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INSA, F-31077 Toulouse, France

Abstract

A two-dimensional depth-averaged model is derived for open-channel
flows in the smooth turbulent case. The derivation is consistently ob-
tained with a method of matched asymptotic expansions in the outer
and inner layers using a mixing length model of turbulence including
the free-surface reduction of the eddy viscosity. The shear effects are
taken into account by an extra tensor variable of the model called
enstrophy tensor. The friction coefficient is an explicit expression of
the water depth. The three-dimensional (3D) velocity field and the
friction velocity can be reconstructed from the values of the depth-
averaged quantities. Numerical simulations show that the enstrophy
can be used to evaluate the development of the turbulent boundary
layer. In the case of subcritical unsteady flows, the reconstructed
velocity can be described with a logarithmic law modified by Coles’
wake function with apparent von Kármán constant, integration con-
stant and wake-strength parameter, which differ from their values in
steady flows. In the viscous sublayer, the steady-state relation be-
tween the velocity and the vertical coordinate, in the inner scaling, is
not valid for unsteady flows. Large errors on the calculation of the
von Kármán constant can be made if the validity of the steady-state
relation is assumed for unsteady flows.

1 Introduction

The usual equations of open-channel hydraulics in the unsteady case are
the one-dimensional (1D) Saint-Venant equations, also called the nonlinear
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shallow water equations. They can be easily extended to the two-dimensional
(2D) case. These equations are derived with the shallow-water assumption
i.e. the water depth is small compared to the characteristic length in the
direction parallel to the bottom. As a consequence, at the leading order,
the pressure is hydrostatic. Another assumption is that all shear effects are
neglected, which means that the velocity is supposed to be uniform over the
depth. With these assumptions, the Saint-Venant equations can be derived
from the Euler equations of incompressible and inviscid fluids with a depth-
averaging procedure.

Except in the case of discontinuities, which are created in finite time due
to the hyperbolic structure of the equations, there is no inherent dissipative
effects in this approach, which implies that they must be added empirically,
most often as an empirical friction force. The Kármán-Prandtl relation for
smooth pipes can be extended with slightly different numerical values to the
case of smooth open channels but the friction coefficient is found only implic-
itly. Approximate relations were proposed to obtain an explicit expression
of the friction coefficient. More details can be found in Chow (1959) or Yen
(2002) for example.

To find the expression of the friction force, or more generally of the dis-
sipative terms, as part of the derivation process of the depth-averaged equa-
tions implies to take into account the mean flow and turbulence structure of
the flow. Experimental investigation for open-channel flows is more recent
than for turbulent boundary layers in close channels because turbulence mea-
surements is more difficult in water than in air flows and it actually started
with the advent of Laser Doppler Anemometers (Steffler et al. 1985, Nezu
& Rodi 1986). The structure of fully developed open-channel flows is similar
to boundary layers and pipe flows, with an inner region controlled by the
kinematic viscosity ν and by the friction velocity ub =

√
τb/ρ where τb is

the shear stress at the bottom and ρ the fluid density, and an outer region
controlled by the water depth h and the maximum velocity. These regions
overlap in a layer where the logarithmic law holds. Denoting by u the mean
velocity and by z the vertical coordinate, this log law can be written

u+ =
1

κ
ln z+ +B (1)

where u+ = u/ub, z
+ = zub/ν, κ is the von Kármán constant and B the

integration constant. In the outer layer, a deviation from the log-law can
be taken into account by Coles’ wake function. However the wake strength
parameter Π is smaller than for zero-pressure-gradient boundary layers and
is nearly equal to zero at a relatively low Reynolds number (Nezu & Rodi
1986). Cardoso et al. (1989) found only a weak wake and noted that an
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apparent log-law can approximate the entire velocity profile. For subcritical
flows, the measured values of κ and B are respectively 0.412 and 5.29 (Nezu
& Rodi 1986). Very close values were obtained by Cardoso et al. (1989).
In the case of supercritical flows, the same value of κ ' 0.41 was measured
but it was found that B decreases if the Froude number increases above 1
(Tominaga & Nezu 1992, Prinos & Zeris 1995). Miguntanna et al. (2020)
found that the integration constant B is a function of the channel aspect
ratio.

In the framework of the eddy viscosity assumption, the mixing length
approach (Prandtl 1925) has been extensively applied to open-channel flows
and is widely recognized as able to provide an accurate description of the
flow over a smooth plane. In the inner layer, the mixing length satisfies the
classical linear layer modified by Van Driest damping function (Van Driest
1956). An expression of the mixing length for open-channel flows, including
the wake strength parameter, was obtained by Nezu & Rodi (1986) giving a
reduction of the eddy viscosity near the free surface where the mixing length
is equal to zero.

In the unsteady case the difficulty is the determination of the friction
velocity. Various methods were used and, in particular, the friction velocity
can be extracted from velocity measurements in the viscous sublayer assum-
ing the validity for unsteady flows of the law u+ = z+ which is found in the
viscous sublayer in the steady case. The value of the von Kármán constant
remains close to κ ' 0.41 for weakly unsteady flows (Nezu et al. 1997) but
can deviate from the steady-case value for a strong unsteadiness (Onitsuka
& Nezu 2000, Nezu & Onitsuka 2002). Considerable variations of the inte-
gration constant B and also of the wake-strength parameter Π were found.

The present study is a continuation of a previous work (Richard et al.
2017) where a new model for open-channel flows was derived using a mixing
length model of turbulence and a method of matched asymptotic expansions.
In this article, this work is improved and extended on the following points:

– The mixing length expression of Nezu & Rodi (1986) with the free-
surface damping effect is used.

– This expression of the mixing length enables an accurate reconstruc-
tion of the velocity field from the bottom to the free surface using the
calculated depth-averaged quantities.

– The model is extended to the case of 3D-flows, leading to a 2D depth-
averaged model.

– The effects of the corrective first-order terms obtained consistently by

3



Figure 1: Definition sketch.

an asymptotic method are evaluated in unsteady flows with compar-
isons to experimental results from the literature on the development of
the turbulent boundary layer and on unsteady velocity profiles.

The governing equations, the assumptions and the scaling are given in §2.
The asymptotic expansions in the outer and inner layers and the matching
procedure are presented in §3. The depth-averaged model is consistently
derived in §4 using the asymptotic expansions. The method to reconstruct
the bottom friction and the 3D velocity fields is given in §5. Numerical
simulations are presented in §6 to study the development of the turbulent
boundary layer and the velocity profiles in unsteady situations. Technical
details are given in appendices A–D.

2 Governing equations

2.1 Turbulence model

We study a turbulent flow on a sloping channel with a smooth bottom.
The angle between the channel and a horizontal plane is θ. The basis
for the coordinates x, y and z is (ex, ey, ez). The angle between the axis
Ox and the fall line is α and the axis Oz is normal to the bottom (see
figure 1). In these axes the components of the gravity acceleration are
g = g (sin θ cosα, sin θ sinα,− cos θ)T.

The turbulence is modelled with the mixing-length model. The viscous
stress tensor is written τ = 2ρ (ν + νT )D where ρ is the fluid density, ν its
kinematic viscosity, νT the turbulent viscosity. The tensor D is the strain-
rate tensor defined by D = [gradv + (gradv)T]/2 where v is the mean
velocity field. The turbulent viscosity is given by νT =

√
2L2

m

√
D : D where

the colon denotes the double dot product. For open-channel flows, the mixing
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length Lm, in the model of Prandtl modified by the damping term of Van
Driest(1956), if the wake-strength parameter is zero or can be neglected, is
given by the expression (Nezu & Rodi 1986),

Lm = κz
(

1− e−z
+/A+

)√
1− z

h
(2)

where κ is the von Kármán constant (κ ' 0.41), A+ is a dimensionless
constant with the usual value A+ = 26 and h is the fluid depth. The dimen-
sionless variable z+ is the viscous or wall coordinate defined by z+ = zub/ν
where the shear or friction velocity ub is related to the bottom shear stress
τb by ub =

√
τb/ρ. The factor

√
1− z/h was absent in the expression of the

mixing length used by Richard et al. (2017) and consequently the velocity
profile was accurate only in the inner layer. We define the effective viscosity
as νeff = ν + νT . The constitutive law can thus be written τ = 2ρνeffD.

The wake-strength parameter Π of Coles’ law of the wake was found to
be considerably smaller in the case of open-channel flows than in the case of
zero-pressure-gradient boundary layers where the value Π = 0.55 is observed.
Nezu & Rodi (1986) found that Π is near zero for Re 6 104 and increases to
a maximum of 0.2 for Re > 2.5× 104 (our definition of the Reynolds number
is Re = hU/ν, different from the definition of Nezu & Rodi 1986). Cardoso
et al. (1989) found a wake of limited strength (Π ' 0.08) in the core of the
outer region but they found that the wake effect is partly compensated in the
near-surface zone by a retarding flow, such that an apparent logarithmic law
can approximate the entire velocity profile, explaining why the logarithmic
law is often used with success in open channel flow up to the water surface.
They also highlighted that the outer region of open-channel flow may not
have a universal structure, possibly depending on secondary currents, flow
history and inactive turbulence components. Given the small importance of
the wake function in open-channel flows and the large increase of complexity
needed to take it into account, the wake function is neglected. However we
will show in the following that, although no wake function is included in the
description of uniform and steady flows, an apparent wake function appears
in the unsteady case.

