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An extension of the Boussinesq-type models to weakly compressible flows

Gaël L. Richarda,∗

aUniv. Grenoble Alpes, INRAE, UR ETNA, 38000 Grenoble, France

Abstract

An extension of the Boussinesq-type models to weakly compressible flows is derived in the fully nonlinear case. The
dispersive properties are consistent with the linear theory of compressible fluids at the long-wave limit. The particular
case of a vanishing Mach number gives a quasi-incompressible model, intended for coastal wave simulations, which is
a hyperbolic version of the Serre-Green-Naghdi equations, with a new treatment of the bathymetric terms. Both the
compressible and quasi-incompressible models are hyperbolic four-equation models on an arbitrary bathymetry, with
an exact equation of energy conservation. In addition, these models are extended to hyperbolic and fully nonlinear
five-equation versions with improved dispersive properties. A remarkable property of the quasi-incompressible model
with improved dispersive properties is that it is possible to decrease significantly the sound velocity, and thus the
computational time, with the same accuracy or even slightly better. The numerical results show good agreement of
the quasi-incompressible model with experimental data and the capability of the compressible model to calculate the
decrease of tsunami velocity due to compressible effects.
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1. Introduction

Boussinesq-type models are commonly used for water
wave simulations if the shallow-water – or long-wave –
assumption holds, which is the case for coastal waves or
for tsunami propagation. The original Boussinesq model
(Boussinesq 1872 [1]) was derived for a constant depth. It
was extended by Peregrine (1967) [2] to the case of a vari-
able bathymetry. The Boussinesq model is weakly nonlin-
ear, which means that the nonlinearity parameter, defined
by the ratio of the wave amplitude to the water depth,
is small. This assumption entails some discrepancies, no-
tably in the case of coastal waves where the nonlinearity
can increase to O(1). A fully nonlinear model was first
derived by Serre (1953) [3] (see also Su & Gardner 1969
[4]) in the one-dimensional (1D) case and extended to the
two-dimensional (2D) case by Green and Naghdi (Green et
al. 1974 [5], Green & Naghdi 1976 [6]). This model, called
thereafter the Serre-Green-Naghdi model, can be derived
from the Euler equations as an asymptotic model in the
shallow-water regime without any assumption on the wave
amplitude (Lannes 2013 [7]). Even when such models are
fully nonlinear, the shallow water hypothesis (the depth is
small compared to the wavelength) implies that they are
weakly dispersive (see for example Kirby 2016 [8]). The
dispersion relation of the Airy wave theory is recovered
if kh � 1 where k is the wave number and h the water
depth.
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Many works have been proposed that aimed to ex-
tend the validity domain of the Boussinesq-type models to
larger depths or shorter wavelengths with respect to their
dispersive properties, in a weakly nonlinear case (Madsen
& Sørensen 1992 [9], Nwogu 1993 [10]) or in the fully non-
linear case (Wei et al. 1995 [11], Kennedy et al. 2001 [12],
Bonneton et al. 2011 [13], Chazel et al. 2011 [14]). Models
based on higher-order expansions were derived by Agnon
et al. (1999) [15], Gobbi et al. (2000) [16] and Madsen
et al. (2002) [17]. An alternative to the high-order se-
ries expansions is the multi-layer approach (Lynett & Liu
2004 [18], Liu et al. 2018 [19]). The reader is referred to
Brocchini (2013) [20] and Kirby (2016) [8] for a review of
Boussinesq-type models.

The Boussinesq-type models can be derived by averag-
ing over the water depth the fundamental mass and mo-
mentum equations of fluid mechanics. As a result, the di-
mension of the system is reduced by one; a 2D-flow is mod-
elled by a 1D-system of equations and a three-dimensional
(3D) flow reduces to a 2D-model. Furthermore the bound-
ary conditions at the bottom and at the free surface are
incorporated in the model equations. The computational
time for a numerical simulation is thus greatly reduced.
However the numerical resolution is confronted with two
important problems. The first problem is the presence
of high-order derivatives in the equations which are not
easy to handle numerically. In particular, the Serre-Green-
Naghdi equations feature third-order derivatives, and some
Boussinesq-type models with improved dispersive proper-
ties include fifth-order derivatives. The second problem
is that an elliptic step has to be solved at each time step
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of the numerical resolution. Both problems result from
the assumption of incompressibility which creates a non-
local effect because pressure variations propagate at infi-
nite celerity in an incompressible fluid. The pressure sat-
isfies an elliptic Poisson equation which is the mathemat-
ical expression of this non-locality. In the depth-averaged
models of the Boussinesq-type, the non-locality entails also
an elliptic step which is time-consuming because a global
linear system has to be solved at each time step. More-
over the resolution of the linear system adds complexity
for the implementation of parallelization techniques which
are often necessary to reduce the computation time.

A solution of these problems is to use a hyperbolic ap-
proximation of the Boussinesq-type models. The first hy-
perbolic model of this type was proposed by Antuono et al.
(2009) [21]. Favrie & Gavrilyuk (2017) [22] derived a hy-
perbolic approximation of the Serre-Green-Naghdi equa-
tions for a constant bathymetry with a variational method
using an augmented Lagrangian leading to an uncondition-
ally hyperbolic system giving the Serre-Green-Naghdi sys-
tem when a parameter of the new system goes to infinity.
This method reduces greatly the computational time. A
mathematical justification of this approximation was given
by Duchêne (2019) [23]. Another hyperbolic approxima-
tion was derived by Escalante et al. (2019) [24] for an
arbitrary bathymetry with the method of an artificial com-
pressibility. This approach was extended by Escalante &
Morales de Luna (2019) [25] who obtained a hyperbolic
approximation covering several classical Boussinesq-type
models. A hyperbolic approximation of the Serre-Green-
Naghdi equation with an exact energy conservation equa-
tion was proposed by Bassi et al. (2020) [26]. In all these
approaches, the case of an arbitrary bathymetry is handled
by a six-equation model instead of a four-equation model
for a constant depth. The hyperbolic system may be seen
as a relaxation of the original non-hyperbolic system. It is
based on a modified system in which the divergence con-
straint on the velocity field is coupled with the other con-
servation laws and, in particular, with a transport equa-
tion for the non-hydrostatic pressure, including a relax-
ation term on the depth-averaged vertical velocity which
introduces a high but finite velocity. At the limit where
this velocity goes to infinity, the original non-hyperbolic
system is recovered.

These approaches are related to the general method
of taking into account the compressibility and the prop-
agation of acoustic waves in order to avoid the resolu-
tion of a global system at each time step. This method
is used in atmospheric numerical models for a long time
(see for example Hill 1974 [27], Klemp & Wilhelmson 1978
[28], Skamarock & Klemp 1992, 2008 [29, 30]) and in non-
hydrostatic ocean models (Auclair et al. 2018 [31]). The
drawback of this method is that the very high value of
the sound velocity (around 1500 m·s−1 in water) severely
restricts the time step. This problem can be solved by
using an artificially smaller sound velocity, adding thus
an artificial compressibility, leading to a system which is

sometimes called pseudo-compressible (Auclair et al. 2018
[31]). The same method is used for the hyperbolic approx-
imations of the Boussinesq-type models where the large
parameter giving the original non-hyperbolic system at
the infinite limit is chosen as small as possible to give the
same results as the incompressible system at an excellent
approximation while keeping the time step to a reasonably
small value.

In these approaches the compressibility and the acous-
tic waves are included purely to facilitate and accelerate
the numerical solution process. The hyperbolic models
were conceived as hyperbolic approximations of the incom-
pressible non-hyperbolic Serre-Green-Naghdi or Boussinesq-
type models. The goal was to obtain nearly the same solu-
tions with a hyperbolic structure to remove the high-order
derivatives and the elliptic step. Compressible effects are
for most cases negligible because of the usually very small
value of the Mach number.

However compressibility can have important and mea-
surable effects in the case of tsunamis. Standard mod-
els for tsunami propagation predict arrival times which
are systematically too early compared to the observations.
The delay is significant and can reach several minutes in
the far field (see for example Yamazaki et al. 2012 [32],
Grilli et al. 2013 [33], in the case of the 2011 Tohoku-oki
event). This discrepancy is attributed to two main effects
which are the compressibility of seawater and the elasticity
of the solid earth (Tsai et al. 2013 [34], Allgeyer & Cumins
2014 [35], Baba et al. 2017 [36], Abdolali & Kirby 2017
[37]). Although a tsunami in a deep ocean is nevertheless
a shallow-water flow because the order of magnitude of its
wavelength (about 100 km) is much larger than the ocean
depth (4 000–6 000 m), the Mach number defined by the ra-
tio of the incompressible surface wave celerity

√
gh, where

g is the gravity acceleration, to the sound speed is of the
order of 0.13–0.16 which leads to a decrease in phase speed
of about 0.5 % (Abdolali et al. 2019 [38]) which can ex-
plain an important part of the observed discrepancy. The
capability to accurately model tsunami propagation with
precise calculation of arrival time is essential for the study
of these phenomena, in particular for the determination of
source and earth properties using the inverse problem, and
for early warning systems (Baba et al. 2017 [36], Abdolali
et al. 2019 [38]). In the latter case a low computational
cost is also crucial for an efficient real-time system.

Various methods have been implemented to take into
account this compressibility effect and the earth elasticity
effect (Tsai et al. 2013 [34], Allgeyer & Cummins 2014
[35], Watada 2014 [39], Baba et al. 2017 [36], Abdolali &
Kirby 2017 [37], Abdolali et al. 2019 [38]). Boussinesq-
type models are useful in modelling tsunamis propagation
because they include dispersive effects which can be im-
portant (Grilli et al. 2013 [33], Kirby et al. 2013 [40],
Glimsdal et al. 2013 [41]). However a Boussinesq-type
model with compressibility effects is still lacking.

In this paper a fully nonlinear hyperbolic Boussinesq-
type model with compressibility effects is derived. This is
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the first extension of the Boussinesq-type models to com-
pressible flows. A particular case of this model is obtained
when the Mach number goes to zero. This leads to a quasi-
incompressible version, which is a hyperbolic approxima-
tion of the Serre-Green-Naghdi model.

The compressible model is derived in §2 with a new
treatment of the bathymetric terms which enables to model
the case of an arbitrary bathymetry with only four equa-
tions instead of six, with an exact equation of energy con-
servation. The hyperbolicity, the dispersive properties and
the soliton solutions are studied in §3.

A model with improved dispersive properties is derived
in §4. This is a five-equation model, including on an arbi-
trary bathymetry. This is the first hyperbolic Boussinesq-
type model with improved dispersive properties which is
fully nonlinear. To the author’s knowledge, the only other
hyperbolic Boussinesq-type model with improved disper-
sive properties is the seven-equation model derived by Es-
calante & Morales de Luna (2020) [25], which is a hy-
perbolic approximation of the weakly nonlinear model of
Madsen & Sørensen (1992) [9].

A remarkable property of the quasi-incompressible model
with improved dispersive properties is that it is possible to
decrease artificially the sound velocity, and consequently
the computational time, much more than for the model
with standard dispersive characteristics. Numerical simu-
lations of both the quasi-incompressible model, intended
for coastal waves simulations, and the compressible model,
used for tsunami propagation, are presented in §5.

2. Derivation of the model

2.1. Governing equations and pressure distribution

We study the propagation of waves in an inviscid com-
pressible fluid with a density ρ and a pressure p in the case
of a two-dimensional flow above an arbitrary bathymetry.
The horizontal coordinate is x (unit vector ex) and the
vertical coordinate is z (unit vector ez). The components
of the fluid velocity field v are u in the Ox-direction and
w in the Oz-direction. The bathymetry is measured by
the elevation b(x, t) of the bottom over a constant hori-
zontal datum. Since the seabed can be displaced due to
seismic effects, the bottom can be mobile and b depends
on t. The still water depth above the bottom is denoted
by h0(x, t) and the total water depth by h(x, t). The el-
evation of the free surface over the horizontal datum is
Z(x, t) = h(x, t) + b(x, t). The elevation of the free surface
at rest over the horizontal datum is a constant Z0 which
can be chosen equal to zero (the horizontal datum is the
still water level). In this case, b = −h0 and Z is equal to
the wave elevation η = h−h0. The notations are presented
in figure 1. There is no particular smallness assumption
on b nor on its derivatives.

The continuity equation can be written

∂ρ

∂t
+
∂ρu

∂x
+
∂ρw

∂z
= 0 (1)

Figure 1: Definition sketch.

The vector of gravitational acceleration is denoted by g =
−gez. The momentum balance equation in the Ox and
Oz-directions are respectively

∂ρu

∂t
+
∂ρu2

∂x
+
∂ρuw

∂z
= −∂p

∂x
(2)

and

∂ρw

∂t
+
∂ρuw

∂x
+
∂ρw2

∂z
= −ρg − ∂p

∂z
(3)

The boundary condition at the bottom reduces to the no-
penetration condition

w(b) =
∂b

∂t
+ u(b)

∂b

∂x
(4)

The kinematic boundary condition at the free surface can
be written

w(Z) =
∂Z

∂t
+ u(Z)

∂Z

∂x
(5)

The surface tension being neglected (this assumption re-
stricts this study to waves with periods larger than about
0.1 s or wave lengths larger than a few centimetres), the
dynamic boundary condition at the free surface states that
the pressure at z = Z is equal to the atmospheric pressure,
which is supposed to be a constant that can be taken equal
to zero. This leads to

p(Z) = 0 (6)

Since the fluid is compressible, the mass and momentum
equations are not sufficient to close the problem. The first
law of thermodynamics and an equation of state must be
added to describe completely the system. Previous works
suggest that density stratification due to temperature or
salinity variations have much smaller effects than the in-
crease of ocean water density with depth due to the sea-
water compressibility in the gravity field (Tsai et al. 2013
[34], Watada 2013 [42]). Similarly, stratification effects due
to temperature and salinity are neglected by Ardhuin &
Herbers (2013) [43] in their study of noise excited by ocean
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surface gravity waves. The fluid is likewise assumed to be
barotropic by Renzi & Dias (2014) [44] for the propagation
of hydro-acoustic waves generated by surface pressures dis-
turbance in the ocean and by Kadri & Stiassnie (2013) [45]
for acoustic-gravity waves. Note that bottom friction has
a negligible effect in deep oceans, in particular on tsunami
delay (Watada 2014 [39], Allgeyer & Cummins 2014 [35]).

