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Summary

Proline-rich extensin-like receptor kinases (PERKs) are an important class of receptor-like kinases

(RLKs) containing an extracellular proline-rich domain. While they are thought to be putative

sensors of the cell wall integrity, there are very few reports on their biological functions in the

plant, as comparedwith other RLKs. Several studies support a role for PERKs in plant growth and

development, but their effect on the cell wall composition to regulate cell expansion is still

lacking. Gene expression data suggest that they may intervene in response to environmental

changes, in agreement with their subcellular localization. And there is growing evidence for

PERKs as novel sensors of environmental stresses such as insects and viruses. However, little is

known about their precise role in plant immunity and in the extracellular network of RLKs, as no

PERK-interacting RLK or any coreceptor has been identified as yet. Similarly, their signaling

activities and downstream signaling components are just beginning to be deciphered, including

Ca2+ fluxes, reactive oxygen species accumulation and phosphorylation events. Herewe outline

emerging roles for PERKs as novel sensors of environmental stresses, and we discuss how to

better understand this overlooked class of receptor kinases via several avenues of research.

Introduction

Receptor-like kinases (RLKs), the largest receptor family in plants,
play a major role in the perception by the plant cells of internal and
external signals and in the regulation of multiple cellular processes.
Among them, proline-rich extensin-like receptor kinases (PERKs)
constitute a small family of RLKs containing an extracellular
proline-rich domain, and, as such, are thought to be putative
sensors of the cell wall integrity. In contrast to other putative cell
wall sensors, such as Catharanthus roseus like (Cr)-RLK1Ls, wall-
associated kinases (WAKs), leucine-rich repeat (LRR)-RLKs or
other proteins linked to the cell wall (Rui &Dinnemy, 2019), rare
are the reports exploring the biological functions of PERKs (Fig. 1).
And most of these few studies suggest that PERKs regulate mainly
plant growth and development (Borassi et al., 2016). However,
during the last 3 yr, a combination of different approaches,
including genome wide identification of PERKs and gene mining
for proline-based signaling proteins in different species, plus the
discovery of PERKs as key genes of the response to abiotic and

biotic stresses, suggests that these RLKs exert more complex roles
(Ishan et al., 2017; Feng et al., 2019; Qanmber et al., 2019; Chen
et al., 2020; Dievart et al., 2020; Uemura et al., 2020; Xue et al.,
2021). Moreover, their signaling activities and downstream
signaling components are just beginning to be deciphered. Finally,
while many RLKs are involved in pathogen perception through
highly interconnected and dynamic networks of receptor–core-
ceptor complexes (Brustolini et al., 2017; Smakowska-Luzan et al.,
2018; Delplace et al., 2020), the question of the place of PERKs in
such an arrangement has not yet been addressed.

In this review, we will describe the recent progress made to
understand the functions of PERKs beyond their established roles
in plant development, and we will focus on emerging evidence for
their function in perception of environmental cues. We will also
address the question of their putative association with other
receptors/proteins and implication in receptor networks to sense
diverse environments and generate adapted and controlled
responses. Finally, we propose some research avenues for a better
understanding of this overlooked receptor subfamily.

� 2022 The Authors

New Phytologist� 2022 New Phytologist Foundation.

New Phytologist (2022) 235: 875–884 875
www.newphytologist.com

Review

https://orcid.org/0000-0002-8126-1602
https://orcid.org/0000-0002-8126-1602
https://orcid.org/0000-0003-2012-6500
https://orcid.org/0000-0003-2012-6500
https://orcid.org/0000-0002-5198-0331
https://orcid.org/0000-0002-5198-0331
https://orcid.org/0000-0002-4271-9596
https://orcid.org/0000-0002-4271-9596
https://orcid.org/0000-0001-8414-1799
https://orcid.org/0000-0001-8414-1799
http://crossmark.crossref.org/dialog/?doi=10.1111%2Fnph.18166&domain=pdf&date_stamp=2022-05-14