The mass conservation equation in the incompressible case is div v = 0.
The components of the velocity field are denoted by v = (u, v, w)T. The
components of the viscous stress tensor are denoted by τxx, τyy, τzz, τxy, τxz
and τyz and p denotes the pressure. The momentum balance equation is

ρ

[
∂v

∂t
+ div (v ⊗ v)

]
= ρg − grad p+ div τ (3)
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The no-penetration and no-slip conditions at the bottom imply that v(0) = 0.
At the free surface, the kinematic boundary condition is

w(h) =
∂h

∂t
+ u(h)

∂h

∂x
+ v(h)

∂h

∂y
(4)

and the dynamic boundary condition gives the following equations

[p(h)− τxx(h)]
∂h

∂x
− τxy(h)

∂h

∂y
+ τxz(h) = 0 (5)

[p(h)− τyy(h)]
∂h

∂y
− τxy(h)

∂h

∂x
+ τyz(h) = 0 (6)

−τxz(h)
∂h

∂x
− τyz(h)

∂h

∂y
− p(h) + τzz(h) = 0 (7)

2.2 Shallow-water scaling

The equations are written in dimensionless form using a characteristic depth
h0, a characteristic length L in the Ox-direction and a characteristic velocity
u0 with the shallow-water hypothesis

ε =
h0
L
� 1 (8)

The dimensionless quantities are denoted with a prime and are defined as

x′ =
x

L
; y′ =

y

L
; z′ =

z

h0
; u′ =

u

u0
; v′ =

v

u0
; w′ =

w

εu0
; p′ =

p

ρgh0
;

t′ =
tu0
L

; h′ =
h

h0
; L′m =

Lm
κh0

; ν ′T =
νT

κ2h0u0
; τ ′xz =

τxz
ρκ2u20

; τ ′yz =
τyz
ρκ2u20

;

τ ′xx =
τxx

ερκ2u20
; τ ′yy =

τyy
ερκ2u20

; τ ′zz =
τzz

ερκ2u20
; τ ′xy =

τxy
ερκ2u20

; (9)

A characteristic turbulent viscosity is νe = κ2h0u0. We define the Froude
number F , the Reynolds number Re and the mixing-length Reynolds number
ReML as

F =
u0√
gh0

; Re =
h0u0
ν

; ReML =
h0u0
νe

=
1

κ2
(10)

There is no assumption on the Froude number i.e. F = O(1). We then define
the ratio

η =
ReML

Re
=

1

κ2Re
=

ν

νe
(11)
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This number is usually very small in open-channel hydraulics. We will assume
that

η = ε2+m , m > 0 (12)

The dimensionless mixing length is L′m ' z
√

1− s where s = z/h and the
effective viscosity is ν ′T = ν/νe + ν ′T = η + ν ′T which leads to

ν ′eff = z′2 (1− s)

√(
∂u′

∂z′

)2

+

(
∂v′

∂z′

)2

+O(ε2) (13)

We define

λ =
sin θ

κ2F 2
(14)

The molecular viscosity is negligible in this scaling. In this scaling the mass
balance equation writes

∂u′

∂x′
+
∂v′

∂y′
+
∂w′

∂z′
= 0 (15)

Defining the 2D-vectors u′ = (u′, v′)T, λ = λ(cosα, sinα)T and τsh =
(τxz, τyz)

T, the momentum balance equation in the Oxy-plane becomes

ε

κ2

[
∂u′

∂t′
+ div (u′ ⊗ u′) +

∂w′u′

∂z′

]
= λ+

∂τ ′sh
∂z′
− ε

κ2F 2
grad p′+O(ε2) (16)

In the Oz-direction the momentum balance can be written

∂p′

∂z′
= − cos θ +O(ε) (17)

The dynamic boundary condition at the free surface (5)–(7) reduce to

p′(h) = O(ε) ; τ ′xz(h) = O(ε2) ; τ ′yz(h) = O(ε2) (18)

As in Richard et al. (2017), in this scaling the boundary condition at the
bottom cannot be satisfied. It is necessary to use another scaling in an inner
layer near the bottom wall where the molecular viscosity is included.

2.3 Viscous scaling

This scaling is a zoom of the shallow-water scaling using the small parameter
η. Dimensionless quantities in this scaling are denoted by a tilde. Some
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dimensionless quantities are not changed and some other are magnified. We
define

x̃ = x′; ỹ = y′; t̃ = t′; ũ = u′; ṽ = v′; p̃ = p′; z̃ =
z′

η
; w̃ =

w′

η
; h̃ =

h′

η
; L̃m =

L′m
η

;

τ̃xy = τ ′xy; τ̃xz = τ ′xz; τ̃yz = τ ′yz; τ̃xx = τ ′xx; τ̃yy = τ ′yy; τ̃zz = τ ′zz; ν̃ =
ν ′

η
;

(19)

The expression of the dimensionless mixing length in the viscous scaling is

L̃m = z̃
√

1− s
[
1− exp

(
− z̃
√
τ̃b

κA+

)]
(20)

In this scaling the exponential term is not negligible. The dimensionless
strain-rate tensor is D̃ = ηD′. The dimensionless effective viscosity is ν̃eff =
1 + ν̃T . This implies that the molecular and turbulent viscosities are of
the same order of magnitude in this scaling. The mass conservation is not
changed and writes

∂ũ

∂x̃
+
∂ṽ

∂ỹ
+
∂w̃

∂z̃
= 0 (21)

The momentum balance equation gives

∂τ̃xz
∂z̃

= O(η) ;
∂τ̃yz
∂z̃

= O(η) ;
∂p̃

∂z̃
= O(η) (22)

3 Asymptotic expansions

The methodology is formally the same as in Noble & Vila (2013) for power-
law laminar flows and in Richard et al. (2016) for laminar Newtonian flows
and was detailed in Richard et al. (2017) in the case of two-dimensional
flows. This method is extended to the case of three-dimensional flows. Each
variable is expanded with respect to the small parameter ε as

X = X0 + εX1 +O(ε2) (23)

for any variable X. The expansion of the components of the viscous stress
tensor will be denoted as τxz = τ

(0)
xz + ετ

(1)
xz + O(ε2). The expressions of the

variables are obtained at order zero and then at order one.
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3.1 Order zero

In the shallow-water scaling, the momentum balance equation (16) gives

∂τ
′(0)
xz

∂z′
= −λ cosα ;

∂τ
′(0)
yz

∂z′
= −λ sinα (24)

and the boundary conditions (18) lead to τ
′(0)
sh (h) = 0. The integration gives

τ
′(0)
sh = λh′ (1− s) (25)

The constitutive law τ ′ = 2ν ′effD
′ gives τ

′(0)
sh = ν ′eff ∂u

′
0/∂z

′ which leads to

z′2

√(
∂u′0
∂z′

)2

+

(
∂v′0
∂z′

)2∂u′0
∂z′

= λh′ (26)

This equation gives the norm ∥∥∥∥∂u′0∂z′

∥∥∥∥ =

√
λh′

z′
(27)

The components of u′0 can be integrated between the free surface and an
arbitrary depth to obtain

u′0 = u′0(h) +
√
λh′
λ

λ
ln s (28)

The expression (25) does not diverge when s → 0 but the expression (28)
diverges for s → 0. It is thus necessary to use the viscous scaling to find
the expression of the velocity in an inner layer near the bottom. Then a
matching procedure will be used in an overlap region to fit the expression
of the velocity in the outer layer (with the shallow-water scaling) and in the
inner layer (with the viscous scaling).

In the viscous scaling, (22) implies that τ̃
(0)
xz and τ̃

(0)
yz are constant in the

inner layer and thus equal to their values at z = 0. Since τ̃ = τ ′ and because
the expressions of τ

′(0)
xz and τ

′(0)
yz do not diverge for z → 0, we have simply

τ̃
(0)
sh = τ

′(0)
sh (0) = λh′. We have also τ̃b = λh′. The constitutive law is

integrated in the viscous scaling in order to find the velocity in the inner
layer. We define ξ = 2

√
λh′z̃ and A = 2κA+. The constitutive law gives[

1 + z̃2 (1− s)
(
1− e−ξ/A

)2 ∥∥∥∥∂ũ0

∂z̃

∥∥∥∥] ∂ũ0

∂z̃
= λh′ (29)
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From this relation, we can show that∥∥∥∥∂ũ0

∂z̃

∥∥∥∥ =
2λh′

1 +

√
1 + ξ2 (1− s) (1− e−ξ/A)

2
(30)

This leads to
∂ũ0

∂z̃
=

2λh′

1 +

√
1 + ξ2 (1− s) (1− e−ξ/A)

2
(31)

The integration of these equations between the bottom and an arbitrary
depth gives

ũ0 =
√
λh′
λ

λ

[
− ξ

1 +
√

1 + ξ2
+ ln

(
ξ +

√
1 + ξ2

)
+R(ξ)

]
(32)

where the function R is defined by

R(ξ) =

∫ ξ

0

dξ

1 +

√
1 + ξ2 (1− e−ξ/A)

2
−
∫ ξ

0

dξ

1 +
√

1 + ξ2
+O(

√
η) (33)

The limit of this function for ξ →∞ is denoted by R i.e.

R =

∫ ∞
0

dξ

1 +

√
1 + ξ2 (1− e−ξ/A)

2
−
∫ ∞
0

dξ

1 +
√

1 + ξ2
(34)

The vector u′0 in the outer layer and the vector ũ0 in the viscous layer are
fitted by the matching procedure. We write that both velocities coincide
in an overlap region which is at a very small depth of order

√
η written

z =
√
ηbh where b = O(1). The matching relation can be written

u′0 (s =
√
ηb) = ũ0

(
ξ =

2b
√
λh′3
√
η

)
+O(

√
η) (35)

The term of O(
√
η) is smaller than ε because of (12). This enables to obtain

consistency at order 1. This procedure gives the values of the velocity at the
free surface u′0(h) . The expression of u′0(h) can be written

u′0(h) =
√
λh′
λ

λ
(R− 1 + ln 2 + lnM − ln η) +O(

√
η) (36)

where
M = 2

√
λh′3 (37)
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As in Richard et al. (2017) we introduce the small parameter

µ = − 2

ln η
(38)

with ε < µ < 1. The main small parameter ε is smaller than µp for any
positive integer p if ε is small enough (Richard et al. 2017). Each term of the
asymptotic expansions of a given order with respect to ε is further expanded
in a power series of this second small parameter µ.

The expression (36) shows that u′0(h) is of O(
√
λ/µ). Assuming that

u′0(h) is of O(1) implies that λ = O(µ2). We write λ = µ2λ0 with λ0 = O(1).
The expression of u′0(h) can be written

u′0(h) =
√
λ0h′

λ

λ
[2 + µ (R− 1 + ln 2 + lnM)] +O(

√
η) (39)

This gives the complete expressions of u′0 as

u′0 =
√
λ0h′

λ

λ
[2 + µ (R− 1 + ln 2 + lnM + ln s)] (40)

At order zero, the velocity has the well-known logarithmic profile. In the 1D-
case, reverting to dimensional quantities and introducing the friction velocity,
which is ub =

√
gh sin θ, the fluid velocity can be written at order zero

u0
ub

=
1

κ
ln
zub
ν

+
1

κ
(R− 1 + 2 ln 2 + lnκ) (41)

which is the usual log-law (1) with the inner variables u+ = u/ub and z+ =
zub/ν. The expression of the integration constant B is

B =
1

κ
(R− 1 + 2 ln 2 + lnκ) (42)

The values κ = 0.41 and A+ = 26 give B = 5.28. These values agree with
the value B = 5.29 ± 0.47 (and κ = 0.412 ± 0.011) found by Nezu & Rodi
(1986) and with the value B = 5.10 ± 0.96 (κ = 0.401 ± 0.017) found by
Cardoso et al. (1989). The value of B depends on the value of A+ through
R. If A+ = 26 then R = 2.67. The above values are valid for subcritical
flows. For supercritical flows, the value of B can be smaller (Tominaga &
Nezu 1992, Prinos & Zeris 1995). This implies smaller values of A+ and R.
The graphs of R and B as a function of A+ are shown on figure 2(a) and
(b) respectively. The dashed lines give the case A+ = 26 used for subcritical
flows.
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Figure 2: Graphs of R (a) and of the integration constant B (b) as a function
of the parameter A+ of Van Driest’s damping factor. The dashed lines show
the case A+ = 26.