The variation in sound velocity with depth would give
a small correction to the effect of compressibility on wave
propagation, which is already a small correction, even for
a tsunami in deep ocean. It is thus wholly negligible.
A depth-averaged model for hydro-acoustic waves gener-
ated by tsunamigenic ground motions was derived by Sam-
marco et al. (2013) [46] in a weakly compressible ocean.
This model was later extended by Abdolali et al. (2015)
[47] to include the effect of a compressible sediment layer.
These hydro-acoustic waves are important as precursors of
tsunamis and can be used for early warning systems. In
these models too and also in the works cited above (Ard-
huin & Herbers 2013 [43], Kadri & Stiassnie 2013 [45],
Rensi & Dias 2014 [44]), the sound velocity was supposed
to be constant in the ocean.

It follows that the following assumptions can be made:
1) The flow is homentropic i.e. the entropy s is uniform
and constant; 2) The fluid is barotropic; 3) The sound
velocity, denoted by a, is uniform and constant. The same
hypotheses were assumed by most authors. Consequently
the equation of state is taken as

p = a2 (ρ− ρs) (7)

where ρs is the seawater density at the free surface. It is
of course also possible to write the well-known formula

∂p

∂ρ
= a2 (8)

In the absence of waves, the ocean is supposed to be in
hydrostatic equilibrium. The quantities evaluated in this
state are denoted by a subscript 0. By definition the equi-
librium hydrostatic pressure p0 is related to the equilib-
rium density ρ0 by

∂p0
∂z

= −ρ0g (9)

In these conditions, the equation of state writes p0 =
a2(ρ0 − ρs). The integration of (9) gives the basic hy-
drostatic ocean state (Abdolali & Kirby 2017 [37])

ρ0 = ρse
g(Z0−z)/a2 (10)

where Z0 is the still water elevation. The expression of the
pressure is then

p0 = a2ρs

[
eg(Z0−z)/a2 − 1

]
(11)

When a wave propagates in the ocean, this equilibrium
hydrostatic state is perturbed. The perturbation can be

divided into two effects: a hydrostatic perturbation due to
the variation in water depth while the hydrostatic equation
is still satisfied in the vertical direction (although not in the
horizontal directions) and a non-hydrostatic effect induced
by the vertical acceleration i.e. the left-hand side of (3).
The pressure is thus written as the sum of a hydrostatic
term pH and a non-hydrostatic term pN as

p = pH + pN (12)

The hydrostatic term is the sum of the equilibrium hydro-
static state and a hydrostatic perturbation

pH = p0 + δpH (13)

The non-hydrostatic pressure corresponds to a density fluc-
tuation ρN such that pN = a2ρN and the hydrostatic pres-
sure corresponds to a hydrostatic term ρH in the density
with

ρ = ρH + ρN (14)

and pH = a2(ρH − ρs). As explained in §2.2, the non-
hydrostatic correction pN to the pressure and the corre-
sponding density fluctuation ρN are small in a shallow
water flow. This implies that the leading contribution is
hydrostatic.

By definition, the hydrostatic pressure is defined by

∂pH
∂z

= −ρHg (15)

which gives

ρH = ρse
g(Z−z)/a2 (16)

and

pH = a2ρs

[
eg(Z−z)/a

2

− 1
]

(17)

Defining the water elevation by η = Z−Z0, the hydrostatic
density is related to its equilibrium value by the relation

ρH = ρ0 egη/a
2

(18)

Despite the term “static”, the hydrostatic pressure pH de-
pends on the time t and on the abscissa x in the presence
of a wave, through the elevation Z(x, t) of the free surface.

In the absence of heat transfer, the total energy con-
servation equation, expressed by the first law of thermo-
dynamics, can be written

∂

∂t

(
1

2
ρv2 + ρgz + ρei

)
+ div

[(
1

2
ρv2 + ρgz + ρei + p

)
v

]
= 0 (19)

where ei is the specific internal energy. In the case of a
homentropic flow (where the change in entropy ds = 0),
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the thermodynamic relation dei = Tds + (p/ρ2)dρ (with
T being the temperature) reduces to

dei =
p

ρ2
dρ (20)

Since the non-hydrostatic contribution is small, the main
contribution to the internal energy is hydrostatic and can
be explicitly expressed. Denoted by eiH , this part of the
internal energy can be found with relation (20) and the
state equation (7) as

deiH
dρH

= a2
ρH − ρs
ρ2H

(21)

The integration of this equation together with the expres-
sion of ρH (16) gives the expression of EiH = ρHeiH

EiH = ρHg(Z − z)− pH (22)

The total internal energy is the sum of this leading hydro-
static contribution and a non-hydrostatic correction.

2.2. Scaling and dimensionless equations

The model is derived under the assumption of a shal-
low water flow, which is valid even for a tsunami in a deep
ocean. Denoting a characteristic depth by h0 and a char-
acteristic length by L of the flow in the Ox-direction, the
problem admits a a small parameter

ε =
h0
L
� 1 (23)

Since the bathymetry is arbitrary, the characteristic vari-
ation length of b in the Ox-direction is the characteristic
length L of the flow.

The model is derived with an asymptotic method. The
equations are thus written in a dimensionless form to eval-
uate the order of magnitude of each term with respect to
the small parameter ε.

Denoting by u0 a characteristic horizontal fluid veloc-
ity, the Froude number is defined as F = u0/

√
gh0. For

a tsunami in deep oceans, F can be very small. However
no assumption is made on the order of magnitude of F
(i.e. F = O[1]) in order to derive a general model, includ-
ing coastal waves. Besides, the case F = O(1) covers the
particular cases where F is small whereas the converse is
not true. In the following, F is taken equal to 1 to lighten
the equations (i.e. the characteristic velocity u0 is taken
equal to

√
gh0) with no loss of generality because the final

equations in dimensional form are the same.
The following scaling for x, z, h, t, u, w is classical in

the shallow water context (a tilde denotes a dimensionless
quantity):

x̃ =
x

L
; z̃ =

z

h0
; h̃ =

h

h0
; t̃ = t

√
gh0
L

ũ =
u√
gh0

; w̃ =
w

ε
√
gh0

; (24)

We write also b̃ = b/h0 and Z̃ = Z/h0.
The usual Mach number is Ma = u0/a but, for conve-

nience, the Mach number is defined with the incompress-
ible surface waves celerity as

M =

√
gh

a
(25)

The Mach number in the reference state is M0 =
√
gh0/a.

The relations between these numbers in the reference state
isM0 = Ma/F . The order of magnitude ofM0 is estimated
with respect to ε. Even if compressibility is taken into
account in this model, the fluids considered here are weakly
compressible and therefore the Mach number is small. As
there is no reason for the Mach number to be an integer
power of ε, it is written

M0 = εγM1 (26)

where 0 < γ 6 1 and M1 = O(1). In practice, only the
square of the Mach number occurs in the equations. Since
M2

0 = O(ε2γ) with 0 < 2γ 6 2, if an integer power of ε is
absolutely required, it is possible to choose γ = 1/2 and
thus M2

0 = O(ε) or γ = 1 and M2
0 = O(ε2). The main

consequence of assumption (26) with 0 < γ 6 1 is that the
non-hydrostatic contribution ρN to density fluctuation is
negligible unlike the hydrostatic contribution ρH .

Shear effects, due to the variation on horizontal fluid
velocity with depth, can be important nearshore, espe-
cially in the case of breaking, but in the deep ocean where
compressibility can have a measurable effect, they are neg-
ligible. Although it is straightforward to include shear (see
Kazakova & Richard, 2019 [48]), shear is not important in
the present study and so is omitted to simplify the equa-
tions. Therefore the order of magnitude of shear effects
will be chosen so that they are neglected consistently in the
equations. Denoting by U the depth-averaged horizontal
velocity and u′ = u−U the deviation of the horizontal ve-
locity with respect to this average value, u′ is supposed to
be small and to scale with εβ

√
gh0 such that ũ = Ũ + εβ ũ′

with β > 1. This approach is due to Teshukov (2007) [49]
who considered the case 0 < β < 1 to include explicitly
shear effects but not dispersive terms, whereas β is here
greater than 1 to neglect shear terms while including dis-
persive terms. This approach can be also related to the
vorticity. If the vorticity ω = ∂u/∂z − ∂w/∂x is of O(εα),
then β = min(α, 2) since, defining εαω̃ = ω

√
h0/g, we

have εαω̃ = εβ∂ũ′/∂z̃− ε2∂w̃/∂x̃. In the irrotational case,
which is a common assumption for non-breaking waves or
for tsunami propagation in deep ocean, β = 2.

The pressure and density are scaled as in the incom-
pressible case, with the surface density ρs as reference den-
sity,

ρ̃ =
ρ

ρs
; p̃ =

p

ρsgh0
(27)

The dimensionless mass and momentum balance equations
in the Ox and Oz directions become respectively

∂ρ̃

∂t̃
+
∂ρ̃ũ

∂x̃
+
∂ρ̃w̃

∂z̃
= 0 (28)
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∂ρ̃ũ

∂t̃
+
∂ρ̃ũ2

∂x̃
+
∂ρ̃ũw̃

∂z̃
= −∂p̃

∂x̃
(29)

and

ε2
(
∂ρ̃w̃

∂t̃
+
∂ρ̃ũw̃

∂x̃
+
∂ρ̃w̃2

∂z̃

)
= −ρ̃− ∂p̃

∂z̃
(30)

Taking into account the definition of the hydrostatic pres-
sure (15), the last equation can be reduced to

ε2
(
∂ρ̃w̃

∂t̃
+
∂ρ̃ũw̃

∂x̃
+
∂ρ̃w̃2

∂z̃

)
= −ρ̃N −

∂p̃N
∂z̃

(31)

which shows that pN = O(ε2). The dimensionless non-
hydrostatic pressure is thus redefined as

p̃N =
pN

ε2ρsgh0
(32)

This gives the relation p̃ = p̃H + ε2p̃N , showing that the
non-hydrostatic pressure is a small correction to the pres-
sure. From pN = a2ρN we deduce that

ρ̃N = ε2+2γM2
1 p̃N (33)

which implies that the perturbation to the density due
to the non-hydrostatic pressure is very small (of O[ε3] if
γ = 1/2 or of O[ε4] if γ = 1) and negligible in front of
the hydrostatic part of the density. The definition of ρ̃N
is thus changed into

ρ̃N =
ρN

ε2+2γρs
(34)

and ρ̃N = M2
1 p̃N . This means that ρ̃ = ρ̃H +O(ε2+2γ).

In the incompressible limit, pN is also of O(ε2) with
ρN = 0, which is possible given that a→∞ (or M0 = 0).
In the weakly compressible approach, the non-hydrostatic
pressure retains the same order of magnitude with a large
but finite sound velocity (or a small but non-zero Mach
number) and a very small density perturbation.

With the new scaling for pN and ρN , the equation (31)
becomes

∂ρ̃w̃

∂t̃
+
∂ρ̃ũw̃

∂x̃
+
∂ρ̃w̃2

∂z̃
= −ε2γ ρ̃N −

∂p̃N
∂z̃

(35)

The corrective term on the weight due to the non-hydrostatic
effect is thus small and it can be consistently ignored given
that all other terms are already of O(ε2), writing

∂ρ̃w̃

∂t̃
+
∂ρ̃ũw̃

∂x̃
+
∂ρ̃w̃2

∂z̃
= −∂p̃N

∂z̃
+O

(
ε2γ
)

(36)

The dimensionless form of the equation of state re-
stricted to the leading hydrostatic part of the pressure is

p̃H =
ρ̃H − 1

ε2γM2
1

(37)

This implies that ρ̃H = 1 + O(ε2γ). The weak compress-
ibility implies that the density differs only slightly from

its surface value ρs. However this difference is not negli-
gible since the dispersive non-hydrostatic terms which are
taken into account are of O(ε2). This difference ρ′ is de-
fined as ρH = ρs + ρ′ and scaled as ρ̃′ = ρ′/(ε2γρs). In
dimensionless form, we have

ρ̃H = 1 + ε2γ ρ̃′ (38)

It follows that the mass conservation equation (28) can be
written

∂ũ

∂x̃
+
∂w̃

∂z̃
+ ε2γ

(
∂ρ̃′

∂t̃
+
∂ρ̃′ũ

∂x̃
+
∂ρ̃′w̃

∂z̃

)
= O

(
ε2+2γ

)
(39)

The first two terms are the leading incompressible terms.
The following terms of O(ε2γ) are the compressible hy-
drostatic correction and the right-hand side of O(ε2+2γ) is
the neglected compressible non-hydrostatic correction. In
the same way, the horizontal momentum balance equation
writes

∂ρ̃H ũ

∂t̃
+
∂ρ̃H ũ

2

∂x̃
+
∂ρ̃H ũw̃

∂z̃
+
∂p̃H
∂x̃

+ ε2
∂p̃N
∂x̃

= O
(
ε2+2γ

)
(40)

where the hydrostatic perturbation ρ̃′ is included in ρ̃H ,
giving terms of O(ε2γ).