Origin, diversity and expression of PERKs in plant
species

To date, 207 PERK genes have been identified in 15 plant species
(Qanmber et al., 2019). The PERK family probably emerged from
the common ancestor of the Streptophytes and then diversified
within land plants (Dievart et al., 2020; Supporting Information
Fig. S1). Interestingly, only the aero-terrestrial Charophytes (with
the exception of Penium margaritacereum) seem to possess PERK
proteins, indicating that PERKs are present only in species living in
terrestrial habitats. This species distribution echoes the role of
PERKs as biotic/abiotic stress sensors in nonaquatic habitats. In land
plants, PERKs are retrieved in all species, with the exception of
Anthoceros species (Borassi et al., 2016;Qanmber et al., 2019; Figs 2,
S1), but are characterized by a high duplication level specific to
Angiosperms, Eudicots and even Brassicaceae in the case of
PERK11/12/13, 5/6/7 and 1/2/3. PERKs diversity has been
investigated in at least 16 Brassica species (Chen et al., 2020) as
well as in monocots and dicots (Qanmber et al., 2019), and the
overall number of genes per plant species varies from 17 to 27 in
Brassica species (Chen et al., 2020) to 55 inCamelina sativaprobably
as a result of thewell-preserved hexaploid genome structure resulting
from a whole-genome triplication event (Chen et al., 2020) (Fig. 1).

In Arabidopsis thaliana, the PERK family encompasses 15
members, with an extra copy (AT1G70450) without the extensin-
like extracellular domain (ECD). They harbor an extensin-like
ECD, which is composed of Ser/Pro (3–5) repetitions and lacks the
Tyr-Val-Tyr sequence needed for extensin crosslinking (Borassi
et al., 2016). This domain shows some variability, mainly in the
two first exons of the PERKs, which leads to different lengths of
ECD. Although PERKs lack a signal peptide, they are predicted to

be localized in the plasmamembrane, possibly thanks to a stretch of
positively charged amino acid residues (Nakhamchik et al., 2004)
or unidentified signal peptides. However, while BnPERK,
AtPERK4 or GmKHAK2 show a plasma membrane localization
(Silva & Goring, 2002; Bai et al., 2009; Uemura et al., 2020),
AtPERK13 has also been shown to be anchored in the cell wall
(Hwang et al., 2016). Their intracellular domain consists of a
conserved serine/threonine kinase domain (Silva & Goring, 2002;
Nakhamchik et al., 2004) which has been shown to be active
in vitro for BnPERK1 and AtPERK4 (Borassi et al., 2016).

Extraction of gene expression data from databases and targeted
literature revealed very diverse PERK expression profiles (Fig. 3).
Expression of most of the PERKs was first found to be specific to
floral organs such as pollen grain, pollen tube or floral buds
(Nakhamchik et al., 2004; Chen et al., 2020). However, AtPERK8
and AtPERK13/RHS10 (Root Hair Specific 10) are mainly
expressed in roots and root hairs, respectively (Nakhamchik et al.,
2004; Won et al., 2009; Humphrey et al., 2015). Additionally,
while some PERKs, like AtPERK1, are ubiquitously expressed in
vascular tissues of cotyledons and in leaves and roots, others, like
AtPERK4, 5, 6, 7, are rather tissue-specific, suggesting diverse roles.