Close to the wall, ξ → 0 and ũ0 ∼ ξ
√
λh′/2. This yields the relation

u+ = z+, which is valid in the viscous sublayer.
Even if the expressions of u′0 and v′0 diverge for z → 0, they are integrable

functions on [0, h] and their depth-averaged values can be calculated. For
any quantity X, its depth-averaged value is defined as

〈X〉 =
1

h

∫ h

0

X dz (43)

The depth-averaged velocity at order zero can be calculated from (40). Using
the notation U = 〈u〉 = (U, V )T, we obtain

U ′0 =
√
λ0h′

λ

λ
[2 + µ (R− 2 + ln 2 + lnM)] (44)

We define the quantity C(µ) as

C(µ) =
U ′0√

λ0h′ cosα
=

V ′0√
λ0h′ sinα

(45)

Its expression is

C(µ) = 2 + µ (R− 2 + ln 2 + lnM) (46)

The velocity in the Oz-direction can be found from the mass conservation
equation (15). Taking into account the kinematic boundary condition, the
integration of (15) leads to

w′ =
∂h′

∂t′
− ∂

∂x′

∫ z′

h′
u′ dz′ − ∂

∂y′

∫ z′

h′
v′ dz′ (47)

12



The depth-averaged mass conservation equation is

∂h

∂t
+
∂hU

∂x
+
∂hV

∂y
= 0 (48)

With this equation, the derivative of h′ with respect to time can be estimated
as

∂h′

∂t′
= −∂h

′U ′0
∂x′

− ∂h′V ′0
∂y′

+O(ε) (49)

At order zero, we have

w′0 = −∂h
′U ′0
∂x′

− ∂h′V ′0
∂y′

+
∂

∂x′

(
h′
∫ 1

s

u′0 ds

)
+

∂

∂y′

(
h′
∫ 1

s

v′0 ds

)
(50)

which leads to

w′0 = −s
√
λ0h′

(
cosα

∂h′

∂x′
+ sinα

∂h′

∂y′

)[
1 +

µ

2
(R− 1 + ln 2 + lnM + ln s)

]
(51)

The last quantity to calculate at order zero is the pressure. It is found from
(17). The integration is straightforward and gives

p′0 = (h′ − z′) cos θ (52)

In the inner layer, (22) implies that p̃0 is constant. The connection with the
expression (52) in the outer layer gives simply p̃0 = h′ cos θ.

3.2 Order 1

In the shallow-water scaling, at order 1, the momentum balance equation
becomes

∂u′0
∂t′

+ div
(
u′0 ⊗ u

′
0

)
+
∂w′0u

′
0

∂z′
= κ2

∂τ
′(1)
sh

∂z′
− 1

F 2
grad p′0 (53)

with the boundary condition τ
′(1)
sh (h) = 0. The integration of (53) in the

Ox-direction, taking into account the boundary conditions leads to

κ2τ ′(1)xz =
∂

∂t′

∫ z′

h′
u′0 dz′+

∂

∂x′

∫ z′

h′
u′20 dz′+

∂

∂y′

∫ z′

h′
u′0v

′
0 dz′+u′0w

′
0 +

1

F 2

∂

∂x′

∫ z′

h′
p′0 dz′

(54)
The calculation in the Ox and Oy directions gives the result

τ
′(1)
sh =

λ0h
′

κ2
λ

λ

(
λ

λ
· gradh′

)[
1− s+ µT1(s) + µ2T2(s)

]
+
h′

κ2
gradh′

cos θ

F 2
(s− 1)

(55)
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with

T1(s) = (1− s) (R + 1 + ln 2 + lnM) +
s ln s

2
(56)

T2(s) =

[
R2

2
+R− 7

2
+ ln 2

(
R + 1 +

ln 2

2

)
+ lnM

(
R + 1 + ln 2 +

lnM

2

)]
1− s

2

+
s ln s

2

(
−5

2
+
R

2
+

ln 2

2
+

lnM

2
+ ln s

)
(57)

At the bottom we obtain

τ
′(1)
sh (0) =

λ0h
′

κ2
λ

λ

(
λ

λ
· gradh′

)[
1 + µT1(0) + µ2T2(0)

]
− λ0h

′

κ2
gradh′

cos θ

λ0F 2

(58)
with T1(0) = R + 1 + ln 2 + lnM and

T2(0) =
R2

4
+
R

2
− 7

4
+

ln 2

2

(
R + 1 +

ln 2

2

)
+

lnM

2

(
R + 1 + ln 2 +

lnM

2

)
(59)

As for the order zero, the velocity is obtained with the constitutive law
τ ′ = 2ν ′effD

′. Technical details are given in Appendix A.
The integration of the constitutive law gives

u′1 = u′1(h) +

√
λ0h′

2κ2
λ

λ

(
λ

λ
· gradh′

)
×
[

ln s

µ
+T1(0) ln s+

Li2(1− s)
2

+µT2(0) ln s+
µ

4
(R− 5 + ln 2 + lnM) Li2(1−s)

+
µ

2

(
− ln(1− s) ln2 s− 2 ln sLi2(s) + 2Li3(s)− 2ζ(3)

) ]
−
√
λ0h′

κ2
cos θ

λ0F 2

ln s

µ

[
gradh′ − 1

2

λ

λ

(
λ

λ
· gradh′

)]
(60)

In this expression, Lin denotes the polylogarithm function of order n. For
n = 2 the dilogarithm is defined as

Li2(s) = −
∫ s

0

ln (1− t)
t

dt (61)

For n = 3 the trilogarithm can be defined as

Li3(s) =

∫ s

0

Li2(t)

t
dt (62)
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The function ζ is Riemann zeta function and ζ(3) = Li3(1) ' 1.20 is Apéry’s
constant.

Because the expression of u′1 above diverges when s→ 0, a matching pro-
cedure is necessary to connect this expression with the expression in the inner
layer found with the viscous scaling. This procedure yields the expression of
u′1(h).

In the viscous scaling, the momentum balance equation (22) implies that

∂τ̃
(1)
sh /∂z̃ = 0. The matching procedure for τ

(1)
sh is thus straightforward:

τ̃
(1)
sh = τ

′(1)
sh (0).

The velocity field is obtained from the constitutive law. Technical details
are given in Appendix B. The integration leads to

ũ1 =

√
λ0h′

2µκ2
λ

λ

(
λ

λ
· gradh′

)[
T0(0) + µT1(0) + µ2T2(0)

] [
ln
(
ξ +

√
1 + ξ2

)
+R1(ξ)

]
−
√
λ0h′

µκ2
gradh′

cos θ

λ0F 2

[
R(ξ)− ξ

1 +
√

1 + ξ2
+ ln

(
ξ +

√
1 + ξ2

)]
−
√
λ0h′

2µκ2
λ

λ

(
λ

λ
· gradh′

)
cos θ

λ0F 2

[
2ξ

1 +
√

1 + ξ2
−ln

(
ξ +

√
1 + ξ2

)
+R1(ξ)−2R(ξ)

]
+O(µ2)

(63)

where the function R1 is defined by

R1(ξ) =

∫ ξ

0

dξ√
1 + ξ2 (1− e−ξ/A)

2
−
∫ ξ

0

dξ√
1 + ξ2

(64)

The matching procedure follows the same principle as for order zero i.e.

u′1 (s = b
√
η) = ũ1

(
ξ =

2b
√
λh′3
√
η

)
+O (

√
η) (65)

We obtain

u′1(h) =

√
λ0h′

2κ2
λ

λ

(
λ

λ
· gradh′

)
×
[

2

µ2
+

1

µ
(R1 + ln 2 + lnM + 2T1(0))−π

2

12
+2T2(0)

+T1(0) (R1 + ln 2 + lnM)

]
−
√
λ0h′

κ2
cos θ

λ0F 2
gradh′

[
2

µ2
+

1

µ
(R− 1 + ln 2 + lnM)

]
−
√
λ0h′

2κ2
cos θ

λ0F 2

λ

λ

(
λ

λ
· gradh′

)[
− 2

µ2
+

1

µ
(2 +R1 − 2R− ln 2− lnM)

]
+O(µ)

(66)
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where

R1 =

∫ +∞

0

dξ√
1 + ξ2 (1− e−ξ/A)

2
−
∫ +∞

0

dξ√
1 + ξ2

(67)

is the limit of R1(ξ) when ξ → +∞. This procedure yields the complete
expression of u′1. Denoting U ′1 = (U ′1, V

′
1)T, the depth-averaged velocity at

order 1 is then

U ′1 =

√
λ0h′

2κ2
λ

λ

(
λ

λ
· gradh′

)[
2

µ2
+

1

µ
(R1 − 1 + ln 2 + lnM + 2T1(0))−1

2
+2T2(0)

+T1(0) (R1 − 1 + ln 2 + lnM)

]
−
√
λ0h′

κ2
cos θ

λ0F 2
gradh′

[
2

µ2
+

1

µ
(R− 2 + ln 2 + lnM)

]
−
√
λ0h′

2κ2
cos θ

λ0F 2

λ

λ

(
λ

λ
· gradh′

)[
− 2

µ2
+

1

µ
(3 +R1 − 2R− ln 2− lnM)

]
+O(µ)

(68)

4 Depth-averaged equations

4.1 Mass and momentum balance equations

The depth-averaged mass conservation equation is given above (48). It can
be written in vector form using the two-dimensional divergence operator

∂h

∂t
+ div (hU) = 0 (69)

Averaging over the depth the momentum balance equation in dimensionless
form in the shallow-water scaling leads to

∂h′U ′

∂t′
+ div (h′ 〈u′ ⊗ u′〉) + grad

(
h′2

2F 2
cos θ

)
=
κ2

ε

[
h′λ− τ ′sh(0)

]
+O(ε)

(70)

The expressions (25) at order zero gives τ
′(0)
sh (0) = h′λ. The depth-averaged

momentum balance equation becomes

∂h′U ′

∂t′
+ div (h′ 〈u′ ⊗ u′〉) + grad

(
h′2

2F 2
cos θ

)
= −κ2τ ′(1)sh (0) +O(ε) (71)

To calculate the term 〈u′ ⊗ u′〉, we define the tensor

ϕ =
〈(u−U)⊗ (u−U)〉

h2
(72)
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which is conveniently called enstrophy tensor as in Richard et al. (2019)
because it has the same dimension as the square of a vorticity. By definition
we have the equality

〈u⊗ u〉 = U ⊗U + h2ϕ (73)

The depth-averaged momentum balance equation can be written

∂h′U ′

∂t′
+ div

(
h′U ′ ⊗U ′ + h′3ϕ′

)
+ grad

(
h′2

2F 2
cos θ

)
= −κ2τ ′(1)sh (0) +O(ε)