2.3. Depth-averaged equations

2.3.1. Depth-averaged quantity

The governing equations are averaged over the depth.
For any quantity A, its depth-averaged value for a com-
pressible fluid can be defined in two ways. The first aver-
age, denoted by 〈A〉, is the depth-average counterpart of
the Favre averaging and is defined as

〈A〉 =

∫ Z

b

ρAdz∫ Z

b

ρdz

(41)

The second average is denoted by A and is the usual depth
average

A =
1

h

∫ Z

b

Adz (42)

Since ρ = ρH + ε2+2γρN , the first average can be written

〈A〉 =

∫ Z

b

ρHAdz∫ Z

b

ρH dz

+O
(
ε2+2γ

)
(43)

Introducing the normalized depth-averaged hydrostatic den-
sity R = ρH/ρs leads to the following relations in dimen-
sional and dimensionless forms∫ Z

b

ρHA dz = ρshR 〈A〉 ;

∫ Z̃

b̃

ρ̃HÃ dz̃ = h̃R〈Ã〉 (44)
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The following notations are used for the average fluid hori-
zontal velocity, for the average fluid vertical velocity (both
being of the Favre type) and for the normalized average
non-hydrostatic pressure: U = 〈u〉, W = 〈w〉 and P =
pN/ρs (which gives P̃ = p̃N in dimensionless form with
P = ε2gh0P̃ ). From the definition u = U + u′, it follows
that 〈u′〉 = 0. This implies also that ũ = Ũ+O(εβ+2γ). In
the case of the horizontal fluid velocity, the difference be-
tween the two averages is negligible if γ > 1/2 or if β = 2
(irrotational flow). In the case of the fluid vertical velocity,
W̃ = w̃ +O(ε2γ).

An expression for the average density R can be found
from the integration of (16) which yields

R =
eM

2 − 1

M2
(45)

Since the Mach number is small, the development of this
expression can be restricted to

R = 1 +
M2

2
+O(M4) (46)

2.3.2. Mass conservation

With the above definitions, and taking into account the
kinematic boundary condition, the integration of the mass
conservation equation over the fluid depth gives

∂h̃R

∂t̃
+
∂h̃ŨR

∂x̃
= O(ε2+2γ) (47)

This equation can be written(
R+ h̃

dR

dh̃

)(
∂h̃

∂t̃
+
∂h̃Ũ

∂x̃

)
− h2 dR

dh̃

∂Ũ

∂x̃
= O(ε2+2γ) (48)

The expression (45) of R yields R+ h̃dR/dh̃ = eM
2

which
leads to

∂h̃

∂t̃
+
∂h̃Ũ

∂x̃
=
M2

2
Q0h̃

∂Ũ

∂x̃
+O(ε2+2γ) (49)

where

Q0 =
2

M4

(
e−M

2

+M2 − 1
)

(50)

The expression of Q0 can also be written

Q0 = 1− M2

3
+O(M4) (51)

The fluid compressibility implies that the right-hand side
of (49) is not zero. However the mass conservation equa-
tion is expressed by (47). Note that the exact depth-
averaged mass conservation equation is

∂hρ

∂t
+
∂hρU

∂x
= 0 (52)

and ρ̃ = R+O(ε2+2γ).

2.3.3. Momentum balance equation

The integration of the momentum balance equation
(40) in the horizontal direction, taking into account the
boundary conditions, leads to

∂h̃RŨ

∂t̃
+

∂

∂x̃

(
h̃R〈ũ2〉+

∫ Z̃

b̃

p̃H dz̃ + ε2h̃P̃

)

= −p̃(b) ∂b̃
∂x̃

+ O(ε2+2γ) (53)

The definition of u′ enables to write 〈ũ2〉 = Ũ2 + ε2β〈u′2〉.
Since 2β > 2, the O(ε2β) term is negligible. The inte-
gral of the hydrostatic pressure can be calculated with
the expression (17) which becomes in dimensionless form
M2

0 p̃H = exp[M2
0 (Z̃− z̃)]−1 and which gives p̃H(b) = h̃R.

The depth-integrated horizontal momentum balance equa-
tion can be written

∂h̃RŨ

∂t̃
+

∂

∂x̃

(
h̃RŨ2 +Q1

h̃2

2
+ ε2h̃P̃

)

= −h̃R ∂b̃
∂x̃
− ε2p̃N (b)

∂b̃

∂x̃
+O(ε2β) +O(ε2+2γ) (54)

where

Q1 =
2

M4

(
eM

2

−M2 − 1
)

(55)

which can be written

Q1 = 1 +
M2

3
+O(M4) (56)

In the vertical direction, integration over the depth of (36)
with the boundary conditions gives

∂h̃RW̃

∂t̃
+
∂h̃R〈ũw̃〉

∂x̃
= p̃N (b) +O(ε2γ) (57)

Since ũ = Ũ + εβũ′, we can write 〈ũw̃〉 = ŨW̃ + O(εβ).
Asymptotic expressions of pN are needed to evaluate the
non-hydrostatic pressure at the bottom p̃N (b) in (54) and
(57).

Firstly, an asymptotic expression of the vertical veloc-
ity is obtained from the mass conservation equation (39)
and from the decomposition ũ = Ũ + εβ ũ′:

∂w̃

∂z̃
= −∂Ũ

∂x̃
+O(εβ) +O(ε2γ) (58)

Integration of this relation with the no-penetration bound-
ary condition shows that the variation of the vertical ve-
locity in the depth is linear at this level of approximation.
This gives

w̃ = (b̃− z̃)∂Ũ
∂x̃

+
∂b̃

∂t̃
+ Ũ

∂b̃

∂x̃
+O(εβ) +O(ε2γ) (59)

with the depth-averaged vertical velocity

W̃ = − h̃
2

∂Ũ

∂x̃
+
∂b̃

∂t̃
+ Ũ

∂b̃

∂x̃
+O(εβ) +O(ε2γ) (60)
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Secondly the non-hydrostatic pressure is obtained by inte-
gration of the momentum balance equation in the vertical
direction (36) which can be also consistently written

∂p̃N
∂z̃

= −

(
∂w̃

∂t̃
+
∂Ũw̃

∂x̃
+
∂w̃2

∂z̃

)
+O(εβ) +O(ε2γ) (61)

In this expression w̃ is replaced by the linear asymptotic
law (59). The obtained relation is integrated from the free
surface to an altitude z. At the free surface, z = Z and the
dynamic boundary condition gives pN (Z) = 0. It follows
that the non-hydrostatic pressure profile in the depth is
parabolic with

p̃N =

[
Z̃2 − z̃2

2
− b̃

(
Z̃ − z̃

)]2

(
∂Ũ

∂x̃

)2

− ∂2Ũ

∂x̃∂t̃

− ∂

∂x̃

(
Ũ
∂Ũ

∂x̃

)]
+
(
Z̃ − z̃

)
¨̃
b+O(εβ) +O(ε2γ) (62)

where the material derivative is defined as

ḃ =
Db

Dt
=
∂b

∂t
+ U

∂b

∂x
; b̈ =

Dḃ

Dt
(63)

The consistent expression of the non-hydrostatic pressure
at the bottom is thus

p̃N (b) = − h̃
2

2

 ∂2Ũ
∂x̃∂t̃

+ Ũ
∂2Ũ

∂x̃2
−

(
∂Ũ

∂x̃

)2
+ h̃

¨̃
b

+ O(εβ) + O(ε2γ) (64)

Taking the usual depth average of (62) gives the average
non-hydrostatic pressure P̃ = p̃N

P̃ = − h̃
2

3

 ∂2Ũ
∂x̃∂t̃

+ Ũ
∂2Ũ

∂x̃2
−

(
∂Ũ

∂x̃

)2
+

h̃

2
¨̃
b

+ O(εβ) + O(ε2γ) (65)

This implies that the non-hydrostatic pressure at the bot-
tom can be consistently written

p̃N (b) =
3

2
P̃ +

h̃

4
¨̃
b+O(εβ) +O(ε2γ) (66)

This expression is used in (57). Consequently, using again
R = 1 +O(ε2γ), the depth-integrated vertical momentum
balance equation is

∂h̃RW̃

∂t̃
+
∂h̃RŨW̃

∂x̃
=

3

2
P̃ +

h̃R

4
¨̃
b+O(εβ) +O(ε2γ) (67)

This can be rewritten as

∂h̃RW̃
∂t̃

+
∂h̃RŨW̃

∂x̃
=

3

2
P̃ +O(εβ) +O(ε2γ) (68)

whereW is a modified average vertical velocity defined by

W = W − ḃ

4
(69)

Another way to express consistently the non-hydrostatic
pressure at the bottom is

p̃N (b) = 2P̃ +
h̃

3

D

Dt̃

(
Db̃

Dt̃
− W̃

)
+O(ε2γ) +O(εβ) (70)

When used in (54) this gives

∂h̃RŨ

∂t̃
+

∂

∂x̃

(
h̃RŨ2 +Q1

h̃2

2
+ ε2h̃P̃

)

= −
(
h̃R+ ε22P̃

) ∂b̃
∂x̃

+ ε2
h̃R

3

∂b̃

∂x̃

D

Dt̃

(
W̃ − ˙̃

b
)

+ O(ε2+2γ) + O(ε2β) (71)

This equation is useful to prove the conservation of energy.
However an equivalent form of this equation is derived for
convenience. Given that R = 1 + O(ε2γ), the expression
(70) is equivalent to (66) since it is possible to write

p̃N (b) = 2P̃ +
h̃R

3

D

Dt̃

(
Db̃

Dt̃
− W̃

)
+O(ε2γ) +O(εβ) (72)

Using (67), h̃RDW̃/Dt̃ can be replaced in the above ex-
pression leading to

p̃N (b) =
3

2
P̃ +

h̃R

4
¨̃
b+O(εβ) +O(ε2γ) (73)

which is used in (67). This leads to the depth-averaged
momentum balance equation in the Ox-direction which
can be written

∂h̃RŨ
∂t̃

+
∂

∂x̃

(
h̃RŨ Ũ +Q1

h̃2

2
+ ε2h̃P̃

)

= −
(
h̃R+ ε2

3

2
P̃

)
∂b̃

∂x̃
+ ε2h̃R

˙̃
b

4

D

Dt̃

(
∂b̃

∂x̃

)
+ O(ε2+2γ) + O(ε2β) (74)

where U is a modified average horizontal velocity defined
by

U = U +
ḃ

4

∂b

∂x
(75)

With the new variables U andW, the hyperbolic system of
equations has no more equations in the case of an arbitrary
bathymetry than in the case of constant depth where U
and W reduce to U and W respectively.
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2.3.4. Energy equation and non-hydrostatic pressure equa-
tion

So far four variables have been introduced to describe
the depth-averaged flow: h, U (or U), W (or W), and
P . The average density R is not an independent variable
since it is a function of h. Only three equations have been
derived: (47), (74) and (68). Equation (49) is equivalent
to (47). An evolution equation for P is needed to close
the system in order to obtain a hyperbolic system (use
of equation (60) or (65) would lead to a non-hyperbolic
system).

The energy conservation equation (19) is integrated
over the depth. Since ρ̃ = ρ̃H + O(ε2+2γ) (see §2.2), the
potential energy reduces to its hydrostatic part ρHgz. The
integral of the sum of the hydrostatic part of the internal
energy and of the potential energy is then

1

ρs

∫ Z

b

(EiH + ρHgz) dz = Q2
gh2

2
+ ghRb (76)

where

Q2 =
2

M4

[
1 +

(
M2 − 1

)
eM

2
]

= 1 +
2M2

3
+O(M4) (77)

In the flux of (19), the quantity EiH + ρHgz + pH is
equal to ρHgZ. It follows that, to integrate over the depth
the energy equation (19), we have to calculate the integral∫ Z

b

ρHgZu dz = gZU

∫ Z

b

ρH dz + gh

∫ Z

b

ρHu
′ dz (78)

taking into account the decomposition u = U + u′. In the
right-hand side of this equation, the first integral is equal
to hR and the second integral is equal to zero since by
definition 〈u′〉 = 0.

Consequently the integral of the energy equation (19)
can be written

∂

∂t

(
hR
〈u2〉

2
+ hR

〈w2〉
2

+Q2
gh2

2
+ ghRb+ hReint

)
+

∂

∂x

[
hR
〈u3〉

2
+ hR

〈uw2〉
2

+ hRUeint

+ gh2RU + ghRbU + hUP

]
= p(b)

∂b

∂t
(79)

where eint is a non-hydrostatic contribution to the energy,
which plays the role of an internal energy for the model.
Neglecting terms of O(ε2β), we can write 〈u2〉 ' U2 and
〈u3〉 ' U3. The term 〈uw2〉 corresponds to terms of O(ε2)
in the momentum balance equations. It is thus consistent
to neglect the correction of O(εβ) writing 〈uw2〉 ' U〈w2〉.
Decomposing the vertical velocity as w = W + w′ leads
to 〈w2〉 = W 2 + 〈w′2〉 since by definition 〈w′〉 = 0. With
the expressions (59) and (60) of w and W , it is easy to
calculate that

〈w′2〉 =

(
W − ḃ

)2
3

(80)

In the energy, the potential energy is Q2gh
2/2 + ghRb.

The term ghRb is included in the potential energy since
the average elevation of the flow over the horizontal datum
is b+ h/2. However the non-uniformity of the density due
to compressibility is responsible for the factor Q2.