Recent data showed that PERK expression is also regulated in
response to environmental cues. AtPERK13 is induced under
phosphate, nitrogen and iron deprivations (Xue et al., 2021).
PERK expression in Gossypium hirsutum is sensitive to, and
generally downregulated by, heat, cold, salt or drought (Qanmber
et al., 2019). An exposition to a moderately low temperature
(18°C) leads to an expression change of a rice PERK gene, Z15
(Feng et al., 2019). Importantly, PERKs are also regulated in
response to biotic stresses. BnPERK1 is rapidly induced in response
to wounding and in the presence of the pathogen Sclerotinia
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sclerotiorum (Silva & Goring, 2002). However, with the exception
of AtPERK9 (average fold-change of 2, GENEINVESTIGATOR), PERK
expression does not seem to be affected by cell wall-derived signals

such as oligo-galacturonides, chitin, mixed-linked glucans or even
damage-associated molecular patterns such as pathogen-associated
molecular patterns-induced peptide 2 (Pep2) (Rebaque et al.,
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2021). By contrast,G. hirsutumPERKs are coexpressedwith several
genes related to defense responses and plant–pathogen interactions.
Finally, coexpression of particular PERKs was found, whether they
are phylogenetically close or not (Fig. 3; Nakhamchik et al., 2004;
Qanmber et al., 2019; Chen et al., 2020).

All these data suggest that PERKs beyond their roles in
development may intervene in response to environmental changes,
in good agreement with their subcellular localization.

PERKs in plant growth and development

Until recently, PERKs were primarily associated with plant
developmental processes (Borassi et al., 2016) (Table 1). The first
report concerning a PERK developmental function concerned
BnPERK1 from Brassica napus. Antisense BnPERK1 Arabidopsis
lines showed loss of apical dominance, defects in floral organs and
increase in secondary branching (Haffani et al., 2006). Likewise,
the Arabidopsis mutant inflorescence growth inhibitor 1 (igi1),
affected in the AtPERK12 gene, exhibited increased shoot branch-
ing and reduced plant growth (Hwang et al., 2010).

Interestingly, most of the PERKs are involved in the polar
growth of either roots or pollen tubes, potentially through a
modulation of the cell wall composition. AtPERK13 was found to
act as a negative regulator of root hair growth, and the ECD,
including a few proline residues, is essential for its function (Cho,
2016; Hwang et al., 2016). Other PERKs act as negative regulators
of root growth and might act as regulators of cell expansion by

modulating the transport of cell wall material (Bai et al., 2009;
Humphrey et al., 2015). Some other PERKs are necessary for
pollen tube growth, such as PERK5 and PERK12 (Borassi et al.,
2021). The double mutant perk5 perk12 showed reduced pollen
tube growth, in conjunction with nonmethylated pectin accumu-
lation. Four Brassica rapa genes (orthologs of AtPERK6 and 12)
might be linked tomale sterility as they were downregulated during
anther development and in male sterile mutants (Chen et al.,
2020).

These data established the role of many PERKs in plant
development clearly and point to a putative functional link between
these developmental roles and the cell wall composition. However,
evidence demonstrating that PERKs act on the cell wall compo-
sition to allow or repress cell expansion in certain organs is still
lacking. Even if we do not yet know at which level they act, either
sensors or regulators, they are crucial for proper cell development.

PERK downstream signaling

While the surveillance and maintenance of cell wall integrity have
been extensively studied at the cellular level, its functional roles in
the context of plant development and in response to biotic and
abiotic stresses require further investigation (Rui & Dinneny,
2019). Owing to their molecular organization, PERKs represent
good sensor and integrator candidates in this context. However,
they have not been considered as such, or identified as major
regulators of such processes until very recently. Importantly, the
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downstream signaling events occurring after initial signal percep-
tion are still poorly characterized (Table 1). Yet a few reports
revealed some downstream responses, including changes in Ca2+

fluxes, reactive oxygen species (ROS) accumulation or phospho-
rylation events.