(74)
with ϕ′ = ϕh20/u

2
0. The enstrophy can be expanded as ϕ = ϕ(0) + εϕ(1) +

O(ε2). The calculation of

ϕ′(0) =
1

h′2

∫ 1

0

(
u′0 −U

′
0

)
⊗
(
u′0 −U

′
0

)
ds (75)

yields

ϕ′(0) =
1

h′
λ⊗ λ
λ

(76)

Writing λ = µ2λ0 where λ0 is of O(1), the expression of the enstrophy tensor
at order zero can be written

ϕ′(0) =
µ2λ0
h′

λ⊗ λ
λ2

= O(µ2) (77)

The expressions at order 1 are found from the integral

ϕ′(1) =
1

h′2

∫ 1

0

[(
u′0 −U

′
0

)
⊗
(
u′1 −U

′
1

)
+
(
u′1 −U

′
1

)
⊗
(
u′0 −U

′
0

)]
ds

(78)
This gives

ϕ′(1) =
λ0
κ2h′

λ⊗ λ
λ2

(
λ

λ
· gradh′

)
×
[
1 +

cos θ

λ0F 2
+ µ (R + 2 + ln 2 + lnM − ζ(3))

]
− λ0
κ2h′

cos θ

λ0F 2

(
λ

λ
⊗ gradh′ + gradh′ ⊗ λ

λ

)
+O(µ2) (79)

With all expressions of the asymptotic expansions at order 0 and order 1,

τ
′(1)
sh (0) can be consistently written

τ
′(1)
sh (0) =

(
1− α1

µ

C(µ)

)
µ2

C2(µ)

(∥∥U ′0∥∥U ′1 +U ′0
U ′0 ·U ′1∥∥U ′0∥∥

)

− α

κ2

(
κ− α1

κµ

C(µ)

)
κµ

C(µ)
h′2
λ

λ
trϕ′(1) + α1

µ

C(µ)
h′2ϕ′(1) · λ

λ
+O(µ3) (80)
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Quantities of order 1 appear at the right-hand side of this equation. We have∥∥U ′0∥∥U ′1 +U ′0
U ′0 ·U ′1∥∥U ′0∥∥ =

1

ε

(
‖U ′‖U ′ −

∥∥U ′0∥∥U ′0)+O(ε) (81)

and

ϕ′(1) =
1

ε

(
ϕ′ −ϕ′(0)

)
+O(ε) (82)

Consequently τ
′(1)
sh (0) can be written as a sum of relaxation terms as

τ
′(1)
sh (0) =

(
1− α1

µ

C(µ)

)
µ2

εC2(µ)

(
U ′ ‖U ′‖ − C2(µ)

µ2
h′λ

)
− α

εκ2

(
κ− α1

κµ

C(µ)

)
κµ

C(µ)
h′
λ

λ
(h′trϕ′ − λ)+

α1

ε

µ

C(µ)
h′
(
h′ϕ′ · λ

λ
− λ

)
+O(µ3)

(83)

with α = R1 −R + 1 and

α1 = R1 −R + 1− 1

2 (ζ(3)− 1)
(84)

With κ = 0.41 and A+ = 26, R = 2.67, R1 = 4.82, α = 3.15 and α1 = 0.680.
In the approximation of weakly sheared flows due to Teshukov (2007),

all terms of O(µ3) are neglected (see Richard et al. 2017 for a complete
discussion).

The quantity µ2κ2/C2(µ) is important because it is equal to the friction
coefficient (Richard et al. 2017), defined by

Cf =
µ2κ2

C2(µ)
(85)

The usual Darcy coefficient is f = 8Cf . At equilibrium, for a uniform and
stationary flow, this coefficient satisfies the implicit relation

1√
f

=
ln 10

2κ
√

2
lg
(
ReH

√
f
)

+
1

2κ
√

2

(
R− 2− 3

2
ln 2 + lnκ

)
(86)

where the Reynolds number ReH defined with the hydraulic diameter is
ReH = 4Re. This relation is similar to the Kármán-Prandtl law for pipes
flows with smooth surfaces. This inconvenient of this relation is that the
friction coefficient is found only implicitly.

However, in the general case (i.e. equilibrium or non-equilibrium flows),
the relation (85) leads to the explicit relation

κ√
Cf

=
2κ
√

2√
f

= R− 2 + 2 ln 2 + lnκ+ ln

√
gh3 sin θ

ν
(87)
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With the expression (83) the depth-averaged momentum balance equation
(74) is obtained in a closed conservative form with source terms, which is

∂hU

∂t
+div

(
hU ⊗U + h3ϕ

)
+grad

(
gh2

2
cos θ

)
=
(

1− α1

κ

√
Cf

)
(ĝh− CfU ‖U‖)

+ α
(
κ− α1

√
Cf

)
h
√
Cf
ĝ

ĝ

(
htrϕ− ĝ

κ2

)
− κα1h

√
Cf

(
hϕ · ĝ

ĝ
− ĝ

κ2

)
(88)

where ĝ denotes the projection of the vector g on the plane of the bottom
i.e. ĝ = (g sin θ cosα, g sin θ sinα)T and ĝ = g sin θ. It remains to find an
evolution equation for the enstrophy tensor.

4.2 Enstrophy equation

The momentum balance equation in dimensionless form in the shallow-water
scaling can be written

∂u′

∂t′
+ div (u′ ⊗ u′) +

∂w′u′

∂z′
+

1

F 2
grad p′ =

κ2

ε

(
λ+

∂τ ′sh
∂z′

)
+O(ε) (89)

Forming u′⊗(89) + (89)⊗u′ and averaging the obtained equation over the
depth, taking into account the boundary conditions and neglecting all terms
of O(µ3) because of the approximation of weakly-sheared flows, leads to the
equation of the enstrophy tensor. Details on this derivation are given in
Appendix C. The result can be written

∂h′ϕ′

∂t′
+div (h′ϕ′ ⊗U ′)−2h′ϕ′divU ′+gradU ′ ·h′ϕ′+h′ϕ′ · (gradU ′)

T

=
κ2

ε

1

h′2
[
U ′ ⊗ τ ′sh(0) + τ ′sh(0)⊗U ′ − 2W

]
+O(µ3) +O(ε) (90)

where W is the dissipation tensor defined by

W =

∫ h′

0

ν ′eff

∂u′

∂z′
⊗ ∂u′

∂z′
dz′ (91)

The dissipation tensor is expanded as W = W0 + εW1 + O(ε2). These
asymptotic expansions are given in Appendix C and enable to write the
right-hand side of (90) as a sum of relaxation terms. Reverting to dimensional
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quantities, this equation writes

∂hϕ

∂t
+ div (hϕ⊗U)− 2hϕ divU + gradU · hϕ+ hϕ · (gradU)T

=
α2

κ

√
Cf

h2

[
U ⊗ (CfU ‖U‖ − ĝh) + (CfU ‖U‖ − ĝh)⊗U

]
− αα2

Cf
h

(
U ⊗ ĝ

ĝ
+
ĝ

ĝ
⊗U

)(
h trϕ− ĝ

κ2

)
− κα2

√
Cf

h

[
U ⊗

(
hϕ · ĝ

ĝ
− ĝ

κ2

)
+

(
hϕ · ĝ

ĝ
− ĝ

κ2

)
⊗U

]
(92)

where

α2 =
1

2 (ζ(3)− 1)
(93)

With κ = 0.41 and A+ = 26, α2 = 2.47. Note that α1 = α − α2. The final
system of equations is composed of the mass conservation equation (69), the
momentum balance equation (88) and the enstrophy equation (92). Except
for the source terms at the right-hand side of these equations, the system has
the same mathematical structure as the system derived by Teshukov (2007)
who gave the proof of its hyperbolicity.

4.3 Two-dimensional Saint-Venant equations

As implied by (77), the enstrophy is of O(µ2) + O(ε). Furthermore, since
U ′1 = O(1/µ2) we can write

τ
′(1)
sh (0) =

µ2

C2(µ)

(∥∥U ′0∥∥U ′1 +U ′0
U ′0 ·U ′1∥∥U ′0∥∥

)
+O(µ) (94)

Consequently the expression (83) of τ
′(1)
sh (0) can be written

τ
′(1)
sh (0) =

µ2

εC2(µ)

(
U ′ ‖U ′‖ − C2(µ)

µ2
h′λ

)
+O(µ) (95)

Neglecting terms of O(µ), the dimensional depth-averaged momentum bal-
ance equation becomes in dimensional form

∂hU

∂t
+ div (hU ⊗U) + grad

(
gh2

2
cos θ

)
= ĝh− CfU ‖U‖ (96)

At this level of approximation, there is no enstrophy balance equation and the
system reduces to the two-dimensional Saint-Venant equations. The friction
term is consistently rather than empirically introduced. Keeping terms up to
O(µ2) and neglecting terms of O(µ3) gives the complete system {(69), (88),
(92)}.
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4.4 Energy equation

The system admits an energy balance equation. Taking half the trace of
Equation (137) in dimensional form gives the energy balance equation

∂he

∂t
+ div (heU +U ·Π) =

(
1− α

κ

√
Cf

)(
ĝh− Cf ‖U‖U

)
·U

+α
(
κ− α

√
Cf

)
h
√
Cf

(
h trϕ− ĝ

κ2

)
ĝ

ĝ
·U−καh

√
Cf

(
hϕ · ĝ

ĝ
− ĝ

κ2

)
·U

(97)

where the specific energy e is

e =
U ·U

2
+
gh

2
cos θ +

h2

2
trϕ (98)

and where the tensor Π is

Π =
gh2

2
cos θ I + h3ϕ (99)

In this expression, I is the identity tensor. The terms of the right-hand side
of the energy equation are relaxation terms due to the dissipative effects in
the flow. The expression of the turbulent energy of the system is h2trϕ/2.

In the particular case of the Saint-Venant equations where the terms of
O(µ) are neglected, the specific energy reduces to

e =
U ·U

2
+
gh

2
cos θ (100)

the tensor Π reduces to Π = (gh2/2) cos θ I and the energy balance equation
reduces to

∂he

∂t
+ div (heU +U ·Π) =

(
ĝh− Cf ‖U‖U

)
·U (101)

5 Reconstruction of the 3D fields

The three-dimensional fields can be reconstructed from the values of the
depth h, of the depth-averaged fluid velocity U and of the enstrophy tensor
as a function of the applicate z or of s = z/h.