In the momentum balance equation (74), the term

Π = Q1
gh2

2
+ hP (81)

plays the role of a pressure (by analogy with the Euler
equations of compressible fluids). Noticing that Q1+Q2 =
2R, the energy conservation equation can be written

∂hRe

∂t
+

∂

∂x
(hRUe+ ΠU) = Pext (82)

where the total energy is

e =
U2

2
+
W 2

2
+

(
W − ḃ

)2
6

+
Q2

R

gh

2
+ gb+ eint (83)

and where Pext = p(b)∂b/∂t is the power introduced by
the external forces. Due to the mobile bottom, the total
energy of the system is not conserved because the external
forces do work. The external power is

Pext = ghR
∂b

∂t
+

[
2P +

hR

3

D

Dt

(
ḃ−W

)] ∂b
∂t

(84)

This power is equal to zero if the bottom is not mobile i.e.
if ∂b/∂t = 0. In the expression, the first term is due to
the hydrostatic pressure and the second term is due to the
non-hydrostatic pressure, in both cases evaluated at the
bottom (z = b).

From the depth-averaged mass and momentum equa-
tions (47), (71) and (67), it is possible to derive a balance
equation for the mechanical energy of the model. Equation
(71) can be written in dimensional form as

∂hRU

∂t
+

∂

∂x

(
hRU2 +Q1

gh2

2
+ hP

)
= − (ghR+ 2P )

∂b

∂x
+
hR

3

∂b

∂x

D

Dt

(
W − ḃ

)
(85)

while the dimensional form of (67) is simply

∂hRW

∂t
+
∂hRUW

∂x
=

3

2
P +

hR

4
b̈ (86)

Taking into account the mass conservation equation (47),
equations (85) and (67) can be written respectively as

hR

(
∂U

∂t
+ U

∂U

∂x

)
+

∂

∂x

(
Q1

gh2

2
+ hP

)
= − (ghR+ 2P )

∂b

∂x
+
hR

3

∂b

∂x

D

Dt

(
W − ḃ

)
(87)

and

hR

(
∂W

∂t
+ U

∂W

∂x

)
=

3

2
P +

hR

4
b̈ (88)
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Forming

1

2
[U × (85) + U × (87)] +

2

3
[W × (86) +W × (88)] (89)

and noticing that

U
∂

∂x

(
Q1

gh2

2

)
=

∂

∂t

(
Q2

gh2

2

)
+

∂

∂x

(
gh2RU

)
(90)

we can obtain the depth-averaged mechanical energy bal-
ance equation

∂hReM
∂t

+
∂

∂x
(hRUeM + ΠU) = Pint + Pext (91)

where the mechanical energy is given by

eM =
U2

2
+
W 2

2
+

(
W − ḃ

)2
6

+
Q2

R

gh

2
+ gb (92)

and the power related to internal forces is

Pint = P

(
2W + h

∂U

∂x
− 2ḃ

)
(93)

Internal force power is exchanged between the mechani-
cal energy and internal energy of the system. The differ-
ence between the total energy conservation equation (82)
and the mechanical energy balance equation (91) gives the
depth-averaged internal energy balance equation

∂hReint
∂t

+
∂hRUeint

∂x
= −Pint (94)

We notice that the right-hand side of this equation is a
very small quantity because the expression (60) of W im-
plies that the sum of the three terms between brackets in
the expression (93) of Pint is equal to zero to within small
terms. This means that equation (94) is a relaxation equa-
tion.

This equation is useful to find a suitable equation for
the non-hydrostatic pressure P . The equation for P was
postulated by Escalante et al. (2019) [24] and by Escalante
& Morales de Luna (2020) [25] for the incompressible case
where R = 1. In the present case of weakly compress-
ible flow, the equation can also be regarded as postulated
rather than derived unlike the three other equations. The
postulate amounts to choosing the expression for the in-
ternal energy as

eint =
P 2

2a2
(95)

This expression is reminiscent of an acoustic energy. In-
serting (95) into (94) and using the mass conservation
equation (47) lead to hRP DP/Dt = −a2P (2W+h∂U/∂t−
2ḃ), which gives the equation for P

∂hRP

∂t
+
∂hRUP

∂x
= −a2

(
2W + h

∂U

∂x
− 2ḃ

)
(96)

This equation has a special status in the model because it
is a relaxation equation.

However, even if this equation is not really derived,
it can be justified by the following considerations which
show that it is consistent with the other equations of the
model. In the exact mass conservation equation (52), since
ρ = ρH + ρN and pN = a2ρN , ρ can be written

ρ

ρs
= R+

P

a2
(97)

leading to

∂

∂t

(
h
P

a2

)
+

∂

∂x

(
hU

P

a2

)
= −

(
∂hR

∂t
+
∂hUR

∂x

)
(98)

This can be further simplified as follows, writing in dimen-
sionless form with R = 1 +O(ε2γ),

ε2+2γ

(
∂

∂t

(
M2

1hP
)

+
∂

∂x

(
M2

1hUP
))

= −
(
∂h

∂t
+ U

∂h

∂x
+ h

∂U

∂x

)
+O(ε2γ) +O(εβ) (99)

The first two terms in the right-hand side of this equation
can be written −(2W − 2ḃ) using the kinematic boundary
condition (5) and the asymptotic expression (59) of w. The
O(ε2γ) terms and the O(εβ) terms are discarded because
the corrective terms of O(ε2γ) and of O(εβ) are neglected
in the expression of W (60), and thus in the relaxation.
The equation of P is postulated rather than rigorously
derived because the O(ε2+2γ) terms are not neglected. The
fact that the O(ε2+2γ) terms appear on the left-hand side
of equation (99) is solely to ensure the model is hyperbolic,
and does not affect its compressible properties. Without
these terms, the model is still an extension of the Serre-
Green-Naghdi equations to compressible flows but it is not
hyperbolic. The hyperbolicity results from a postulate as
it is also the case for all hyperbolic approximations of the
Serre-Green-Naghdi system (see Favrie & Gavrilyuk 2017
[22] or Escalante et al. 2019 [24] for example).

Using once more R = 1 + O(ε2γ) and reverting to di-
mensional form, we obtain equation (96).

It follows that the system of equations of the model
admits an exact equation of energy conservation.

2.3.5. Final system of equations

In dimensional form the final system of equations is

∂h

∂t
+
∂hU

∂x
=
M2

2
Q0h

∂U

∂x
(100)

∂hRU
∂t

+
∂

∂x

(
hRUU +Q1

gh2

2
+ hP

)
= −

(
ghR+

3

2
P

)
∂b

∂x
+ hR

ḃ

4

D

Dt

(
∂b

∂x

)
(101)
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∂hRW
∂t

+
∂hRUW

∂x
=

3

2
P (102)

∂hRP

∂t
+
∂hRUP

∂x
= −a2

(
2W + h

∂U

∂x
− 2ḃ

)
(103)

with R given by (45), M by (25), Q0 by (50) and Q1 by
(55). This system admits the mass conservation equation

∂hR

∂t
+
∂hUR

∂x
= 0 (104)

and the exact energy conservation equation (82). To the
author’s knowledge, this is the first model of this kind
(i.e. Boussinesq-type models, here in a hyperbolic fully
nonlinear version) where actual compressible effects are
included. In this model, div v 6= 0 and the density is
variable due to the hydrostatic corrections caused by depth
variations. These compressible effects are noticeable in the
case of tsunami propagation in deep water where the Mach
number, as defined by (25), is in the 0.1–0.2 range.

For coastal waves, this Mach number is smaller than
10−2 and a quasi-incompressible approximation is suffi-
cient. This approximation can be found by putting M = 0
in the system (100)–(103), which implies R = Q0 = Q1 =
1. Note that the sound velocity a in the relaxation term
at the right-hand side of equation (103) is retained to en-
sure the hyperbolicity of the resulting set of equations.
Putting a → ∞ in this equation would give the Serre-
Green-Naghdi equations. The quasi-incompressible set of
equations is thus written

∂h

∂t
+
∂hU

∂x
= 0 (105)

∂hU
∂t

+
∂

∂x

(
hUU +

gh2

2
+ hP

)
= −

(
gh+

3

2
P

)
∂b

∂x
+ h

ḃ

4

D

Dt

(
∂b

∂x

)
(106)

∂hW
∂t

+
∂hUW
∂x

=
3

2
P (107)

∂hP

∂t
+
∂hUP

∂x
= −a2

(
2W + h

∂U

∂x
− 2ḃ

)
(108)

The quasi-incompressible character of this system is obvi-
ous when looking at the mass conservation equation (105)
which is the classical depth-integrated form of div v =
0. This quasi-incompressible model also satisfies an exact
equation of energy conservation, which is (82), together
with the expressions (81), (83) and (84), with R = Q1 =
Q2 = 1.

In the quasi-incompressible system, it is possible to
choose an artificially smaller value of the sound velocity in
order to decrease the computational time. This possibility
is similar to the method, used by several authors (Auclair
et al. 2018 for example), of adding an artificial compress-
ibility to the system for better numerical efficiency. This

method transforms the quasi-incompressible system into a
hyperbolic approximation of the Serre-Green-Naghdi equa-
tions, which is not the case for the compressible model
(100)–(103). The sound velocity a can be considered in
this system as a free parameter which should have a suf-
ficiently large value in order to obtain an accurate ap-
proximation of the Serre-Green-Naghdi equations. In this
regard, the quasi-incompressible model is similar to those
of Favrie & Gavrilyuk (2017) [22], Escalante et al. (2019)
[24], Escalante & Morales de Luna (2020) [25] and Bassi
et al. (2020) [26].

However, the treatment of the variable bottom terms
in the quasi-incompressible system is new because an arbi-
trary bathymetry is handled with only four equations and
a change of variables instead of the six equations required
by the approaches of Escalante & Morales de Luna (2019)
[25] or Bassi et al. (2020) [26].

The applications of both types of model are differ-
ent. The compressible model is intended for the simulation
of tsunami propagation whereas the quasi-incompressible
equations are well-suited to the simulation of coastal waves.
In both cases, breaking effects could be readily included
in the models using the approach of Kazakova & Richard
(2019) [48] but this is left for future work.

The mild slope approximation is obtained by assuming
that the characteristic variation length of the bottom is
much larger that L, for example L/ε or L/ε2. In this case,
all bathymetric terms, are negligible except −pH(b)∂b/∂x
in (101). Assuming in addition that the bottom is fixed,
the model for a mild bottom is composed of the mass equa-
tion (100) and

∂hRU

∂t
+

∂

∂x

(
hRU2 +Q1

gh2

2
+ hP

)
= −ghR ∂b

∂x
(109)

∂hRW

∂t
+
∂hRUW

∂x
=

3

2
P (110)

∂hRP

∂t
+
∂hRUP

∂x
= −a2

(
2W + h

∂U

∂x

)
(111)

As above the quasi-incompressible model for a fixed mild
slope bottom is found by putting M = 0 and R = Q0 =
Q1 = 1 in these equations. In all these models, an exact
energy conservation equation is satisfied.

3. Model analysis

3.1. Hyperbolicity

The system (100)–(103) can be written

∂V

∂t
+ A

∂V

∂x
= S (112)

where V = (h,U ,W, P )T, S is a source term depending
on b and its derivatives, and on h, U , W, P but not on
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their derivatives, and where

A =


U e−M

2

hRKb 0 0
g + P/(hR) U 0 1/R

0 0 U 0
0 Kba

2/R 0 U

 (113)

with

Kb =
1

1 +
1

4

(
∂b

∂x

)2 (114)

The eigenvalues of A are

λ1,2 = U

λ3,4 = U ±
√
Kb

√
e−M2 (ghR+ P ) +

a2

R2
(115)

Since P/(gh) = O(ε2) and since the physical value of the
sound velocity a = 1500 m · s−1 is such that a2 is always
much larger than gh or |P |, the eigenvalues are real. In the
case of the quasi-incompressible system with an artificially
reduced value of the sound velocity, a should be chosen
large enough to ensure the existence of real eigenvalues. In
practice this is not restrictive because |P | is always small
enough so that the eigenvalues are always real. Because of
the double root, the system is not strictly hyperbolic but it
is possible to find four linearly independent eigenvectors.
The system is thus hyperbolic.

Wave celerity is smaller for free surface waves travel-
ling over a variable bed than over a uniform bed because
the celerity is multiplied by

√
Kb and Kb 6 1. In prac-

tice however, (∂b/∂x)2 is often small and the surface wave
velocity is only slightly decreased except for very steep bot-
tom slopes. For example, if the bottom slope is 1/10, 1/5
and 1,

√
Kb is equal to 0.999, 0.995 and 0.894 respectively.

For the quasi-incompressible model, the eigenvalues re-
duce to λ1,2 = U and λ3,4 = U ±

√
Kb

√
gh+ P + a2.

3.2. Dispersive properties

The linear dispersive properties of the model are stud-
ied from the derivation of the dispersion relation for the
system of equations (100)–(103) in the case of a constant
bottom. These equations are linearized around the equi-
librium state h0, R0 = [exp(M2

0 )−1]/M2
0 , U0 = 0, W0 = 0

and P0 = 0 considering small perturbations h′, U ′, W ′ and
P ′. These perturbations are taken of the form

[h′, U ′,W ′, P ′]
T

= [A1, A2, A3, A4]
T

ei(kx−ωt) (116)

leading to the dispersion relation

h20R
2
0

3a2
ω4 − ω2

[
1 +

k2h20
3

(
1 +M2

0 e−M
2
0R3

0

)]
+ e−M

2
0 k2gh0R0 = 0 (117)

In dimensionless form, for low frequencies εω̃ = ω
√
h0/g

and with the longwave scaling εk̃ = kh0, the dispersion
relation is

ω̃2

(
1 + ε2

k̃2

3

)
= e−M

2
0R0k̃

2 +O(ε2+2γ) (118)

If γ = 1, M2
0 = ε2M2

1 , then, at the order O(1), the disper-
sion relation reduces to ω̃2 = k̃2 giving the phase velocity
of the incompressible Saint-Venant equations vϕ =

√
gh0.