First, the essential role of Ca2+ has been described for PERK4
control of abscisic acid (ABA)-induced root growth inhibition in
Arabidopsis (Bai et al., 2009). The perk4mutant showed decreased
sensitivity toABAduring cell elongation and root growth, andABA
activation of calcium channels was altered in the mutant. These
data indicate that PERK4 acts at an early stage of the ABA signaling
pathway to modulate root cell elongation, and that its effects are
mediated by Ca2+ fluxes. Then, some potential downstream
signaling proteins of a subclade ofPERK genes,PERK8,PERK9 and
PERK10, shown to negatively regulate root growth, were identified
by yeast two-hybrid interaction screening using their cytosolic
kinase domains (Humphrey et al., 2015). Two members of the
AGC VIII kinase gene family, AGC1-9 and a kinesin-like
calmodulin-binding protein (KCBP)-interacting protein kinase
(KIPK), were found and proposed to act downstream to mediate
signaling for control of root growth (Hwang et al., 2016). A similar
approach for PERK13 revealed a role in the negative control of
ROS accumulation and led to the identification of an RNAse
(RNS2) as an interacting target, leading the authors to propose a
model for balanced control of root hair elongation through positive
and negative regulators (Cho, 2016). Interestingly, under phos-
phate deficiency, perk13 displayed increased ROS production (Xue
et al., 2021). ROShomeostasis was also found to be regulated in the
perk5 and perk12mutants, affected in pollen tube growth (Borassi
et al., 2021). Transcriptomic analysis of the rice z15mutant led to
the identification of two potential downstream target genes,
OsWRKY71 and OsMYB4, both involved in the regulation of the
cold response (Feng et al., 2019). Finally, genome-wide analysis of
coexpression gene modules indicated that PERK genes can be part
of cell wall, plant–pathogen interactions, abiotic stress and
phytohormone response modules/subnetworks (Ruprecht et al.,
2016; Qanmber et al., 2019; Chen et al., 2020).

In conclusion, the data accumulated until now on the signaling
functions of PERKs remain fragmentary (Fig. 4) and a better
understanding of the downstream signaling components is needed
to get a better insight into PERK functions.

PERKs as major sensors of environmental changes?

Beyond their role in plant development, there is growing evidence
for a function of the PERKs as novel sensors of environmental
stresses, either abiotic or biotic (Table 1). Various studies show
their possible role in the response to different abiotic stresses. A
mutation in Z15 leads to an alteration of chloroplast structure and
to dramatic changes in expression of genes involved in rice cold
tolerance, such as OsMYB4 and OsWRKY71 (Feng et al., 2019),
suggesting a role for Z15 in low-temperature signaling. More
recently, the effect of phosphate starvation on root hair growth was
found to be mediated, at least in part, by AtPERK13 (Xue et al.,
2021). Through transcriptomic analysis of perk13 mutant and
PERK13 overexpressing lines, a dual role was observed for

AtPERK13 in the phosphate deficiency response, as it was
regulating root hair growth either positively or negatively, by
acting on different pathways.

In response to bioagressors, it was observed in several cases that
PERKs were transcriptionally regulated by infection (see earlier),
suggesting their role in such responses. The first evidence for their
role in response to pathogens is the physical interaction of a PERK
(NsAK, NSP Associated Kinase) with the nuclear shuttle protein
(NSP) of cabbage leaf curl virus (CaLCuV) and tomato gemi-
niviruses. This protein facilitates the transport of viral DNA to the
plant nucleus (Florentino et al., 2006). Moreover, the nsakmutant
was revealed to bemore resistant to the virus, confirming the role of
this PERK in viral infectivity. By contrast, overexpression of some
AtPERKs alters host susceptibility to cyst and root-knot nema-
todes, probably by ECD binding to polygalacturonic acid and
regulation of innate immunity (L. Torres, pers. comm.). Finally, a
recent study involving mining of RLKs associated with perception
of herbivore danger signals (HDS) in soybean led to the
identification of GmHAK2, a member of the PERK family. Using
virus-induced gene silencing, GmHAK2 was shown to be impli-
cated in Spodoptera litura resistance (Uemura et al., 2020).

Altogether, these findings are in favor of PERKs having various
functions in plant defense and adaptation to the biotic environment
(virus, herbivores). However, only a few research lines are emerging
in this area and little is known about their precise role in plant
immunity in all the diversity of potential interactions.

