight-609

forward computation required to generate the Venter mode of the marginals.610

Other methods have also used the mode of the marginals to represent the ABC611

posterior (e.g. Nunes & Prangle (2015)). We are also confident that posterior612

is nice enough to be summarized by the mode of marginals (see e.g. Figure 2 in613

Appendix S6), at least for the benchmark experiments.614

Both algorithms became time-consuming to run as the networks became615

complex, particularly for the curlew case study. Runtime may limit performance616

on large networks, so it may be beneficial to investigate alternative methods to617

estimate the network connectivity. Variational EM in a frequentist approach618

(VEM Neal & Hinton 2000) or Bayes Expectation-Maximisation (VBEM Beal619

2003) in a Bayesian approach may be interesting solutions for a trade-off be-620

tween runtime and the quality of estimators. Instead of relying on simulations,621

variational approaches perform estimation by replacing the complex distribution622

(here the HSMM model) by a closer model in a family of tractable distributions.623
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We are currently investigating whether VEM or VBEM can be used to solve our624

migratory networks problem.625

5. Conclusion626

Understanding how migratory populations move is crucial because it allows627

us to design conservation measures accordingly. Here we have developed a new628

way to estimate the connectivity of migratory populations based only on limited629

count data at discrete locations. The method accounts for observation error and630

predicts both migratory structure and sojourn times. Although information631

about migratory connectivity can be inferred from individual tracking studies,632

few studies have attempted to extrapolate individual behaviours to population-633

level movements. Our study complements existing tracking work by providing634

a statistical model to exploit the most commonly collected form of bird data.635

Although questions remain about how best to estimate node abundance, our636

approach has tremendous promise because of the explosion in availability of637

citizen science count data through platforms such as eBird. As these datasets638

grow, existing geographic and temporal gaps in the datasets will be filled. As639

this happens, there will be increasing demand for algorithms that are sufficiently640

flexible to draw inference from unstructured data.641
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7. Data availability651

The FlywayNet package, including installation instructions and a vignette652

demonstrating a minimal example, is available from the INRAE git repository:653

https://forgemia.inra.fr/birdnet/FlywayNet.654

Results and additional materials to run the study are available on figshare:655

https://doi.org/10.6084/m9.figshare.16658185.v5.656

Specifically, the figshare contains two files:657

• “Flywaynet experiments.zip” contains the results of the benchmarking658

and curlew experiments.659

• “CurlewCaseStudy GetWeeklyObservations.tar.gz” contains the scripts and660

data used to convert the raw eBird eastern curlew counts into weekly ob-661

servation data, as outlined in Supporting Information S5.662

Further information about each of the files and how to reproduce the results is663

contained in the readme files contained with the downloads.664

Scripts to re-run the benchmarking experiments and the curlew case study665

are available from: https://forgemia.inra.fr/birdnet/FlywayNet experiments. Note666

that re-running the scripts is time consuming without substantial computing667

resources– if users want to run their own example or view the results, we instead668

recommend using the FlywayNet R package or viewing the figshare repository669

respectively.670
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