At the following order O(ε2), the dispersion relation can
be developed into

ω̃2 = k̃2

(
1− ε2M

2
1

2
− ε2 k̃

2

3

)
+O(ε4) (119)

If γ = 1/2, M2
0 = εM2

1 , then the dispersion relation re-
duces at order O(ε) to

ω̃2 = k̃2e−M
2
0R0 (120)

which can be written

ω̃2 = k̃2
(

1− εM
2
1

2

)
+O(ε2) (121)

At the following order, the dispersion relation is

ω̃2 = k̃2

(
1− εM

2
1

2
+ ε2

M4
1

6
− ε2 k̃

2

3

)
+O(ε3) (122)

All these expresions show that, even at the long wave limit,
the dispersion relation is modified by compressibility ef-
fects. The phase velocity for k → 0 is thus

vϕ =

√
gh0e−M

2
0R0 (123)

which is practically

vϕ '
√
gh0

(
1− M2

0

4

)
(124)

for 2γ = 2, and

vϕ '
√
gh0

(
1− M2

0

4
+

5M4
0

96

)
(125)

for 2γ = 1. Compared to the incompressible case, the
phase velocity is slightly smaller due to the compressibility
of water. For typical ocean depths, this diminution of the
phase velocity is of the order of 0.5 %.

The dispersion relation in the linear theory of com-
pressible fluids is (Pidduck 1910 [50], Dalrymple & Rogers
2007 [51], Kadri 2015 [52], Abdolali & Kirby 2017 [37])

ω2 = g

(
κ2 − Γ2

)
tanh(κh0)

κ− Γ tanh(κh0)
(126)

where Γ = g/(2a2) and κ =
√
k2 − ω2/a2 + Γ2. Using the

same low frequency and long wave scaling as above (the
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Figure 2: Dimensionless phase velocity vϕ/
√
gh0 as a function of the

depth h0.

low frequency scaling eliminating the acoustic modes) and
M0 = O(ε2γ), this dispersion relation gives exactly the
same relation dispersion as the model: If γ = 1, (126) gives
(119) and if γ = 1/2, (126) gives (122). At the limit γ → 0,
which is the longwave limit where the compressible effects
are much larger than the dispersive effects, the dispersion
relation (126) of the linear theory reduces to

ω̃2 =

(
k̃2 − ε2γM2

1 ω̃
2
)

tanh
(
ε2γM2

1 /2
)

(ε2γM2
1 /2) (1− tanh (ε2γM2

1 /2))
+O(ε2) (127)

The solution of this equation can be written

ω̃2 = k̃2e−M
2
0R0 +O(ε2) (128)

which is the same expression as given by the model for the
same scaling and the same limit. It follows that the phase
velocity at the long wave limit with compressible effects
is the same in the model and in the linear theory and its
expression is (123). This is also the expression of the group
velocity because, at this limit, there is no dispersion. In
the development of (123)

vϕ√
gh0

= 1− M2
0

4
+

5

96
M4

0 −
M6

0

128
+O(M8

0 ) (129)

only terms of order n in M2
0 with n = 1/γ have meaning

because the first dispersive term is O(ε2). This implies
that, in practice, the expressions (124) or (125) are suffi-
cient and consistent. The variation of the dimensionless
phase velocity vϕ/

√
gh0 with depth is shown in figure 2

(a = 1500 m · s−1). This variation is almost linear with
h0 because it is well approximated by (124) which gives
ṽϕ ' 1− gh0/(4a2). In most cases the relative diminution
in phase velocity due to compressibility is smaller than
1 %.

The model is thus fully consistent with the general lin-
ear theory of compressible fluids with respect to compress-
ible effects at the long wave limit. It is also consistent to

the first order in k2 for dispersive effects in the same way
as the incompressible Serre-Green-Naghdi model.

The complete dispersion relation (117) can be explicitly
solved. The solutions of this equation divide into a slow
branch and a fast branch. Their expressions are given by

ω̃2 =
1

2M2
0R

2
0

[
3 + k̃2

(
1 +M2

0R
3
0e−M

2
0

)

±

√(
3 + k̃2

)2
+

2M2
0R

3
0

eM
2
0

k̃2
(
k̃2 − 3

)
+
M4

0R
6
0

e2M
2
0

k̃4

 (130)

with the minus sign for the slow branch and the plus sign
for the fast branch. Since the fast branch corresponds to
an acoustic mode and the slow branch to the usual solution
in hydraulics of free surface flows but for the compressible
corrections, they will be also called thereafter the acoustic
branch and the hydraulic branch respectively. These so-
lutions are presented in figure 3 for h0 = 6000 m with the
angular frequency and the phase velocity of both branches
as a function of k̃ in figure 3 (a) and (b) respectively. The
acoustic branch has a cutoff frequency ω̃c =

√
3/(M0R0)

or, in dimensional form,

ωc =
a
√

3

R0h0
(131)

which is the angular frequency of the fast branch at k =
0. There is no acoustic mode at a lower frequency. The
phase velocity of the acoustic mode, denoted by vaϕ, can
be written

ṽaϕ =
1

M0R0

√
1 +

3

k̃2
+O(M0)

vaϕ '
a

R0

√
1 +

3

k2h20
(132)

This velocity is infinite when M0 = 0 (or a → ∞), which
is the incompressible limit, and decreases monotonously
when the Mach number, or the wave number, increases. In
practice, the value of the acoustic phase velocity is slightly
higher than the value given by the above expression, due to
the corrective term of O(M0). When k̃ → 0, ṽaϕ →∞ but
the group velocity of the acoustic mode vanishes (the group
velocity of the acoustic mode is equal to 0 for k = 0). This
is due to the existence of the cutoff frequency ω = ωc for
k = 0. At this point, there is no energy propagation in the
acoustic mode. The group velocity of the acoustic mode
increases with k̃ and is smaller than the sound velocity
(see the dashed curve in figure 3).

In the case of the quasi-incompressible model, the dis-
persive properties are the same as for the Serre-Green-
Naghdi equations if the physical value of the sound veloc-
ity is used. However this leads to a very small time step
and a large computational time due to the large value of
the sound velocity in water. An artificially reduced sound
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Figure 3: Solutions of the relation dispersion with the fast or acoustic branch and the slow or hydraulic branch for h0 = 6000 m: (a) angular
frequency and (b) phase velocity. The dashed curve in (b) is the group velocity of the acoustic branch.

velocity can be used giving the same dispersive proper-
ties with an excellent approximation as long as M0 6 0.1,
which gives a much reduced computational time with the
same accuracy.

3.3. Soliton

The system (100)–(103) admits soliton solutions in the
case of a uniform, horizontal bed. A soliton propagates at
a constant velocity c and is thus a stationary solution in a
reference frame in translation at this velocity with respect
to the reference frame of the bottom. We are looking for
a function of the variable ξ = x − ct satisfying h → h∞,
U → 0, W → 0, P → 0 and R→ R∞ if ξ → ±∞ where U
is the average horizontal velocity in the reference frame of
the bottom and R∞ is the value of R for h = h∞.

Given that ∂/∂t = −cd/dξ and ∂/∂x = d/dξ, the mass
conservation equation (104) implies that the relative dis-
charge

m = hR (U − c) (133)

is a constant. The momentum balance equation in the
horizontal direction (101) with a constant bottom yields
another constant B defined by

B =
m2

hR
+Q1

gh2

2
+ hP (134)

The energy equation (82) gives a third constant H, which
writes

H =
m2

2h2R2
+

2

3
W 2 + gh+

P 2

2a2
+
P

R
(135)

The expression of the non-hydrostatic pressure can be found
from (134):

P =
B

h
− m2

h2R
−Q1

gh

2
(136)

The non-hydrostatic pressure equation (103) and the ex-
pression of P above gives an expression for the average
vertical velocity

W = m

(
Q4

2h
+

B

2a2h2
−Q5

m2

a2h3
+Q1

g

4a2

)
dh

dξ
(137)

where

Q4 =
M4

4 sinh2(M2/2)
= 1 +O(M4) (138)

and

Q5 =
M2

2

(
1 +M2

)
eM

2 − 1(
eM2 − 1

)2 = 1− M2

4
+O(M4) (139)

The equations are put into dimensionless form by defining
ĥ = h/h∞, ξ̂ = ξ/h∞, P̂ = P/gh∞ and two dimensionless
numbers, the Mach number M∞ =

√
gh∞/a and the rela-

tive Froude number F∞ = −m/
√
gh3∞. The constants B

and H can be evaluated for ξ → ±∞. This gives

B = gh2∞

(
F

2

∞
R∞

+
Q1∞

2

)
, H = gh∞

(
F

2

∞
2R2
∞

+ 1

)
(140)

where Q1∞ is the value of Q1 for h = h∞. These expres-
sions, used with the energy conservation (135) and the
expressions (136) and (137) of P and W , lead to the equa-
tion

f21 (ĥ)

(
dĥ

dξ̂

)2

− f2(ĥ) = 0 (141)
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where

f1(ĥ) =
F∞√

3

[
Q4 +

M2
∞

ĥ

(
F

2

∞
R∞

+
Q1∞

2

)

−2
M2
∞

ĥ2
Q5F

2

∞ +Q1
M2
∞

2
ĥ

]
(142)

and

f2(ĥ) =
F

2

∞
R2
−Q2

R
ĥ3−

(
2
F

2

∞
R∞

+Q1∞

)
ĥ

R
+

(
F

2

∞
R2
∞

+ 2

)
ĥ2

−M2
∞

(
F

2

∞
R∞

+
Q1∞

2
− F

2

∞

ĥR
−Q1

ĥ2

2

)2

(143)

For the maximum depth hmax of the solitary wave, f2(ĥ) =

0. Apart from the root ĥ = 1, the positive root of this
equation gives the maximum depth of the soliton. The
dimensionless amplitude of the soliton is hmax − 1. If
M∞ = 0, the maximum depth of the soliton of the Serre-
Green-Naghdi equations is recovered. If M∞ increases, the
amplitude of the soliton decreases. This implies that the
soliton of the compressible model is slightly smaller than
the soliton of the incompressible model (see figure 4(a) for
a comparison between the incompressible and compressible
cases for M∞ = 0.13). The soliton of the incompressible
equations exists if F∞ > 1. There is also a minimum value
of the Froude number for the existence of the soliton of the
compressible equations and this value is slightly greater
than 1 (about F∞ > 1.004 if M∞ = 0.13). The maximum
depth of the soliton as a function of the Mach number M∞
is presented in figure 4(b) for a Froude number F∞ ' 1.342

(F
2

∞ = 1.8). The dashed curve is the quasi-incompressible
case. As the quasi-incompressible case is a hyperbolic
approximation of the incompressible Serre-Green-Naghdi
equations, the value of the sound velocity should be cho-
sen large enough to give approximately the same ampli-
tude as the incompressible model (i.e. M∞ should be small
enough). Note that in the quasi-incompressible case, M∞
appears only because of the presence of the sound velocity
in the relaxation term in (108). The problem is completely
different for the compressible equations (100)–(103), which
are not an approximation of the incompressible equations,
and where the slight decrease of the soliton amplitude is
due to the inclusion of compressibility in the model.

Taking the derivative of the equation (141) leads to the
equation

d2ĥ

dξ̂2
+

1

f1(ĥ)

df1

dĥ

(
dĥ

dξ̂

)2

− 1

2f21 (ĥ)

df2

dĥ
= 0 (144)

which is more suitable for a numerical integration. The

depth profile of a very steep soliton with F
2

∞ = 1.8 and
M∞ = 0.13 is presented in figure 5(a) (solid curve). This
profile is very similar to the profile of the Serre-Green-
Naghdi soliton (dashed curve) for the same Froude num-

ber. This soliton has a very large amplitude for an im-
portant Mach number, and thus a large still water depth,
which is not realistic. For a more realistic soliton depict-
ing a tsunami in a large depth (about 4000 m), the Mach

number is M∞ ' 0.13 but F
2

∞ is very close to 1. In the
incompressible case, which can provide an order of magni-
tude, the dimensionless amplitude hmax − 1 of the soliton

is F
2

∞ − 1. For a tsunami in deep ocean, the amplitude
is very small compared to the ocean depth which implies

that F
2

∞ − 1 is small. The case of a soliton with more re-

alistic values F
2

∞ = 1.01 and M∞ = 0.13, is presented in
figure 5 (b) (solid curve) with a comparison to the Serre-
Green-Naghdi soliton at the same Froude number (dashed
curve). The decrease in amplitude due to compressibility
is notable.

4. Model with improved dispersive properties

4.1. Derivation

The Boussinesq-type models are weakly dispersive (see
for example Kirby 2016 [8]) and their dispersive properties
can be inaccurate for some applications in coastal waves.
Consequently various approaches improving the dispersive
properties were proposed to extend the validity range of
these models. Most operational Boussinesq-type models
include some method to improve the dispersive properties
(see for example Nwogu 1993 [10], Wei et al. 1995 [11],
Kennedy et al. 2001 [12], Bonneton et al. 2011 [13]).
The quasi-incompressible model has the same dispersive
properties as the Serre-Green-Naghdi model if the Mach
number is small enough and it is important to derive a
version of the model with improved dispersive properties
for accurate applications in coastal waves.