What ligands and partners for PERKs?

As extensins constitute an essential component of the plant cell
wall, the PERKECDwas hypothesized to associate with some of its
compounds to bridge the inner and outer parts of the cell. Even
though their ECD lacks Tyr-Val-Tyr domain that is important for
crosslinking with pectins, cell wall localization of AtPERK13
confirmed this hypothesis (Borassi et al., 2016; Hwang et al.,
2016). Moreover, AtPERK4 was shown to bind pectins, while the
protein seems to be located in the plasma membrane (Bai et al.,
2009). These results suggest that some PERKs might perceive cell
wall modifications through direct sensing of biomechanical stress.
In linewith this, the first PERK functionally studiedwas induced in
response to mechanical stimuli and in response to Sclerotinia
sclerotiorum, shown to exert plant cell wall tension (Silva&Goring,
2002; L�eger et al., 2021). Furthermore, it is noteworthy that many
PERKs are involved in polar growth of root hairs andpollen tubes, a
process requiring a fine-tuned expansion of the cell wall (Bai et al.,
2009; Humphrey et al., 2015; Hwang et al., 2016; Borassi et al.,
2021). Interestingly, the few receptors known to be tightly linked to
the cell wall through the binding of pectins have similar functions in
development. For instance, the reduced expression of several
WAKs inhibits cell expansion (Lally et al., 2001; Wagner &
Kohorn, 2001). Likewise, the receptor FERONIA (FER) that
belongs to the CrRLK1L subfamily plays a role in root cell
elongation (Haruta et al., 2014) and root hair development (Duan
et al., 2010; Zhu et al., 2020). And as for PERK4,WAK1 and FER
were shown to bind pectins cross-linkedwith the cell wall (He et al.,
1996; Kohorn, 2016; Feng et al., 2018; Lin et al., 2018). As pectins
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seemmore prone to be altered bymechanical cues and are accessible
to some plant receptors, they may constitute the best target to sense
cell wall alteration (Bacete et al., 2018;Vaahtera et al., 2019). Thus,
PERKs might also indirectly sense cell wall modifications such as

damage or enzymatic degradation in a similar manner to WAK1,
which binds pectin fragments or oligo-galacturonides that are
induced in the context of pathogen attack (Brutus et al., 2010;
Gramegna et al., 2016). Another study showed that a fraction of the

Fig. 4 Putative proline-rich extensin-like receptor kinase (PERK)-dependent pathwaysduring plant development and in response to environmental cues.While
PERKs are thought to exert different biological functions in plants and to be putative sensors of the cell wall integrity, their ligands remain mostly unknown.
PERKs can bind pectins, extensins or other cell wall components thanks to their extensin-like domain. PERKsmight also be involved in perception of pathogen
effectors, as for other receptor-like kinases (RLKs). They also might participate in receptor–coreceptor extracellular networks of RLKs, although no PERK
interacting RLK or any coreceptor has been identified as yet. Their signaling activities and downstream signaling components are just beginning to be
deciphered, andKIPK1, KIPK2, KCBPandRNS2have been found to bind their kinase domain. Reactive oxygen species (ROS) andhormonal pathways, notably
abscisic acid (ABA), have been reported to participate in PERK signaling. Other complex signaling components might intervene, such as microtubules or the
cytoskeleton. Finally, transcriptional reprogramming leading to adaptive responses should occur through diverse transcription factors (TFs). Hatched elements
are putative, while full elements are based on the literature. CW, cell wall; JA, jasmonic acid; NO, nitric oxide; NSP, nuclear shuttle protein; PM, plasma
membrane; SA, salicylic acid; WRKY, WRKY transcription factor; MYB, MYB transcription factor.
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oral secretion of the herbivore Spodoptera litura containing a
mixture of polysaccharides elicits soybean defense through
GmHAK2, a PERK member from soybean, although the direct
binding was not demonstrated (Uemura et al., 2020). The authors
suggest that GmHAK2 might be a coreceptor, not directly
perceiving the cell wall damage signals but instead transducing
the signal inside the cell to other partners. Indeed, RLKs often work
in association with coreceptors to achieve their biological function.
For instance, ligand perception by FLAGELLIN SENSING 2
(FLS2) and ELONGATION FACTOR-Tu RECEPTOR (EFR)
induces a conformational change leading to their association with
the coreceptor BRI1-ASSOCIATED KINASE (BAK1), which is
crucial for downstream signaling (Chinchilla et al., 2007; Heese
et al., 2007; Roux et al., 2011). Yet so far, no PERK interacting
RLK or any coreceptor has been identified.