The expression of the shear stress at the bottom can be found from the
expressions (25) at order zero and (58) at order 1. At order zero, the ex-

pression τ
′(0)
sh (0) = λh can be written τ

′(0)
sh (0) = µ2U0 ‖U0‖ /C2(µ). The
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shear stress at order 1 has been already consistently written as a sum of

relaxation terms in (83). Forming τ ′sh(0) = τ
′(0)
sh (0)+ετ

′(1)
sh (0) and reverting

to dimensional quantities leads to the expression of the shear stress at the
bottom

τsh(0)

ρ
= CfU ‖U‖ −

α1

κ

√
Cf (CfU ‖U‖ − ĝh)

− α
(
κ− α1

√
Cf

)√
Cf
ĝ

ĝ
h

(
h trϕ− ĝ

κ2

)
+ κα1

√
Cfh

(
hϕ · ĝ

ĝ
− ĝ

κ2

)
(102)

which is a function of the depth h, the average velocity U and the enstrophy
tensor ϕ, with relaxation terms on these quantities but without any deriva-
tive. This expression enables to calculate very easily the bottom shear stress
with the correction of order 1.

From the expressions (40) and (44), we can write u′0 = U ′0[1+(µ/C(µ))(1+
ln s)]. At order 1, the expressions (66) and (68) lead to

u′1 = U ′1

[
1 +

µ

C
(1 + ln s)

]
−(1 + ln s)α

µ2

C2

(
U ′1 ·

λ

λ

)
λ

λ
+α2

[
Li2(1− s) + 1− π2

6

]
×
[
µ

C

(
U ′1 ·

λ

λ

)
λ

λ
−h′

trϕ′1
2
√

trϕ′0

λ

λ
− α µ

2

C2

(
U ′1 ·

λ

λ

)
λ

λ

]
+O(µ) (103)

Forming u = u(0) + εu(1) and reverting to dimensional quantities gives the
3D-reconstruction of the horizontal velocity field in the outer layer, accurate
at order 1,

u = U

[
1 +

√
Cf

κ

(
1 + ln

z

h

)]
−α
√
Cf

κ2

(√
Cf U ·

ĝ

ĝ
−
√
ĝh

)
ĝ

ĝ

(
1 + ln

z

h

)
+α2

[
1− π2

6
+ Li2

(
1− z

h

)][√Cf

κ
U · ĝ

ĝ
− h
√

trϕ −α
√
Cf

κ2

(√
Cf U ·

ĝ

ĝ
−
√
ĝh

)]
ĝ

ĝ

(104)

This expression enables to reconstruct the 3D-profile of the horizontal veloc-
ity in the outer layer from the quantities h, U and ϕ calculated with the
resolution of the 2D-model

A similar method is conducted in the inner layer. The expressions of
the velocity at order zero and one are given in Appendix D. Note that the
expression of ũ1 in the inner layer has to be accurate to within O(µ2) in order
to obtain a matching with the expression of u′1 in the outer layer accurate
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to within O(µ) when ξ →∞. In dimensional form, the 3D-reconstruction of
the horizontal velocity in the inner layer is

u =
1

κ

{√
CfU +

[(
1− 2

α

κ

√
Cf + 2

αα1

κ2
Cf

)(√
CfU ·

ĝ

ĝ
−
√
ĝh

)

+2α2

√
Cf

(√
Cf

κ
U · ĝ

ĝ
− h
√

trϕ

)]
ĝ

ĝ

}[
R(ξ)− ξ

1 +
√

1 + ξ2
+ ln

(
ξ +

√
1 + ξ2

)]

+
1

κ

[(
1− α

κ

√
Cf +

αα1

κ2
Cf

)(√
CfU ·

ĝ

ĝ
−
√
ĝh

)
+ α2

√
Cf

(√
Cf

κ
U · ĝ

ĝ
− h
√

trϕ

)]
ĝ

ĝ
×

×

[
R1(ξ)− 2R(ξ) +
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with

ξ =
2κ

ν
z
√
gh sin θ. (106)

This expression is less convenient than the expression in the outer layer be-
cause the functions R and R1 are not explicit and need to be numerically
calculated but the full 3D-velocity profile, from the bottom to the free sur-
face, can be calculated with the depth-averaged quantities h, U and ϕ using
the expression (105) in the inner layer and the expression (104) in the outer
layer. These expressions connect asymptotically in the overlap layer with an
accuracy of O(µ). At the equilibrium, the relaxation terms are equal to zero,
and these expressions reduce to

u = U

[
1 +

√
Cf

κ

(
1 + ln

z

h

)]
(107)

in the outer layer, and to

u =

√
Cf

κ
U

[
R(ξ)− ξ

1 +
√

1 + ξ2
+ ln

(
ξ +

√
1 + ξ2

)]
(108)

in the inner layer. In the viscous sublayer, ξ → 0 and the velocity in the
inner layer is equivalent to a linear function of z. Defining the friction velocity
ub =

√
τb/ρ, u+ = u/ub and z+ = zub/ν and taking τb = ‖τsh‖(0), where
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τsh(0) is given by (102), we obtain

u+ = z+
√
gh sin θ

‖τsh‖(0)/ρ
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ĝ
− h
√

trϕ

)]
ĝ
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(109)

In an equilibrium situation, the relaxation terms are equal to zero, in partic-
ular

√
Cf‖U‖ =

√
ĝh, and the previous expression gives ‖u+‖ = z+ which

corresponds to the usual law in the viscous sublayer u+ = z+. In a non-
equilibrium situation, in particular for an unsteady flow, the relation between
u+ and z+ is still a linear relation but it is more complex and u+/z+ 6= 1.

6 Numerical simulations

6.1 Numerical scheme

The system of equations (69), (88) and (92) is a hyperbolic system with
relaxation source terms. In the 1D-case it can be written

∂U

∂t
+
∂F

∂x
= S (110)

where U = [h, hU, he]T, F = [hU, hU2 + Π, hUe+ ΠU ]T and

S =


0(
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√
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)
(ĝh− CfU |U |)U − α2hCf

(
hϕ− ĝ
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)
U

(111)
The energy of the system is e = (U2+gh cos θ+h2ϕ)/2 and Π = (gh2 cos θ)/2+
h3ϕ. The characteristics of the system are λ1,2 = U ±

√
gh+ 3h2ϕ and

λ3 = U .
This system is solved with a classical explicit Godunov-type finite-volume

method and a Rusanov Riemann solver. The time step is calculated with a
Courant-Friedrichs-Lewy (CFL) condition. At each time step, the enstrophy
is calculated from the energy.

The system is solved for the simulation of a subcritical flow in an open
channel. At the entrance the discharge is prescribed and the flow is supposed
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to be non-developed. This means that the enstrophy can be taken equal to
zero since the velocity is uniform in the depth. If ϕ = 0 at the entrance,
the system reduces to the system of Saint-Venant. The depth in a ghost
cell at the entrance is then calculated from the conservation of the Riemann
invariant of the Saint-Venant system U − 2

√
gh.

The end of the channel is treated as a sharp-crested weir as in Richard &
Gavrilyuk (2013): if the depth hN in the last cell is smaller than some height
d, which corresponds to the height of the weir, then the discharge qN+1 in a
ghost cell after the last cell is zero, otherwise qN+1 = (2/3)Cd[2g (hN − d)3]1/2

with Cd = π/(π+2)+0.08(hN−d)/d (Henderson 1966). Neumann boundary
conditions are taken for the depth and the enstrophy.

6.2 Development of the boundary layer

Simulations are performed for a uniform flow in a steady case, the so-called
normal conditions. The value of the Reynolds number Re = hU/ν is chosen.
The kinematic viscosity is fixed at ν = 1.0 × 10−6 m2 · s−1. This gives the
value qn of the discharge q = hU . The friction coefficient Cfn for a uniform
and steady flow is then calculated with (86). The value of the Froude number
F = U/(gh)1/2 is chosen and the angle θ is then calculated by sin θ = F 2Cfn
in order to have a normal flow. The average velocity of the normal flow is
then found by Un = (F 2gνRe)1/3 and the normal depth hn is determined
as well. The height of the weir d is calculated from the resolution of the
equation (gh3n sin θ/Cfn)1/2 = (2/3)Cd[2g(hn − d)3]1/2, Cd being calculated
with the normal depth.

The discharge qn is prescribed at the entrance. After a transient regime
the system reaches a steady state where the depth and the velocity are hn
and Un everywhere except near the beginning of the channel. Since ϕ = 0
is prescribed at the entrance of the channel because the flow is supposed to
be non-developed, the enstrophy relaxes towards its equilibrium value. The
enstrophy approaches asymptotically its normal value ϕn = g sin θ/(κ2hn)
and, after some distance, the flow is indistinguishable from a normal flow
with a fully developed boundary layer. The value of the enstrophy can be
used as an evaluation of the development of the boundary layer at the begin-
ning of the channel, with the value ϕ = 0 for a non-developed flow and the
value ϕn for a fully developed flow. Assuming that, for a partially developed
boundary layer, the velocity profile satisfies the usual logarithmic law below
the boundary layer thickness δ and that it is uniform above this limit up to
the free surface, we have

u′0 =
√
λ0h′

[
2 + µ

(
R− 1 + ln 2 + lnM + ln

z

δ

)]
if z 6 δ (112)
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Figure 3: Variations of the normalized enstrophy ϕ/ϕmax (black curve) and
of the normalized boundary layer thickness δ/hn (red curve) according to
law (114) with the normalized abscissa along the channel x/hn, in the case
Re = 105 and F = 0.5.

and

u′0 =
√
λ0h′ [2 + µ (R− 1 + ln 2 + lnM)] if δ 6 z 6 h (113)

Denoting ϕmax = ϕ(δ = h), this yields

ϕ

ϕmax

=

(
2− δ

h

)
δ

h
(114)

As the boundary layer thickness approaches its fully developed value asymp-
totically, it is difficult to define precisely where the flow becomes fully devel-
oped and several definitions were proposed. In our case, the goal is only to
check whether the model gives the right order of magnitude of the length of
the flow developing zone L i.e. the distance from the entrance of the channel
beyond which the flow is fully developed. A reasonable criterion is to take
δ/h > 0.99 for a fully developed boundary layer. The value δ/h = 0.99 cor-
responds to ϕ/ϕmax = 0.9999 according to (114). In the following we use the
criterion ϕ/ϕmax > 0.9999 to define a fully developed flow.

Numerical simulations were conducted for values of the Reynolds number
between 104 and 106 and for values of the Froude number between 0.1 and 0.8.
The caseRe = 105 and F = 0.5 is presented on Figure 3 where the black curve
is ϕ/ϕmax and the red curve is δ/hn calculated from (114), both given as a
function of the normalized abscissa along the channel x/hn counted from the
entrance. The slope corresponding to these values of the Reynolds and Froude
numbers is sin θ = 1/2162 ' 4.6 × 10−4 (note that tgθ is practically equal
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Figure 4: (a) Variation of the ratio of the length of the flow developing zone
L over the normal depth hn with the Froude number: Re = 104 (black •);
Re = 5× 104 (blue �); Re = 105 (green �); Re = 5× 105 (red N); Re = 106

(black H). (b) Variations of L/hn with the Reynolds number for F = 0.5
(dots); dashed line: L/hn = 25.8Re1/10.

to sin θ). In this case the length of the flow developing zone is L/hn = 81.7
(marked on Figure 3 with a dashed line).