Besides coastal waves, the accuracy of the dispersive
properties of the compressible model is also an impor-
tant issue. Most earthquake-generated tsunamis have long
wavelengths and thus small dispersive effects. However at
long distances, dispersive effects are not negligible (Kirby
et al. 2013 [40]). Furthermore tsunamis generated by
submarine landslides have shorter wavelengths and conse-
quently important dispersive effects even in the near field
(Tappin et al. 2014 [53]). A study of the importance of
dispersive effects for tsunami propagation can be found
in Glimsdal et al. (2013) [41]. The model derived so far
has accurate dispersive properties for long waves but these
properties deteriorate quickly for shorter wavelengths and
this deterioration is increased if the depth is larger due to
more important compressible effects. As one of the pur-
poses of this model is to capture a diminution of the phase
velocity of only 0.5 % due to compressibility, the phase ve-
locity and dispersive properties must be calculated to very
high accuracy, even for tsunamis with a relatively short
wavelength.

In this paper, the method of Bonneton et al. (2011) [13]
is adapted for the present quasi-incompressible model for
coastal wave applications. For the compressible model and
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Figure 4: Dimensionless maximum depth of the soliton (a) as a function of F∞ for M∞ = 0.13 (solid curve) and (b) as a function of M∞ for

F
2
∞ = 1.8 (solid curve). The dashed curve is in (a) the maximum depth of the soliton of the Serre-Green-Naghdi equations and in (b) the

maximum depth in the quasi-incompressible case.

Figure 5: Profile of a soliton for the compressible equations with M∞ = 0.13 (solid curve) and for the Serre-Green-Naghdi equations (dashed

curve). (a) F
2
∞ = 1.8. (b) F

2
∞ = 1.01.
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the specific case of tsunamis, Bonneton et al.’s method is
not sufficient because improvement of the dispersive prop-
erties with this method alone depends heavily on the Mach
number and thus is not satisfactory for all ocean depths.
Consequently an additional correction is applied for the
compressible effects.

Both corrections need to be consistent with respect to
the asymptotic method used to derive the model. This
means that the model with improve dispersive properties
has to be asymptotically equivalent to the original model,
differing only by terms of O(ε2+2γ) or smaller.

The first idea is to use the vertical velocity at some
height above the bottom as a variable instead of the aver-
age vertical velocity. More precisely the new variable W ∗

is defined as the value of w at a relative height α/2 above
the bottom with respect to the water depth i.e.

α

2
=
z − b
h

(145)

This coefficient α coincides with the coefficient of the method
of Bonneton et al. (2011) [13] but it has here a clear phys-
ical meaning. The definition

W ∗ = w|z=b+αh/2 (146)

and the asymptotic expression of w (59) yields the asymp-
totic expression

W̃ ∗ = −α
2
h̃
∂Ũ

∂x̃
+ ḃ+O(εβ) +O(ε2γ) (147)

which leads to

W̃ ∗ = W̃ +
1− α

2
h̃
∂Ũ

∂x̃
+O(εβ) +O(ε2γ) (148)

Consequently, defining

W∗ = W ∗ − ḃ

4
(149)

an equation for W∗ can be obtained from the equation of
W. The resulting equation can be written

∂hRW∗

∂t
+
∂hRUW∗

∂x

=
3

2
P +

α− 1

2
h2R

[
2

(
∂U

∂x

)2

− ∂

∂x

(
DU

Dt

)]
(150)

The key point of the approach of Bonneton et al. (2011)
[13] is to use an asymptotically equivalent set of equations
by noting that

h̃R
DŨ

Dt̃
= − ∂

∂x̃

(
Q1h̃

2

2

)
− h̃R ∂b̃

∂x̃
+O(ε2) +O(ε2β) (151)

which leads to DŨ/Dt̃ = −∂Z̃/∂x̃+O(ε2)+O(ε2β). Since
the evolution equation of W is accurate to within terms of

O(ε2γ) or O(εβ), we can write to the same approximation,
reverting to dimensional quantities,

∂hRW∗

∂t
+
∂hRUW∗

∂x

=
3

2
P +

α− 1

2
h2R

[
2

(
∂U

∂x

)2

+ g
∂2Z

∂x2

]
(152)

Replacing W with its expression depending on W ∗ in (103)
gives the evolution equation of the average non-hydrostatic
pressure

∂hRP

∂t
+
∂hRUP

∂x
= −a2

(
2W ∗ + αh

∂U

∂x
− 2ḃ

)
(153)

Equation (152) is difficult to solve because of the presence
of the second derivative ∂2h/∂x2. To preserve a well-posed
hyperbolic structure for the model, a new variable S, di-
rectly related to the slope of the free surface, is defined
as

S = α
∂Z

∂x
(154)

An evolution equation for S can be derived from the av-
eraged mass conservation equation (100) which enables to
write

D

Dt

(
∂h

∂x

)
= − ∂

∂x

(
e−M

2

hR
∂U

∂x

)
− ∂h

∂x

∂U

∂x
(155)

Using the asymptotic expression of W ∗ (147) and the def-
inition (154) of S, and neglecting terms of O(ε2γ) in the
equation of S given that they would produce terms of
O(ε2+2γ) in the model, we obtain the evolution equation
of S

∂hRS

∂t
+
∂hRUS

∂x
= 2h

∂W ∗

∂x
+

2

α
W ∗S + 2

2− α
α

∂b

∂x
W ∗

+ (α− 2)h
D

Dt

(
∂b

∂x

)
− 2

α
ḃ

[
S + (2− α)

∂b

∂x

]
(156)

The evolution equation of W∗ (152) can thus be written,
neglecting again terms of O(ε2γ),

∂hRW∗

∂t
+
∂hRUW∗

∂x

=
3

2
P +

α− 1

2α
gh2R

∂S

∂x
+ 4

α− 1

α2

(
W ∗ − ḃ

)2
(157)

The quasi-incompressible model with improved disper-
sive properties is composed of the equations (105), (106)
and of the equations (157), (153) and (156) with R = 1
and Q1 = 1.

In the compressible case, the dispersive properties are
indeed improved but either they are still not accurate
enough for tsunamis or the value of the coefficient α giv-
ing accurate properties depends on the Mach number and
thus on the depth. A new compressible correction is thus
needed to supplement the above method.
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Since R = 1 +O(ε2γ), a term in equations (157), (153)
or (156), which are accurate to within terms of O(ε2γ),
can be multiplied by R without changing the accuracy of
the model. We can rewrite consistently equations (157),
(153) and (156) as

∂hRW∗

∂t
+
∂hRUW∗

∂x

=
3

2
R2P +

α− 1

2α
gh2R

∂S

∂x
+ 4

α− 1

α2

(
W ∗ − ḃ

)2
(158)

∂hRP

∂t
+
∂hRUP

∂x
= −a2

(
2R2W ∗ + αh

∂U

∂x
− 2ḃ

)
(159)

∂hRS

∂t
+
∂hRUS

∂x
=

2h

R3

∂W ∗

∂x
+

2

α
W ∗S + 2

2− α
α

∂b

∂x
W ∗

+ (α− 2)h
D

Dt

(
∂b

∂x

)
− 2

α
ḃ

[
S + (2− α)

∂b

∂x

]
(160)

The final compressible model with improved dispersive
properties is composed of equations (100), (101), (158),
(159) and (160). This model satisfies exactly the mass
conservation equation (104). If α = 1, the fifth equation
(160) is useless and the system satisfies also exactly the
energy conservation equation (82) with the same energy
(83) and the same expression (81) of Π. The compressible
correction, formed by the factor R2 in the first term at
the right-hand side of (158) and (159), preserves the exact
conservation of energy. On the other hand, if α 6= 1, the
system has five equations and the energy conservation is
not satisfied exactly but only asymptotically. This is the
drawback of this method since there is the same problem
in the incompressible case (see Bonneton et al. 2011 [13]).

In the case of a fixed bottom with a mild slope (see
2.3.5), all terms including ∂b/∂x or ∂b/∂t are removed
except the term −ghR∂b/∂x in (101). This also implies
that U = U and W∗ = W ∗.

4.2. Analysis

4.2.1. Hyperbolicity

The system can be written

∂V
∗

∂t
+ A

∗ ∂V
∗

∂x
= S

∗
(161)

where V
∗

= (h,U∗,W∗, P, S)T, S
∗

contains no derivatives

of h, U∗, W∗, P or S and where the matrix A
∗

is given by
(denoting bx = ∂b/∂x)

U Kbe
−M2

hR 0 0 0

g + P
hR U 0 1

R 0

0 0 U 0 (1−α)gh
2α

0 Kbαa
2

R 0 U 0

0 −Kbbx
2R4 − 2

R4 0 U


(162)

The five eigenvalues of this matrix are

λ1 = U ; λ2,3 = U ±
√
gh

R2

√
α− 1

α
(163)

λ4,5 = U ±
√
Kb

√
(ghR+ P ) e−M2 +

αa2

R2
(164)

The system is hyperbolic if α > 1. Note that the value
chosen by Bonneton et al. (2011) [13] is α = 1.159 and
satisfies this condition.

4.2.2. Dispersive properties of the quasi-incompressible model

The dispersive properties are studied with the same
method as in §3.2 with a constant bottom and S = 0 in
the equilibrium state used for the linearisation. Using the
scaling ω̃ = ω

√
h0/g and k̃ = kh0, the dispersion relation

of the quasi-incompressible model is

M2
0

3
ω̃4 − ω̃2

[
1 +

k̃2

3

(
α+

2α− 1

α
M2

0

)]

+ k̃2
[
1 + k̃2

α− 1

3

(
1 +

M2
0

α

)]
= 0 (165)

The value α = 1.159 used by Bonneton et al. (2011)
[13] in the incompressible model is appropriate for coastal
waves. It gives accurate values of the phase velocity un-
til kh0 ' 4 and of the group velocity until kh0 ' 2.5.
The same results are obtained with the hyperbolic quasi-
incompressible model. The relative deviation of the phase
velocity with respect to the linear wave theory of Airy is
presented in figure 6(a) (solid curves) as well as the rela-
tive deviation of the group velocity (dashed curves). The
case of the Serre-Green-Naghdi equations is reproduced
accurately with α = 1 and M0 = 0.001 (black curves).
With α = 1.159 and M = 0.001 (blue curves), the accu-
racy range of the phase velocity and of the group velocity is
markedly increased as for the incompressible model of Bon-
neton et al. (2011) [13]. The phase and group velocities
are almost the same with M0 = 0.1 (orange curves), which
implies that the computational time can be considerably
shortened by decreasing artificially the sound velocity as
long as M0 6 0.1.

If the quasi-incompressible model with standard dis-
persive properties is used (α = 1), the Mach number
cannot be increased beyond 0.1 without deteriorating the
dispersive properties. For instance, the case α = 1 and
M0 = 0.3 is presented in figure 6(a) (grey curves), show-
ing that the validity range of the model is decreased.

However, with the quasi-incompressible model with im-
proved dispersive properties, the accuracy of the dispersive
properties can be preserved with a value of the Mach num-
ber higher than 0.1 within certain limits. This remark-
able property enables use of an even smaller sound veloc-
ity, which decreases even more the computational time.
The cases α = 1.159 and M0 = 0.2 (green curves) and
α = 1.159 and M0 = 0.3 (red curves) are presented in fig-
ure 6(a). A larger Mach number increases a little bit (in
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Figure 6: Relative deviation of the phase velocity (solid curves) and of the group velocity (dashed curves) for the quasi-incompressible model
with respect to the linear wave theory of Airy. Black curves: α = 1 and M0 = 0.001; Blue curves: α = 1.159 and M0 = 0.001; Orange curves:
α = 1.159 and M0 = 0.1; Grey curves: α = 1 and M0 = 0.3. (a): α = 1.159 and M0 = 0.2 (green); α = 1.159 and M0 = 0.3 (red). (b):
α = 1.17 and M0 = 0.2 (green); α = 1.183 and M0 = 0.3 (red).

terms of absolute value) the deviation of the phase veloc-
ity for small values of kh0 but decreases this deviation for
larger values. If for example a tolerance of ±2% is taken,
the validity range is actually increased with an increased
value of M0, as long as the Mach number does not exceed
some maximum value. For the group velocity, the effect is
the same although the increase of the deviation for small
values of kh0 is much more pronounced, which complicates
the problem. The maximum value of kh0 giving accurate
values can be increased both for the phase velocity and
for the group velocity at the cost of a larger deviation of
the group velocity around kh0 ' 2 (figure 6(a)). Another
possibility is to keep the same accuracy of ±2% at the
cost of a slightly reduced validity range. This case is pre-
sented in figure 6(b) with α = 1.17 and M0 = 0.2 (green
curves), giving an accurate phase velocity until kh0 ' 3.9
and an accurate group velocity until kh0 ' 2.45, and with
α = 1.183 and M0 = 0.3 (red curves) with an accurate
phase velocity until kh0 ' 3.7 and an accurate group ve-
locity until kh0 ' 2.3. In both cases, the computational
time is significantly reduced.