Perspectives:howtobetterunderstand the rolesof this
RLK ‘forgotten’ subfamily?

A role for PERKs in the plant immune system?

As mentioned earlier, PERKs can exert a crucial role in diverse
aspects of the plant life, including different developmental stages
and, in certain cases, stress responses. However, only a few of them
have been functionally defined, even in Arabidopsis which contains
a small family of 15 PERKs. Some functional data have been
accumulated for eight of them (Table 1), and we still have a very
partial view of their roles in the plant. They have been mainly
considered as regulators of plant growth and development (Borassi
et al., 2016). However, as already mentioned, PERKs might sense
cell wall changes and generate an adapted response to maintain cell
wall integrity (Jose et al., 2020). Interestingly, plant cell wall
alterations have been demonstrated to have an effect on disease
resistance and to be perceived by sensors, activating the immune
functions (Bacete et al., 2018). This suggests a role for PERKs, as
found for most RLKs (Jose et al., 2020; Ou et al., 2020), in
responses to biotic and abiotic stresses. Surprisingly, only two
PERKs have been associated with plant defense in Arabidopsis
(Florentino et al., 2006).

Most single mutants for the 15 AtPERKs do not exhibit any
detectable phenotype, possibly because of functional redundancy
(Borassi et al., 2016). Another possible explanation is that these
mutants have not been tested in response to various external
stimuli, and that PERKs might exert functions in plant defense. A
systematic analysis of their expression profiles in response to various
pathogens or environmental constraints (high or low temperature,
drought, nutrient supply, etc.), coupled with single and multiple
mutant phenotyping, should shine some light on their possible
functions. In the same line, exploitation of genome-wide analyses
and coexpression networks previously generated (Qanmber et al.,
2019; Chen et al., 2020) will also help to elucidate their functions.
For these approaches, a possible research focus might consider,
more particularly, interactions withmicro- ormacroorganisms that
exert a specific impact on plant cell wall integrity during the
infection process, such as nematodes, insects, pathogenic fungi or
even other plants. Thus, PERKs represent promising candidates as

immune sensors and, if we consider the immune system in its full
complexity, they should be an important component of the whole
system (Fig. 4). Indeed, RLKs have emerged as essential players in
danger sensing and defense signaling, and more generally in the
complex network of immune responses, including those initiated at
either the extracellular or intracellular levels (Zhou & Zhang,
2020).

Organization and functions of PERKs at the cell surface: part
of the immune receptor network?

A critical step to better understanding of PERK function andmode
of actionwill be to identify their ligand(s) aswell as their interactors.
If we consider the features of the PERK ECD, it is likely that the
ligands are related to the cell wall. One way to demonstrate their
docking/anchoring in intact cell wall components would be to
monitor the behavior of fluorescent PERKswith live-imagingwhile
biomechanical stimuli are applied (Robinson et al., 2017). Several
components of the cell wall or by-products might also be tested
using a chimeric receptor between PERK ECDs and pattern
recognition receptors (PRRs) whose defense activation would be
recorded. This approach has already been used successfully to show
that WAK1 ECD fused to EFR was able to perceive oligogalac-
turonides (Brutus et al., 2010). Progress in computational mod-
eling of protein structure prediction represents a great opportunity
to perform a wide screen of ECD–ligand interactions before
molecular validation (Del Hierro et al., 2021; Tunyasuvunakool
et al., 2021). Yet at this stage, we cannot exclude the possibility that
PERKs could also perceive peptides or any other molecules from
the abiotic or biotic environment (Fig. 4).