The calculated values of L/hn for all studied cases are gathered on Figure
4(a) for different values of the Froude number. The different symbols and
colors correspond to: Re = 104 (black •); Re = 5 × 104 (blue �); Re = 105

(green �); Re = 5 × 105 (red N) and Re = 106 (black H). The value of
L/hn depends mainly on the Reynolds number but weakly on the Froude
number. For a given value of Re, it is larger when F becomes close to 1 and
slightly larger for very small values of F . For a given value of the Froude
number, L/hn increases with the value of Re. The variation of L/hn with
the Reynolds number for a Froude number equal to 0.5 is shown on Figure
4(b) in a logarithmic plot. In the case F = 0.5, it is very close to the law
L/hn ' 25.8Re1/10 (dashed line).

It is very difficult to make comparisons with experimental results due to
the fact that the length of the flow developing zone is defined differently,
that only relatively small values of the Reynolds number can be studied in
laboratory channels and that the channels used in the experiments have a
finite width. The goal here is only to check that the order of magnitude of
the calculated length L is reasonable.

Kırkgöz & Ardıçhoğlu (1997) conducted experiments in a smooth chan-
nel 0.3 m wide. Due to the relatively small value of the channel width, many
experiments are in fact 2D-situations and cannot be considered for a com-
parison with a 1D-model (the ratio width/depth is as low as 1.50 in an
experiment). Therefore only the cases where the ratio width over depth
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Figure 5: Ratio of the length of the flow developing zone over the normal
depth L/hn as a function of 4Re/F : calculated with the model (red •);
measured values of Kırkgöz & Ardıçhoğlu (1997) (black N); values calculated
with the empirical law of Kırkgöz & Ardıçhoğlu (1997) (blue �).

is larger than 4 are considered therafter (and a ratio of 4 is already quite
small). The remaining measurements have values of the Reynolds numbers
between 7 × 103 and 2.1 × 104 and values of the Froude number between
0.30 and 0.72. The authors presented the values of L/h as a function of the
ratio 4Re/F (or ReH/F where ReH = 4Re) and proposed the empirical law
L/h = 76 − 0.0001(4Re/F ). We can remark that this law gives obviously
wrong results if the Reynolds number is high enough since the predicted value
of L/h becomes negative. For values of the Froude number equal to 0.1, 0.5
and 0.8, L/h becomes negative if Re is higher than 19 000, 95 000 and 152 000
respectively. Furthermore the lowest measured values of L/h were found in
the cases of narrow channels (when the ratio width/depth is smaller than 4).

The calculated values of L/hn as a function of 4Re/F are presented on
Figure 5 (red •) together with the measured values of Kırkgöz & Ardıçhoğlu
(1997) (black N) and the values calculated from their empirical law (blue
�). The range of the Reynolds and Froude numbers values was restricted
to the range of the experiments with the largest ratios width/depth (i.e.
Re = 104 and 0.25 6 F 6 0.8) In spite of all above reservations about this
comparison, the order of magnitude of the length of the flow developing zone
seems reasonable for these values of the Reynolds and Froude numbers.
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Case Re F sin θ Td (s) ` (m) qp/qb x (m)

C3S30 105 0.5 1/2162 30 20 5 17
C3M30 105 0.5 1/2162 30 30 5 17
C3M24 105 0.5 1/2162 240 30 5 17
C4M30 105 0.8 1/844 30 30 5 17
C4M24 105 0.8 1/844 240 30 5 17
C7M30 105 0.18 1/16680 30 40 5 30
C7M24 105 0.18 1/16680 240 40 5 30

Table 1: Parameters used for the numerical simulations in the unsteady case.

6.3 Unsteady flows

The numerical simulations of unsteady flows are inspired by the experiments
of Nezu et al. (1997). The discharge q0 prescribed at the entrance of the
channel is sinusoidal after a delay time tR large enough for the base flow to
be in steady-state conditions. At time tR the discharge is increased from a
base value qb to a peak value qp after a time Td then decreased to the base
value qb after the same duration. Therefore q0 = qb if t 6 tR or if t > tR+2Td.
Otherwise q0 is given by

q0 = qb +
qp − qb

2

[
1− cos

π(t− tR)

Td

]
if tR 6 t 6 tR + 2Td (115)

The flow is supposed to be non-developed at the beginning of the channel.
This means that ϕ = 0 is prescribed at the entrance. The flow is studied far
enough from the entrance, at an abscissa x, for the flow to be fully developed
(x > L). Simulations were performed for values of the Reynolds number
equal to 104, 105 and 106, values of the Froude number equal to 0.18, 0.5 and
0.8 and values of Td equal to 30 s (a strongly unsteady case), 120 s and 240 s.
In addition the ratio qp/qb was set to 4 for Re = 104 and to 5 otherwise and
various channel lengths ` were considered. The base flow is in the normal
conditions and this prescribes the value of sin θ. The various parameters of
the simulations are gathered in table 1.

The variation of the depth h against the average velocity U shows the
characteristic loop diagram observed for rivers in flood. The peak velocity
appears before the peak depth. The cases C7M24 (low Froude number F =
0.18, weakly unsteady Td = 240 s, black curve), C7M30 (low Froude number
F = 0.18, strongly unsteady Td = 30 s, blue curve) and C4M24 (larger Froude
number F = 0.8, weakly unsteady Td = 240 s, red curve) are presented on
figure 6(a) with Re = 105 (see table 1) where the loops are run counter-
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Figure 6: (a) Normalized depth h/hmax as a function of the normalized ve-
locity U/Umax: cases C7M24 (black curve), C7M30 (blue curve) and C4M24
(red curve) (see table 1). (b) (c) (d) Evolution of the depth (black curve),
velocity (red curve) and enstrophy (blue curve) normalized by their value for
the normal flow as a function of normalized time: cases C7M24 (b), C4M24
(c) and C7M30 (d).

clockwise. The loop is wider if the flow is more strongly unsteady (C7M30) or
if the Froude number increases (C4M24). The evolutions of the depth (black
curve), the average velocity (red curve) and the enstrophy (blue curve) are
presented on figure 6(b) (C7M24), (c) (C4M24) and (d) (C7M30). Weakly
unsteady cases (figures 6(b) and (c) are closer to a kinematic wave with only
slight shape changes during the propagation, whereas, in a strongly unsteady
case (figure 6(d), the front of the wave steepens with a tendancy to take a
sawtooth shape. The evolution of the enstrophy depends on the case: for
a small Froude number, the enstrophy increases in the wave (figures 6(b)
and (d)) while it decreases for a larger Froude number (figure 6(c)). For
intermediate values of the Froude number, the enstrophy increases in the
early stages of the wave and then decreases (figure 7(a) for F = 0.5).

The influence of the downstream boundary condition can be important
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Figure 7: (a) Comparison between the cases C3S30 (solid curves) and C3M30
(dashed curves): depth (black curves), velocity (red curves) and enstrophy
(blue curves) normalized by their normal value as a function of normalized
time. (b) Reconstruction of the bottom shear stress normalized by its value
in the base flow (solid curves) for the cases C7M24 (black), C7M30 (blue)
and C4M24 (red); dashed curves: normalized depth (same colours).

in some cases, particularly during the falling stage of the wave, as there
is some reflection on the weir. This phenomenon can lead to a complex
behaviour at the end of the falling stage or shortly after that as in the C7M30
case (figure 6(d)). The abscissa x considered to study the flow was usually
chosen far from the weir (which is at an abscissa `) but the effects of the
interactions with the weir are not trivial as it can be seen from the comparison
on figure 7(a) between the cases C3S30 (x = 17 m and ` = 20 m, solid curves)
and C3M30 (x = 17 m and ` = 30 m, dashed curves) where in both cases
Re = 105 and F = 0.5. The graphs of h/hn (black curves), U/Un (red
curves) and ϕ/ϕn (blue curves) show that the end of the falling stage is more
complex when the distance to the weir is larger. Even the amplitude of the
wave is modified by the distance to the weir. Because of this sensitivity
to the downstream boundary condition, it is not possible to make precise
comparisons to experimental results without a precise knowledge of the weir
used at the end of the channel and, more generally, of the precise hydraulic
conditions of the experiments, such as the slope.

The reconstruction of the bottom shear stress with the expression (102)
is presented on figure 7(b) for the cases C7M24 (black curves), C7M30 (blue
curves) and C4M24 (red curves). The solid curves show the ratios of τsh(0),
denoted by τb, over its value for the base flow, denoted by τbn, and the dashed
curves show the ratios of h/hn. As for the average velocity, the peak value
of the bottom shear stress is attained before the peak depth. This is in
accordance with the results of Nezu et al. (1997). The difference between
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these two peaks increases for a strongly unsteady case or for a larger Froude
number. In a strongly unsteady case (C7M30), the graph of the bottom
shear stress approaches a sawtooth shape and the end of the falling stage is
complex due to reflections on the weir.

The reconstruction of the velocity profile is presented on figure 8(a) in
the case C7M24 and on figure 8(b) in the case C7M30, with u+ = u/ub,
z+ = zub/ν, ub being the friction velocity. Even in the case of a relatively
weak unsteadiness (C7M24), the velocity profile during the wave is modified
with respect to the velocity profile of the steady case (black curve) both in
the inner layer and in the outer layer. The red curve shows the velocity profile
at the peak depth. In a strongly unsteady case (C7M30), the evolution of
the velocity profile is more complex. The black curve is the profile of the
steady flow and the green, red and blue curves are the profiles during the
early part of the rising stage, at the peak depth and at the end of the falling
stage respectively.

These curves can be approximately interpreted with the same laws as in
the steady case but the constants have apparent values which are different
from the steady-case values. In the outer layer, a log-law is approximately
satisfied with an apparent von Kármán constant κapp and an apparent in-
tegration constant Bapp. Furthermore, in many cases, a deviation from this
apparent log-law can be interpreted as a wake function as in Coles (1956)
with an apparent wake-strength parameter Πapp. The velocity profiles can
be described in the outer layer with the law

u+ =
1

κapp
ln z+ +Bapp +

2Πapp

κapp
sin2 πz

2h
(116)

Note that this relation is only a convenient description of the actual velocity
profile in the outer layer, which is in fact given by (104).