4.2.3. Dispersive properties of the compressible model

In the case of the compressible model, using the same
scaling as above, the dispersion relation is
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3R2
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2
0
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0

k̃2 +
α− 1

3

k̃2

R8
0

)
= 0

(166)

For tsunamis the accuracy with the value α = 1.159 used
for coastal waves is not sufficient in the crucial range 0 6

kh0 6 1.5. On the other hand, it is not necessary to keep
a high accuracy until kh0 = 4. Given that the compress-
ibility entails a decrease of the phase velocity of about
0.5 %, a much higher accuracy is needed for the tsunamis
wavelengths. The value which will be used thereafter is

α = 1.19 (167)

This value is larger than 1 and the system is thus hy-
perbolic. Note that this value is very close to the value
α = 6/5 which gives the (2,2) Padé approximant of the
dispersion relation of the linear wave theory of Airy

ω̃2 = k̃2
1 + k̃2/15

1 + 2k̃2/5
(168)

The relative deviation of the phase velocity, defined by
(vϕ−vlinϕ )/vlinϕ where vlinϕ is the phase velocity given by the
linear theory of compressible fluids (with the dispersion
relation (126)), is presented in figure 7 for h0 = 2000 m
(figure 7 (a)) and for h0 = 6000 m (figure 7 (b)). The black
curve is the standard model (100)–(103), the blue curve
is the energy-conserving model with improved dispersive
properties and α = 1 (i.e. the four equations (100), (101),
(158) and (159) with α = 1) and the red curve is the five-
equation model (100), (101), (158), (159) and (160) with
improved dispersive properties and α = 1.19.

The standard model gives an accurate value for small
wavelengths but the deviation at kh0 = 0.5 is about 0.2 %,
which is already too large to study tsunami propagation.
The extended model with improved dispersive properties
gives a very accurate value of the phase velocity until at
least kh0 = 0.5 if α = 1 and kh0 = 1.5 if α = 1.19. For
h0 = 6000 m, the relative error is smaller than 0.1 % if
kh0 6 0.37 for the standard model, if kh0 6 0.68 for the
four-equation modified model with α = 1 and if kh0 6 1.96
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Figure 7: Relative deviation of the phase velocity with respect to the linear theory of compressible fluids for (a) h0 = 2000 m and (b)
h0 = 6000 m : Model with standard dispersive properties (black), model with improved dispersive properties and α = 1 (blue) and model
with improved dispersive properties and α = 1.19 (red).

for the five-equation extended model with α = 1.19. The
relative error given by the extended model with α = 1.19
on the phase velocity is smaller than 0.03 % if kh0 6 1.5.
The relative deviation on the group velocity is also very
small if kh0 6 1.5 (smaller than 0.1 % in this range for h0 =
6000 m). The phase velocity and the group velocity of the
extended model are highly accurate for typical wavelengths
of tsunamis for all depths which enables to capture the
compressible effects on the propagation of tsunamis.

5. Numerical simulations

5.1. Pre-balanced formulation of the equations

For the numerical resolution on an arbitrary bathymetry,
the system must be well-balanced. The pre-balanced for-
mulation of Rogers et al. (2001) [54], Rogers et al. (2003)
[55], Liang & Marche (2009) [56] and Duran & Marche
(2017) [57] is adapted to the case of compressible fluids.
Using the variable η = h − h0, the equations (100) and
(101) write

∂η

∂t
+
∂hU

∂x
=
M2

2
Q0h

∂U

∂x
− ∂h0

∂t
(169)
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ḣ0
4

D

Dt

(
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where the following quantities are defined:

M2
0 =

gh0
a2

; R0 =
eM

2
0 − 1

M2
0

Q10 =
2

M4
0

(
eM

2
0 −M2

0 − 1
)

Q′1 = Q1 −Q10 ; R′ = R−R0 (171)

The three other equations of the system are unchanged,
keeping in mind that, in this case, b = −h0. In the quasi-
incompressible case, M = M0 = 0, R = R0 = Q1 = Q10 =
1 and R′ = Q′1 = 0. The numerical case of the lake at rest
was used to test this pre-balanced formulation.

5.2. Numerical scheme

The equations of the system are divided into a slow
subsystem treated explicitly and a fast subsystem treated
implicitly. This splitting is presented in table 1. Note
that this implies that, in the fast subsystem, ∂h/∂t = 0
and ∂R/∂t = 0. This splitting is analogous to the splitting
used by Tkachenko (2020) [58] and to the Horizontally Ex-
plicit Vertically Implicit (HEVI) UfPreb (U forward, Pres-
sure backward) splitting of Weller et al. (2013) [59]. This
forward-backward approach is based on Mesinger (1977)
[60] and is a long-established practice for atmospheric mod-
els. In our case, the huge advantage of this approach is that
no resolution of a global system is needed in the implicit
step, which becomes computationally very cheap. In fact,
with this splitting, the implicit step is cheaper than the
explicit step in computational time.

A second-order scheme was implemented. The second
order in space was obtained with a monotone upstream-
centred scheme for conservation laws (MUSCL). Since there
is no shock, no limiter is needed and none was used. Fol-
lowing Tkachenko (2020) [58] on a similar system, the
second order in time was achieved with the diagonally-
implicit Runge-Kutta (DIRK) Implicit-Explicit (IMEX)
ARS2(2,2,2) scheme of Ascher et al. (1997) [61] (using the
notation of Pareschi & Russo 2005 [62]). The ARS2(2,2,2)
has two explicit stages and two implicit stages.

The implicit procedure used for the fast subsystem is
a backward Euler method. The derivative ∂U/∂x is cal-
culated by a central finite difference method.

In the explicit stages, the slow terms are computed by a
finite volume method (Godunov-type) and a Rusanov Rie-
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Slow subsystem Fast subsystem
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∂hRUP

∂x
= 0

∂hRP

∂t
= −a2

(
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+ 2ḣ0

)
Equation (160)

∂S

∂t
= 0

Table 1: Splitting.

mann solver, except that the term ∂(hP )/∂x is treated as
a source term by a central finite difference. The interface
speed of the Rusanov solver is calculated as the maximum
value between the left and right cells of the hydraulic char-
acteristics U±

√
gh since the slow terms do not include the

acoustic part of the system (note that R exp[−M2] < 1).
The fast terms in the second explicit stage of the IMEX

scheme are calculated by a forward Euler method.
The time step is calculated by a standard Courant-

Friedrichs-Levy (CFL) condition ∆t = C∆x/cmax where
C is the Courant number, ∆t the time step, ∆x the cell
size and cmax is the maximum value of the characteristic
velocities (164). In practice, it is convenient to take cmax =

max(U ±
√
gh+ a2) which is very close to cmax = a. A

Courant number equal to 0.8 was used in the computa-
tions.

If α = 1, the fifth equation (for the variable S) is not
solved, being useless.

5.3. Soliton on a flat bottom in the compressible case

This numerical scheme is used to simulate the propaga-
tion of a soliton in water of constant depth. The attenua-
tion of a solitary wave with an initial amplitude of 4.79 m
propagating in a large depth of h∞ = 4000 m is studied
with F∞ ' 1.005 and M∞ ' 0.132. The wave length, es-
timated between the two inflection points, is λ ' 175 km.
For a real-time simulation of 2 h 36 min in a periodic box of
length 1600 km, the diminution of the soliton’s amplitude
is of 1.04 % for a cell size ∆x = 8 km (λ/∆x ' 22) and
decreases to 0.02 % for ∆x = 2 km (λ/∆x ' 88) and to
0.006 % for ∆x = 1 km (λ/∆x ' 175).

With the same initial amplitude, depth, Froude and
Mach numbers, in a non-periodic domain of 2400 km, after
a real-time simulation of 5 h 12 min in the reference frame
of the soliton, the amplitude of the soliton has decreased by
only 1.1 %, 0.13 %, 0.022 % and 0.009 % with ∆x = 6 km
(λ/∆x ' 29), ∆x = 3 km (λ/∆x ' 58), ∆x = 1.5 km
(λ/∆x ' 117) and ∆x = 1 km (λ/∆x ' 175) respectively.
In this case, the computational domain is extended by 300
cells on each side where initially h, U and P are equal to
their respective values at the closest boundary of the do-
main and where initially W = 0. These extensions prevent

the appearance of small perturbations at the edges. There
is no need for a relaxation in these cells because of the
choice of the reference frame (the position of the soliton is
fixed).

With a cell size such that λ/∆x is of the order of 100 or
even 50, the numerical attenuation is negligible even for a
very long simulation. The numerical values chosen above
being representative of a typical tsunami in the ocean, a
cell size of about 1 km is thus likely to be appropriate for
the simulation of a tsunami in a deep ocean of approxi-
mately constant depth.

5.4. Waves train over a submerged bar

The quasi-incompressible model is tested on the clas-
sical experiments of Beji & Battjes (1993) [63] on wave
propagation over a submerged bar. In these experiments,
waves were generated in a flume with a length of 37.7 m,
a width of 0.8 m and a height of 0.75 m. The submerged
bar was trapezoidal and had an upslope of 1/20 followed
by a 2 m horizontal crest and then a 1/10 downslope. The
still water depth was 0.4 m in the deep region and 0.1 m
over the horizontal part of the bar (see figure 8). At the
end of the flume opposite to the wave generator, a beach
was used to serve as a wave absorber. The free surface
elevations were measured at 8 wave gages, numbered from
1 to 8 on the figure 8. The first wave gage was located at
the end of the constant-depth section, the second one was
placed 1 m before the horizontal part of the bar and the
following gages were placed at 1 m intervals. Wave gage
8 was thus at the downslope toe. Complete details of the
experiments can be found in Beji & Battjes (1993) [63].

Several series of experiments were run by Beji & Bat-
tjes (1993) [63] with monochromatic waves or with irregu-
lar waves, in the case of non-breaking waves, spilling waves
or plunging waves, with two different peak periods. The
experiments with non-breaking monochromatic waves with
frequencies of 0.4 Hz (precisely 0.396 Hz) and 1.0 Hz (pre-
cisely 0.99 Hz) were selected for numerical simulation in
the present work. Cases of spilling monochromatic waves
and of spilling irregular waves were simulated by Richard
et al. (2019) [64] and Duran & Richard (2020) [65] re-
spectively, although in both cases with an incompressible
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Figure 8: Sketch of the experimental configuration of Beji & Battjes
(1993) [63].

non-hyperbolic model. As the goal was to test the hyper-
bolic version of the dispersive model and the new treat-
ment of the bathymetric terms, the non-breaking case was
sufficient. If necessary, shear, turbulence and breaking ef-
fects can be included in a similar way as by Kazakova &
Richard (2019) [48].

These experiments aimed at investigating the phenomenon
of high frequency energy generation as waves travel over
submerged bars. Wave breaking was found to be a sec-
ondary effect in this process. The dominant physical effect
takes place during the shoaling process and the de-shoaling
phenomenon in the deepening region (Beji & Battjes 1993)
[63]. These experiments are thus highly relevant to test the
dispersive properties, the non-linear effects and the treat-
ment of the bathymetry in the model.

Sinusoidal waves were generated with the relaxation
method of Madsen et al. (2003) [66] in a wavemaker layer
before the computational domain. At the other end of the
24 m long domain, the waves were absorbed in a 10 m long
sponge layer with similar relaxation techniques. In some
simulations a beach was present at the end of the domain,
as in the experiments, but this changed nothing to the
results. Since inevitably the phase of the generated waves
is different than in the experiments, the results of the first
wave gage were used to correct the phase. The same time
shift was used thereafter at every wave gages to obtain
a fair comparison. Grid convergence is reached with 2400
cells in the case of a frequency of 0.4 Hz and with 3600 cells
in the case of a frequency of 1.0 Hz (although numerical
convergence is almost obtained with 1200 and 2400 cells
respectively).

In the case of a frequency of 0.4 Hz, the results of
the quasi-incompressible model with improved dispersive
properties with α = 1.159 and a = 30 m · s−1 on an arbi-
trary bathymetry are compared to the experimental results
in figure 9, at wave gages 1 (a), 3 (b), 5 (c), 6 (d), 7 (e)
and 8 (f). With this value of the sound velocity, the Mach
number is always smaller than 0.1 which means that the
difference with the incompressible case is negligible. The
agreement is very good for all gages, including the last
ones where the generation of high frequency energy due to
the nonlinear interactions taking place in the de-shoaling

phenomenon in deepening water is highly demanding for
a numerical model.

When the dispersive properties are not improved, the
agreement is very good until wave gage 5 but a discrep-
ancy appears in the deepening part of the bar, at wave gage
6, and this discrepancy becomes increasingly large there-
after. Results at wave gage 8 are presented in figure 10 for
one wave period, where the black dots are the experimen-
tal measurements of Beji & Batjjes (1993) [63]. In figure
10(a), the blue curve is the standard quasi-incompressible
model with no improved dispersion, the red curve is the
quasi-incompressible model with improved dispersion (α =
1.159) and arbitrary bathymetry and the green curve is
the quasi-incompressible model with improved dispersion
(α = 1.159) and a mild slope. In all cases, the value
a = 30 m · s−1 is used. When the dispersive properties are
not improved, the discrepancy is very large. It is necessary
to use the model with improved dispersion to obtain a good
accuracy. However the results are already very good with
the mild slope approximation. The more complex model
with all bathymetric terms improves only marginally the
accuracy of the results.

In figure 10(b) and 10(c), the effect of artificial re-
duction of the sound velocity is evaluated for the quasi-
incompressible model with improved dispersive properties
and arbitrary bathymetry. In figure 10(b), the red curve
is the case α = 1.159 and a = 30 m · s−1, the green curve
is the case α = 1.17 and a = 9.9 m · s−1 and the blue curve
is the case α = 1.183 and a = 6.6 m · s−1. These values
were discussed in §4.2.2. In all cases, the agreement is
very good. For a = 30 m · s−1, the properties are similar
to the incompressible case. Decreasing the sound velocity
to a = 6.6 m · s−1 entails only a slight decrease of the ac-
curacy. On the other hand, the computational time is con-
siderably reduced. Compared to the case a = 30 m · s−1,
using exactly the same code, the same configuration, ex-
cept for the value of a, on the same computer and with
the same physical time, the computational time was di-
vided by 2.9 using a = 9.9 m · s−1 and was divided by 4.3
using a = 6.6 m · s−1. This is due to the fact that the
time step is calculated with a CFL condition based on the
characteristic velocities, which are almost equal to a since
the sound velocity is much larger than all other velocities.
Consequently the ratios of the computational times are
very close to the ratios of the sound velocities, which are
respectively 3.0 and 4.5.