Many RLKs require one or several coreceptors to fulfill their
function (Gou & Li, 2020; DeFalco & Zipfel, 2021; Lee et al.,
2021). For instance, the most versatile coreceptor is BAK1, which
interactswithmultipleRLKs perceiving various ligands and that are
involved in plant development and plant defense. PERKs probably
function similarly with other cell surface proteins, the question
being whether they play the role of the receptor or coreceptor. A
homodimerization of GmHAK2, a PERK of soybean that triggers
defense signaling in response to a herbivore, was recently shown
(Uemura et al., 2020). A yeast two-hybrid assay was performed
using the kinase domain of a few PERKs as bait to identify
downstream components (Humphrey et al., 2015). However,
identification of PERK coreceptors requires the use of the ECD as
bait, whatever the approach used for this search.

Signaling from PERKs to downstream components and
adaptive responses?

During the past two decades, considerable progress has been made
in deciphering the early signaling events underlyingRLK functions,
notably those with ECDs associated with the cell wall (Fig. 1).
WAKs, CrRLK1Ls, LRR and lectin RLKs have been shown to play
a role in cell wall sensing and signaling (Rui & Dinnemy, 2019).
They act as sensors of diverse ligands using their ECD, possibly
associated with cell wall components, and as signal transducers via
activation of their kinase domain (Kohorn & Kohorn, 2012). The
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kinase module then activates or inactivates downstream compo-
nents to initiate a signaling pathway, ultimately modulating
transcription factors or other downstream components of the
adaptive response (Hohman et al., 2017). Even if there are only
fragmentary data available on these functions for PERKs, they
might be activated by cell wall components and/or other ligands,
and initiate a downstream signaling cascade. Future efforts are
needed to decipher the complex signaling network responsible for
the initiation of the signaling cascade, because multiple signaling
components might be recruited, as for other cell wall-associated
RLKs, such as kinases/phosphatases, NO, mRNA local translation
and microtubule cytoskeleton; and hormones need to be explored,
such as auxin, brassinosteroid (BR), ABA, ethylene and jasmonic
acid signaling, as shown for CrRLK1Ls (Deslauriers & Larsen,
2010; Yu et al., 2012; Chen et al., 2016; Zhu et al., 2020).

Finally, numerous questions remain regarding not only the
identification of PERKdownstream signaling components (with or
without a priori), but also the way they are organized, modulated
and propagated by PERKs to control diverse responses related to
either developmental or stress responses. A combination of
transcriptomics (coexpression networks) and interactomics (pro-
tein–protein interaction networks) will undoubtedly shed some
light on these cascades, either on direct targets of PERKs or onmore
downstream components. Systems biology should then help to
integrate these data for functional validation and possible use in
predicting new regulatory components of these signaling networks
(Delplace et al., 2020). Such analysis should also help us to
understand how the specificity of the signaling is achieved when
PERKs are involved in the regulation of diverse processes.

Beyond the issues discussed, there are still many unanswered
questions about PERKs. For example, the transcriptional and/or
post-transcriptional regulation of PERKs in response to develop-
mental or environmental changes is poorlydocumented.Thenatural
variation associatedwith these genes, not only inArabidopsis but also
in various species, should be explored systematically, as proposed
more widely for RLKs (Dievart et al., 2020). This type of analysis
mightproduce some interestingfindings, offering researchers abetter
understanding of their functions inplants andof their adaptive value,
and potential strategies to improve agronomic traits by modulating
PERK signaling.
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