The variations of the apparent von Kármán constant is presented on figure
9(a) for the weakly unsteady cases (Td = 240 s) C7M24 (F = 0.18, black �),
C3M24 (F = 0.5, blue �) and C4M24 (F = 0.8, red •) and on figure 9(b) for
the strongly unsteady cases (Td = 30 s) C7M30 (F = 0.18, black �), C3M30
(F = 0.5, blue �) and C4M30 (F = 0.8, red •). For F = 0.8, the value of the
apparent von Kármán constant remains close to the value κ = 0.41 but for
smaller Froude numbers, the difference between κapp and κ can be important.
For the weakly unsteady cases, the overall evolution is that κapp increases in
the rising stage, reaching a value κapp ' 0.435 for F = 0.18, and decreases
in the falling stage. For the strongly unsteady cases, the evolution of κapp
is more complex, especially because the interaction with the weir can have
a strong effect at the end of the falling stage. The value of κapp increases
at the beginning of the rising stage, reaching κapp ' 0.46 for F = 0.18,
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Figure 8: reconstruction of the velocity profile. (a) Case C7M24: steady
profile (black) and profile at the peak depth (red); (b) Case C7M30: steady
profile (black) and profiles at the early part of the rising stage (green), at
the peak depth (red) and at the end of the falling stage (blue).

and decreases before the peak depth and becomes negative at the end of the
falling stage.

The variations of the apparent integration constantBapp are similar. They
are presented on figure 9(c) for the cases C7M24 (black �), C3M24 (blue �)
and C4M24 (red •) and on figure 9(d) for the cases C7M30 (black �), C3M30
(blue �) and C4M30 (red •). From the steady value B = 5.28, Bapp increases
and can become larger than 7 for F = 0.18. At the end of the falling stage,
Bapp becomes negative in some cases. The difference between Bapp and B is
not small, even for F = 0.8.

The apparent wake-strength parameter Πapp is shown on figure 9(e) for
the cases C7M24 (black �), C3M24 (blue �) and C4M24 (red •) and on figure
9(f) for the cases C7M30 (black �), C3M30 (blue �) and C4M30 (red •). Its
value remains close to 0 for F = 0.8 but is larger for smaller Froude numbers,
particularly for F = 0.18 where it reaches a maximum of Πapp ' 0.10 for
Td = 240 s and Πapp ' 0.4 for Td = 30 s. In most cases, Πapp is positive but
it can take negative values at the beginning of the rising stage for F = 0.18
and Td = 30 s or at the end of the falling stage in some cases.

The graphs of figure 9 show that the constants of the apparent law (116)
depend strongly on the Froude number. On the contrary, simulations per-
formed for Re = 104, Re = 105 and Re = 106 at a given Froude number show
that these apparent constants depend weakly on the Reynolds number.

In the viscous sublayer, the expression (109) can be used to reconstruct
the velocity profile. The ratio u+/z+ is calculated with this expression and
the results are presented on figure (10) for the cases C7M24 (black�), C7M30
(blue �) and C4M24 (red �). In the steady state, u+/z+ = 1 but for
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Figure 9: Apparent von Kármán constant (a) (b), apparent integration con-
stant (c) (d) and apparent wake-strength parameter (e) (f) as a function of
normalized time. (a) (c) (e) Cases C7M24 (black �), C3M24 (blue �) and
C4M24 (red •); (b) (d) (f) Cases C7M30 (black �), C3M30 (blue �) and
C4M30 (red •).
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Figure 10: Ratio u+/z+ as a function of normalized time for the cases C7M24
(black �), C7M30 (blue �) and C4M24 (red �).

unsteady flows, this ratio is smaller. For F = 0.8, u+/z+ remains close to
1 but for F = 0.18, u+/z+ decreases below 0.8. For a weakly unsteady
case (Td = 240 s), this ratio decreases in the rising stage and increases in
the falling stage but in a strongly unsteady case (Td = 30 s), the minimum
value of u+/z+ is reached before the peak depth and there is some further
perturbations at the end of the falling stage due to interactions with the weir.

The calculation of the von Kármán constant by Onitsuka & Nezu (2000)
and Nezu & Onitsuka (2002) in unsteady flows used an evaluation of the
friction velocity assuming the validity in unsteady situations of the law u+ =
z+ in the viscous sublayer. One of the results of the present work is that
this law is not valid in an unsteady case where u+ is still a linear function of
z+ but with u+/z+ < 1. As it can be seen on figure 10, the difference can
be important, particularly for low Froude numbers, with values of u+/z+

as small as 0.7. Consequently, using the relation u+ = z+ in the viscous
sublayer to evaluate the friction velocity in unsteady situations can entail a
large error on the calculation of the apparent von Kármán constant and also
on the apparent integration constant.

We have calculated the apparent von Kármán constant by using u+ = z+

to calculate the friction velocity instead of using the relation (102) in order
to replicate the calculation of Onitsuka & Nezu (2000) and Nezu & Onitsuka
(2002). Using deliberately this wrong value of the friction velocity gives
entirely different values of the apparent von Kármán constant. The results
are presented on figure 11(a) for the case C7M24 and on figure 11(b) for
the case C7M30, where the values of κapp calculated by this method (red
�) are compared to the normal calculation (black •) which uses the friction
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Figure 11: Comparison of the apparent von Kármán constant calculated with
the friction velocity obtained with (102) (black) or by assuming u+ = z+

(red): (a) case C7M24; (b) case C7M30.

velocity predicted by the model. When u+ = z+ is used, κapp decreases in
the rising stage instead of increasing and then increases during the falling
stage or, for a strongly unsteady case, before the end of the rising stage.
This evolution is rather close to the results of Nezu & Onitsuka (2002) .
There is also, particularly for a strongly unsteady case, a sudden increase
of κapp near the beginning of the rising stage before a rapid decrease, and
this feature was noted by Onitsuka & Nezu (2000). Because of the similarity
between our calculations of κapp using u+ = z+ in the viscous sublayer, even
if this relation is not valid in our approach, and the results of Onitsuka
& Nezu (2000) and Nezu & Onitsuka (2002), we think that the qualitative
discrepancies between our really predicted values of κapp (figures 9(a) and (b))
and the calculations made from experimental results in the literature are due
to the wrong assumption that u+ = z+ is valid in unsteady situations, which
leads to large errors in the evaluation of κapp. The evaluation of the apparent
integration constant is also flawed if the validity of u+ = z+ is assumed in
unsteady flows.

7 Conclusion

A consistent 2D-depth-averaged model for open-channel flows in the smooth
turbulent case is derived with a matched asymptotic method and a mix-
ing length model of turbulence including the free surface damping effect but
without the wake function. The model can predict accurate velocity profiles
in the inner layer and in the outer layer. It can be used in unsteady situations
to reconstruct the bottom shear stress and the 3D velocity profile, where the

36



effects of the first-order corrections can be clearly seen. The friction coeffi-
cient has an explicit form and can be consistently calculated from the water
depth. Shearing effects are taken into account with the variable enstrophy.

The development of the turbulent boundary layer can be evaluated from
the model’s enstrophy. Numerical simulations with the 1D-model show that
the predicted length of the flow developing zone has a correct order of mag-
nitude. The ratio of this length over the normal depth increases with the
Reynolds number but depends weakly on the Froude number in the case of
subcritical flows.

Numerical simulations were conducted for unsteady flows in the subcrit-
ical case with a rising stage followed by a falling stage and a sinusoidal
hydrograph. The simulations show the characteristic loop diagram observed
for river floods. The peak value of the velocity and of the bottom shear stress
is attained before the peak depth and the delay of the peak depth is larger
for a larger Froude number or for a stronger unsteadiness.

The velocity profile in unsteady flows can be described by an apparent
logarithmic law with an apparent von Kármán constant and an apparent
integration constant. In many cases, a deviation from this log law can be
described by Coles’ wake function with an apparent wake-strength parameter.
The variations of these apparent constants depend weakly on the Reynolds
number but strongly on the Froude number. The variations are large for
small Froude numbers and very small for Froude numbers close to 1. The
apparent von Kármán constant increases at the beginning of the rising stage
and decreases during the falling stage for weakly unsteady flows or before
the peak depth for strongly unsteady flows where it can become smaller
than the steady value at the end of the falling stage. The variations of the
apparent integration constant and of the apparent wake-strength parameter
are qualitatively similar.

In the viscous sublayer, the law u+ as a function of z+ can be studied
since the friction velocity can be calculated with the model. It is found that
u+ in unsteady flows is a linear function of z+ but that u+/z+ < 1 if the flow
is unsteady. The value of u+/z+ remains close to 1 for the larger subcrit-
ical Froude numbers but can be as small as 0.7 for small Froude numbers.
This ratio decreases at the beginning of the rising stage and increases at
the peak depth and in the falling stage for a weak unsteadiness or before
the peak depth for a strong unsteadiness. Consequently our model predicts
that the law u+ = z+ is not valid in unsteady flows. Assuming the validity
of this law to evaluate the friction velocity can lead to large errors in the
calculation of the von Kármán constant and of the integration constant in
unsteady situations. Indeed, if we assume the validity of this law to calculate
the friction velocity instead of using the value predicted by the model, we
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find values of the apparent von Kármán constant and of the integration con-
stant which are completely different from the consistent predicted values but
which are rather similar to the values obtained from experimental measure-
ments by authors who used this method of calculation of the friction velocity.
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A Integration of the constitutive law in the

outer layer

Using (13), the constitutive relation in the outer layer yields

τ ′sh = z′2 (1− s)

√(
∂u′

∂z′

)2

+

(
∂v′

∂z′

)2
∂u′

∂z′
(117)

From this relation, we obtain

τ ′2xz + τ ′2yz = z′4 (1− s)2
∥∥∥∥∂u′∂z′

∥∥∥∥4 (118)

At the order 1, this gives

2
(
τ ′(0)xz τ

′(1)
xz + τ ′(0)yz τ

′(1)
yz

)
= 4z′4 (1− s)2

∥∥∥∥∂u′0∂z′

∥∥∥∥2(∂u′0∂z′
·
∂u′1
∂z′

)
(119)

Using the expressions found at order zero and those of τ
′(1)
xz and τ

′(1)
yz , this

leads to the relation

λ

λ
·
∂u′1
∂z′

=
1

2κ2

√
λ0
h′

(
λ

λ
· gradh′

)[
T0(s) + µT1(s) + µ2T2(s)

µs (1− s)
− cos θ

µλ0F 2s

]
(120)

Then we can write at order 1

τ
′(1)
sh = z′2 (1− s)

[∥∥∥∥∂u′0∂z′

∥∥∥∥−1(∂u′0∂z′
·
∂u′1
∂z′

)
∂u′0
∂z′

+

∥∥∥∥∂u′0∂z′

∥∥∥∥ ∂u′1∂z′

]
(121)

which gives

τ
′(1)
sh = s (1− s)h′

√
λh′
[
λ

λ

(
λ

λ
·
∂u′1
∂z′

)
+
∂u′1
∂z′

]
(122)
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and finally

∂u′1
∂z′

=
1

2κ2

√
λ0
h′
λ

λ

(
λ

λ
· gradh′

)[
T0(s) + µT1(s) + µ2T2(s)

µs (1− s)
+

cos θ

λ0F 2

1

µs

]
− 1

κ2

√
λ0
h′

gradh′
cos θ

λ0F 2

1

µs
(123)

Integrating this equation gives (60).