In figure 10(c), α = 1.159 in all cases. The red curve
is the case a = 30 m · s−1, the green curve is the case a =
9.9 m · s−1 and the blue curve is the case a = 6.6 m · s−1.
This time, the accuracy is equivalent with a smaller sound
velocity and thus with a faster computational time. As
above, the computational time was divided by 2.9 using
a = 9.9 m · s−1 and was divided by 4.3 using a = 6.6 m · s−1.

The comparisons of the numerical simulations with the
experimental results in the case of a frequency of 1.0 Hz are
presented in figure 11 (a) and (b) at wave gage 1, (c) and
(d) at wave gage 3, (e) and (f) at wave gage 7 and (g) and
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Figure 9: Comparisons of the quasi-incompressible model with improved dispersive properties (α = 1.159, a = 30 m · s−1, red curves) with
the experimental results of Beji & Battjes (1993) [63] at the wave gages 1 (a), 3 (b), 5 (c), 6 (d), 7 (e) and 8 (f) (black curves).
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Figure 10: Comparisons of the quasi-incompressible model with the
experimental results of Beji & Battjes (1993) [63] at wave gage 8
(dots). Red curve: model with improve dispersive properties (α =
1.159, a = 30 m · s−1) on an arbitrary bathymetry. (a) blue curve:
model with standard dispersive properties (α = 1, a = 30 m · s−1);
green curve: model with improved dispersive properties (α = 1.159,
a = 30 m · s−1) on a mild slope. (b) blue curve: α = 1.183 and
a = 6.6 m · s−1; green curve: α = 1.17 and a = 9.9 m · s−1. (c) blue
curve: α = 1.159 and a = 6.6 m · s−1; green curve: α = 1.159 and
a = 9.9 m · s−1.

(h) at wave gage 8, for a duration of one period. All values
are shifted in time to coincide at wave gage 1. The dots are
the experimental measurements of Beji & Batjjes (1993)
[63]. The red curve is the result of the simulation obtained
using the model with improved dispersive properties on an
arbitrary bathymetry with α = 1.159 and a = 30 m · s−1.
In figure 11 (a), (c), (e) and (g), the green curve is obtained
with α = 1.159 and a = 9.9 m · s−1 and the blue curve with
α = 1.159 and a = 6.6 m · s−1. In figure 11 (b), (d), (f)
and (h), the blue and green curves are the results obtained
using the model with standard dispersive properties (α =
1), the blue curve with a = 30 m · s−1 and the green curve
with a reduced sound velocity a = 6.6 m · s−1.

For the model with standard dispersive properties, the
discrepancy is very large at all wave gages following the
first (see figure 11 (d), (f) and (h)) and it is even worst
with a reduced sound velocity. For the model with im-
proved dispersive properties, the agreement is good except
at wave gage 8 where there is an important discrepancy.
At this wave gage, a model with more accurate dispersive
properties is needed to obtain a good agreement, due to
the very high frequencies that appear in the system. With
a reduced sound velocity, the accuracy is actually slightly
improved (figure 11 (c), (e) and (g)) and, more impor-
tantly, the calculation is much faster. As above, compared
to the case with a = 30 m · s−1 (everything else being ex-
actly the same), the computational time is divided by 2.9
with a = 9.9 m · s−1 and by 4.3 with a = 6.6 m · s−1.

This remarkable effect can be explained by figure 6(a):
the range in terms of kh0 where the phase velocity keeps
an accurate value is increased if the Mach number is in-
creased. This effect is particular to the model with im-
proved dispersive properties. In the case of the standard
model, the dispersive properties deteriorate if the Mach
number is increased and a faster computation is obtained
at the cost of a smaller accuracy. On the contrary, in the
case of the model with improved dispersive properties, it
is possible to obtain both faster computation and better
accuracy. In particular the accuracy is better than what
can be obtained with an incompressible model. However
the sound velocity cannot be indefinitely reduced and it
seems unreasonable to increase the Mach number much
above 0.3.

These test cases of Beji & Battjes (1993) [63] show
that it is necessary to use the model with improved dis-
persive properties to obtain high accuracy in deepening
water. This is the same conclusion as found by Beji & Bat-
tjes (1994) [67] from a comparison between the Boussinesq
model of Peregrine (1967) [2] and the Boussinesq model
with improved dispersion characteristics and mild slope of
Madsen & Sørensen (1992) [9]. The mild slope approxima-
tion gives a simpler model, which is sufficient to produce
accurate results, the full model with all bathymetric terms
giving a slight improvement. Use of an artificial reduction
in sound velocity can lead to a large decrease of the com-
putational time with the same accuracy or with even a
slightly better accuracy.
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Figure 11: Comparisons of the quasi-incompressible model with the experimental results of Beji & Battjes (1993) [63] (dots) for a frequency
of 1.0 Hz. (a) and (b): wave gage 1; (c) and (d): wave gage 3; (e) and (f): wave gage 7; (g) and (h): wave gage 8. (a), (c), (e) and (g):
α = 1.159, a = 30 m · s−1( red curve); α = 1.159, a = 9.9 m · s−1 (green curve); α = 1.159, a = 6.6 m · s−1 (blue curve). (b), (d), (f) and (h):
α = 1.159, a = 30 m · s−1 (red curve); α = 1.0, a = 30 m · s−1 (blue curve); α = 1.0, a = 6.6 m · s−1 (green curve).
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5.5. Compressible correction to the propagation of a tsunami

The model is used to simulate a tsunami generated by
an earthquake in a 1D-case. The goal is to assess the effect
of compressibility on the results. This is by no means a
simulation of a real tsunami although it is loosely inspired
by a simulation of the Tohoku 2011 event by Abdolali &
Kirby (2017) [37] who used a seabed motion reconstruction
from Grilli et al. (2013) [33].

The bathymetry used for the numerical calculations is
shown in figure 12(a) as the variations of b = −h0 with
the abscissa x (taking the horizontal datum at the still
water level). The domain is 2300 km long with two sponge
layers on each side to absorb the waves. The coast is on
the left of the figure in the direction of negative abscissas.
The sponge layer in this direction has a constant depth of
200 m and 100 cells. The sponge layer on the right of the
figure has 200 cells and a constant depth of 6000 m. In
some parts of the domain, notably in the oceanic trench
for 0 6 x 6 400 km, the variation of the bottom in space is
rapid enough to justify the use of a non-uniform mesh. The
minimum size of the cells is 180 m and the maximum size is
1000 m for a total of 2890 cells. This mesh resolution was
sufficient to achieve grid convergence because a numerical
simulation with a maximum cell size of 500 m for a total
of 4893 cells gave the same result.

The first test was the “sea at rest”. The numerical
scheme was found to preserve the equilibrium state, which
confirms its well-balanced property.

In the following test, a 1D-tsunami was simulated. The
tsunami is initiated by a seabed movement caused by an
earthquake. In the numerical simulation the tsunami is
generated by a moving bottom. As shown by Dutykh et
al. (2006) [68], this method is preferable to the more usual
method of translating the maximum bottom displacement
as an initial condition on the surface elevation. The max-
imum value ∆bmax of the variation ∆b of the bottom is
shown in Figure 12(b). Since no real simulation is in-
tended, the movement of the bottom is supposed to follow
the simple function

h0(x, t) = h0(x, 0)− ∆bmax(x)

2

(
1 + tanh

t− τ/2
τm

)
(172)

Other functions were proposed by Dutykh & Dias (2007)
[69]. Different values of τ and τm were used. The most
important parameter is τm which determines the rapid-
ity of the seabed movement. If τm is small (τm 6 20 s
in the present case), the fast movement of the bottom
generates acoustic waves with a significant amplitude of
non-hydrostatic pressure although the effect on the water
elevation is very small. This is due to the values of ∂h0/∂t
which are large if τm is small. For larger values of τm,
no significant acoustic waves are generated by the bottom
movement. The value of τ must be chosen large enough
to give no discontinuity of h0 at the initial time. The
following tests were obtained with the values τm = 40 s
and τ = 600 s for which almost no acoustic waves are gen-
erated. Note that, in the cases where there are acoustic

waves, they behave as described in §3.2 with a cutoff fre-
quency and a reflection on small depths.

The movement of the seabed generates two waves, one
propagating toward the coast and another propagating in
the opposite direction. These waves at different times
(1520 s, 2534 s, 3886 s and 8955 s) are shown on Figure
13(a). The tsunami propagating shoreward steepens rapidly
and its amplitude increases quickly. In the other wave, a
train of secondary waves is generated during the propaga-
tion, behind the main hump (Figure 13).

A simulation was performed with the mild-slope equa-
tions for a comparison to the equations with an arbitrary
bathymetry. The difference is 0.6 % for the maximum am-
plitude and is negligible for the arrival time. The bathy-
metric terms of O(ε2) have thus a very small effect on the
tsunami propagation. Since the mild-slope equations are
much simpler, they can be used with a very good approx-
imation if the slopes are not very steep.

The effect of compressibility is studied by the compar-
ison between the results given by the compressible model
and by the quasi-incompressible model. The water ele-
vation at x = 2000 km is presented in Figure 13(b) for
the system with improved dispersive properties and α =
1.19 (in both cases, the compressible case is in red and
the quasi-incompressible case in black). The arrival time
in the compressible case is 42 s later than in the quasi-
incompressible case. This value is very close to the time
lag found by Abdolali & Kirby (2017) [37] (48 s) in a
very similar case. The inclusion of compressibility in the
model leads to a significant reduction of the velocity of the
tsunami and to an increase of the arrival time.

6. Conclusion

An extension of the Boussinesq-type models is pro-
posed for weakly compressible flows. The depth-averaged
density is variable. Since the shallow-water assumption
implies that the system is weakly dispersive, the effect of
the non-hydrostatic part of the pressure on the density
variations is negligible and the average density variations
are due to the variations of the hydrostatic pressure caused
by the changes of the water depth. In the general case of
an arbitrary bathymetry as well as in the particular case
of a mild-slope bottom, the system is fully nonlinear, hy-
perbolic, with four equations, and admits an exact energy
conservation equation. The linear dispersive properties
are consistent with the linear theory of compressible fluids
at the long-wave limit. In particular, the compressibility
decreases the phase velocity of the gravity waves. The
equations include the case of a mobile bottom to simulate
the generation of tsunamis by earthquakes and the vertical
movements of the seabed.

As a particular case of this compressible model, a quasi-
incompressible model is obtained at the limit where the
Mach number goes to zero. This quasi-incompressible model
is a hyperbolic approximation of the fully nonlinear Serre-
Green-Naghdi equations with a new treatment of the bathy-
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Figure 12: (a) Bathymetry and (b) maximum seabed vertical displacement.

Figure 13: (a) Water elevation at t = 1520 s (black), t = 2534 s (blue), t = 3886 s (green), t = 8955 s (red). (b) Water elevation at x = 2000 km
for the compressible case equations (red curve) and the quasi-incompressible case equations (black curve).
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metric terms which gives a four-equation system on an ar-
bitrary bathymetry with an exact equation of energy con-
servation. The sound velocity can be artificially reduced
to reduce the computational time as long as the Mach
number

√
gh/a 6 0.1.

The adaptation to the compressible case of the method
of Bonneton et al. (2011) [13], supplemented by an original
method specific to the compressible case, leads to a model
with improved dispersive properties. This five-equation
model is also hyperbolic and fully nonlinear. The draw-
back of this method, as in the incompressible case, is that
conservation of energy is not satisfied exactly but only
asymptotically. This method is used both for the quasi-
incompressible model and for the compressible model. In
the specific case of the compressible model, using these
two methods together gives highly accurate values of the
phase and group velocities for the characteristic tsunamis
wavelengths.

In the quasi-incompressible case, a remarkable prop-
erty of the model with improved dispersive properties is
that the sound velocity can be decreased much more than
for the model with standard dispersion. The Mach num-
ber can be artificially increased to 0.2 or even 0.3 with the
same or slightly better accuracy. This method enables the
computational time to be reduced even further. In this
respect, the accuracy can be slightly improved compared
to the incompressible Serre-Green-Naghdi model with im-
proved dispersive properties of Bonneton et al. (2011) [13].

The numerical scheme used to solve the system is based
on a splitting between a slow part, solved explicitly, and a
fast part, solved implicitly. Since the implicit part of the
scheme does not involve the resolution of a global linear
system, its computational cost is very cheap. Numerical
simulations were obtained for a soliton in the case of a
constant depth. The quasi-incompressible model has been
validated by comparison to results of Beji & Battjes (1993)
[63] for monochromatic non-breaking waves. The model
with improved dispersive properties is necessary to obtain
accurate results in the de-shoaling deepening part, but its
mild-slope version gives already a good agreement. An
important artificial reduction of the sound velocity, and
thus of the computational cost, is possible with no decrease
of accuracy.

The compressible model was solved in the case of a
variable bottom, for a 1D-tsunami generated by a mo-
bile seabed. The equations predict a later arrival time
of the tsunami due to compressibility effects. This system
of equations is a first step toward a complete model for
tsunamis, which will need the inclusion, in particular, of
the elastic waves in the solid bottom, of the Coriolis forces,
and of shear and possible breaking effects near the coasts,
before realistic 2D-applications.
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