B Integration of the constitutive law in the

inner layer

The constitutive law gives

τ̃sh = ν̃eff
∂ũ

∂z̃
(124)

with

ν̃eff = 1 + z̃2 (1− s)
(
1− e−ξ/A

)2 ∥∥∥∥∂ũ∂z̃
∥∥∥∥ (125)

At order 1, we obtain

τ̃
(1)
sh =

∂ũ1

∂z̃
+z̃2 (1− s)

(
1− e−

ξ
A

)2 [∥∥∥∥∂ũ0

∂z̃

∥∥∥∥ ∂ũ1

∂z̃
+

∥∥∥∥∂ũ0

∂z̃

∥∥∥∥−1(∂ũ0

∂z̃
· ∂ũ1

∂z̃

)
∂ũ0

∂z̃

]
(126)

We can write ∥∥∥∥∂ũ0

∂z̃

∥∥∥∥−1(∂u′0∂z′
·
∂u′1
∂z′

)
=
λ

λ
· ∂ũ1

∂z̃
(127)

and

τ̃ 2xz + τ̃ 2yz =

[
1 + z̃2 (1− s)

(
1− e−ξ/A

)2 ∥∥∥∥∂ũ∂z̃
∥∥∥∥]2 ∥∥∥∥∂ũ∂z̃

∥∥∥∥2 (128)

We obtain at order 1

τ
′(0)
sh (0) · τ ′(1)sh (0)√
τ
′(0)2
xz (0) + τ

′(0)2
yz (0)

=

(
λ

λ
· ∂ũ1

∂z̃

)
×
[
1 + 2z̃2 (1− s)

(
1− e−ξ/A

)2 ∥∥∥∥∂ũ0

∂z̃

∥∥∥∥]
(129)

This leads to

λ

λ
· ∂ũ1

∂z̃
=

1√
∆

λ0h
′

κ2

(
λ

λ
· gradh′

)[
T0(0) + µT1(0) + µ2T2(0)− cos θ

λ0F 2

]
(130)
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where

∆ = 1 + ξ2
(

1− ξη

2
√
λh′3

)(
1− e−ξ/A

)2
(131)

Because of (12), this expression can be reduced to

∆ ' 1 + ξ2
(
1− e−ξ/A

)2
(132)

With these relations, (126) becomes

∂ũ1

∂z̃
=

1√
∆

λ0h
′

κ2
λ

λ

(
λ

λ
· gradh′

)[
T0(0) + µT1(0) + µ2T2(0)

]
− 2

1 +
√

∆

λ0h
′

κ2
gradh′

cos θ

λ0F 2
− 1−

√
∆

√
∆
(

1 +
√

∆
) λ0h′
κ2

λ

λ

(
λ

λ
· gradh′

)
cos θ

λ0F 2

(133)

The integration from the bottom to an arbitrary depth gives (63).

C Derivation of the enstrophy equation

Forming u′⊗(89) + (89)⊗u′, we obtain

∂u′ ⊗ u′

∂t′
+div (u′ ⊗ u′ ⊗ u′) +

∂w′u′ ⊗ u′

∂z′
+
u′

F 2
⊗grad p′+

grad p′

F 2
⊗u′

=
κ2

ε

(
u′ ⊗ λ+ λ⊗ u′ + u′ ⊗

∂τ ′sh
∂z′

+
∂τ ′sh
∂z′
⊗ u′

)
+O(ε) (134)

Averaging this equation, taking into account the boundary conditions and
the expression (52) of the pressure at order zero, leads to

∂

∂t′
(h′ 〈u′ ⊗ u′〉)+div (h′ 〈u′ ⊗ u′ ⊗ u′〉)+U ′⊗grad

(
h′2

2F 2
cos θ

)
+grad

(
h′2

2F 2
cos θ

)
⊗U ′

=
κ2

ε
(h′U ′ ⊗ λ+ h′λ⊗U ′ − 2W ) +O(ε) (135)

where the expression of the dissipation tensorW is (91). The averaged quan-
tity 〈u′ ⊗ u′〉 is expressed with the enstrophy tensor in (73) and 〈u′ ⊗ u′ ⊗ u′〉
can be written

〈u′ ⊗ u′ ⊗ u′〉 = U ′ ⊗U ′ ⊗U ′ + h′2U ′ ⊗ϕ′ + h′2ϕ′ ⊗U ′

+ 〈u′∗ ⊗U ′ ⊗ u′∗〉+ 〈u′∗ ⊗ u′∗ ⊗ u′∗〉 (136)

40



where u∗ = u − U . Since u′∗0 = O(µ), we have 〈u′∗ ⊗ u′∗ ⊗ u′∗〉 =
O(µ3) + O(ε). All terms of O(µ3) are neglected in the approximation of
weakly sheared flows. We obtain

∂

∂t′
(
h′U ′ ⊗U ′ + h′3ϕ′

)
+div

(
h′U ′ ⊗U ′ ⊗U ′ + h′3U ′ ⊗ϕ′ + h′3ϕ′ ⊗U ′

)
+div

(
h′3ϕ′

)
⊗U ′+h′3ϕ′·(gradU ′)

T
+U ′⊗grad

(
h′2

2F 2
cos θ

)
+grad

(
h′2

2F 2
cos θ

)
⊗U ′

=
κ2

ε
(h′U ′ ⊗ λ+ h′λ⊗U ′ − 2W ) +O(µ3) +O(ε) (137)

Equation (70) is written

∂h′U ′

∂t′
+ div

(
h′U ′ ⊗U ′ + h′3ϕ′

)
+ grad

(
h′2

2F 2
cos θ

)
=
κ2

ε

[
h′λ− τ ′sh(0)

]
+O(ε) (138)

Forming U ′⊗(138) + (138)⊗U ′ yields

∂

∂t′
(h′U ′ ⊗U ′) + div

(
h′U ′ ⊗U ′ ⊗U ′ + h′3U ′ ⊗ϕ′

)
+div

(
h′3ϕ′

)
⊗U ′−gradU ′·h′3ϕ′+U ′⊗grad

(
h′2

2F 2
cos θ

)
+grad

(
h′2

2F 2
cos θ

)
⊗U ′

=
κ2

ε

(
h′U ′ ⊗ λ+ h′λ⊗U ′ −U ′ ⊗ τ ′sh(0)− τ ′sh(0)⊗U ′

)
+O(ε) (139)

The difference (137)−(139) leads to the evolution equation of the enstrophy
tensor

∂h′ϕ′

∂t′
+div (h′ϕ′ ⊗U ′)−2h′ϕ′divU ′+gradU ′ ·h′ϕ′+h′ϕ′ · (gradU ′)

T

=
κ2

ε

1

h′2
[
U ′ ⊗ τ ′sh(0) + τ ′sh(0)⊗U ′ − 2W

]
+O(µ3) +O(ε) (140)

The direct integration of (91) is not possible but the asymptotic expansion
of the dissipation tensor can be calculated with (137). We obtain

W0 =
h′

2

(
U ′0 ⊗ λ+ λ⊗U ′0

)
(141)
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and

W1 =
(λ0h

′)3/2

κ2
λ⊗ λ⊗ λ

λ3
·gradh′

{
3+

cos θ

λ0F 2
+µ

[
1

2
+4R+

R1

2
+

9

2
ln 2+

9

2
lnM

− cos θ

λ0F 2

(
3

2
−R +

R1

2
− ln 2

2
− lnM

2

)]
+µ2

[
−17

2
+

7

4
R2+

9

4
ln2 2+

ln 2

2
+
R1

2
+
R1

2
ln 2

+
9

4
ln2M +

RR1

2
+ 4R ln 2 + lnM

(
1

2
+ 4R +

R1

2
+

9

2
ln 2

)]}
−(λ0h

′)3/2

κ2
cos θ

λ0F 2

[
2+µ

(
R−2+ln 2+lnM

)]
×
(
λ

λ
⊗ gradh′ + gradh′ ⊗ λ

λ

)
(142)

The right-hand side of (137) can be written

κ2
(
h′U ′1 ⊗ λ+ h′λ⊗U ′1 − 2W1

)
(143)

Using the asymptotic expansions found above, we can write

2W1 −
(
h′U ′1 ⊗ λ+ λ⊗ h′U ′1

)
=

(
1− α µ

C(µ)

)
µ2

C2(µ)

[
U ′0⊗

(
U ′1
∥∥U ′0∥∥+U ′0

U ′0 ·U ′1∥∥U ′0∥∥
)

+

(
U ′1
∥∥U ′0∥∥+U ′0

U ′0 ·U ′1∥∥U ′0∥∥
)
⊗U ′0

]

+ α

(
−1 + α

µ

C(µ)

)
µ

C(µ)
h′2trϕ′1

(
U ′0 ⊗

λ

λ
+
λ

λ
⊗U ′0

)
+ α

µ

C(µ)

(
U ′0 ⊗ h

′2ϕ′1 ·
λ

λ
+ h′2ϕ′1 ·

λ

λ
⊗U ′0

)
+O(µ3) (144)

Using (81) and (82), this expression enables to write the right-hand side of
(90) as a sum of relaxation terms.

D Expressions of the zero-order and first-order

velocity in the inner layer

In the inner layer, the expressions (32) and (63) lead to

ũ0 =
µ

C(µ)
U ′0

[
R(ξ)− ξ

1 +
√

1 + ξ2
+ ln

(
ξ +

√
1 + ξ2

)]
(145)
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and

ũ1 =

{
µ

C(µ)
U ′1 +

[(
1− 2

α

κ

κµ

C(µ)
+ 2

αα1

κ2

(
κµ

C(µ)

)2
)

µ

C(µ)

(
U ′1 ·

λ

λ

)

+2α2
µ

C(µ)

(
µ

C(µ)

(
U ′1 ·

λ

λ

)
− h′

trϕ′1
2
√

trϕ′0

)]
λ

λ

}[
R(ξ)− ξ

1 +
√

1 + ξ2
+ ln

(
ξ +

√
1 + ξ2

)]

+

[(
1− α

κ

κµ

C(µ)
+
αα1

κ2

(
κµ

C(µ)

)2
)

µ

C(µ)

(
U ′1 ·

λ

λ

)
+α2

µ

C(µ)

(
µ

C(µ)

(
U ′1 ·

λ

λ

)

−h′
trϕ′1

2
√

trϕ′0

)]
λ

λ

[
R1(ξ)− 2R(ξ) +

2ξ

1 +
√

1 + ξ2
− ln

(
ξ +

√
1 + ξ2

)]
+O(µ2)

(146)
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