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Abstract

The model of coastal waves based on the depth-averaging of the
large eddy simulation equations (Kazakova & Richard 2019) is ex-
tended to the case of regular and irregular wave trains. To take into
account a stronger turbulence, the third moment of the horizontal ve-
locity is modelled with a gradient-diffusion hypothesis. The effect of
this new diffusive term is to smooth and regularize the solutions. An
asymptotically equivalent model including the improvement of the dis-
persive properties is solved with a Discontinuous Galerkin numerical
scheme. The model has a low sensitivity to the space discretization
parameters. Several classical test cases of wave trains are used to val-
idate the model. In the shoaling zone, the model is similar to the
Serre-Green-Naghdi equations but the inclusion of a variable called
enstrophy to take into account the large-scale turbulence and the non-
uniformity of the mean velocity improves the predictive ability in the
inner surf zone. In particular, the turbulent energy of the model is
dissipated within one wave cycle and is transported shoreward in the
case of waves with a long period whereas, in the case of short periods,
it is mostly transported seaward because its dissipation is far from
being complete within one period. The case of an irregular wave train
propagating over a submerged bar is simulated without any break-
ing criterion. This benchmark test case validates further the model’s
ability in predicting the nonlinear effects due to shoaling, breaking,
propagation in a shallow horizontal part and in a deeper region.
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1 Introduction

Modelling accurately coastal waves is of high importance for applications in
coastal erosion and morphodynamics or for the prediction and prevention of
extreme events such as great storms. For practical problems the size of the
computation domain and the duration of the phenomena to be simulated
are large and the computation time is an issue. This motivates the use of
phase-averaged models which use a statistical description to calculate the
evolution of the wave spectrum. However thanks to advances in computer
performance, numerical schemes and parallel computing the phase-resolving
models become more and more competitive. In these models the sea surface
is resolved which necessitates a finer grid. A higher accuracy is expected but
at the cost of a greater computation time.

The phase-resolving models include the non-hydrostatic approach where
the Reynolds-averaged Navier-Stokes equations are solved while the non-
hydrostatic part of the pressure is calculated by solving an elliptic Poisson
equation [50, 37, 14]. Considerable efforts have reduced the vertical resolution
needed to reproduce accurately wave breaking, from a high value of 10-20
layers to a few layers either by using a breaking criterion removing locally the
non-hydrostatic part of the pressure [49] or by a superior numerical treatment
using terrain and surface-following σ-coordinates [15]. These improvements
lead to a significantly reduced computational cost.

In the other phase-resolving models, traditionally called Boussinesq-type
models, the equations of fluid dynamics are averaged over the depth. The
non-hydrostatic part of the pressure is evaluated from the depth and its
derivatives which induces third-order derivatives in the model and an elliptic
step in the numerical resolution. Reviews on Boussinesq-type models can be
found in [8] and [28].

When propagating shoreward the waves steepen in the shoaling zone
where the dispersive effects are dominant. Strictly speaking the Boussinesq
equations [5], [42] are derived with a weak nonlinearity hypothesis (the wave
amplitude is much smaller than the water depth) which entails some discrep-
ancies in shallow water areas. Fully nonlinear equations were first derived by
[48] in the one-dimensional (1D) case and extended in the two-dimensional
(2D) case by [20] and [21] and are called in this paper the Serre-Green-Naghdi
equations. Fully nonlinear models are more accurate than the Boussinesq
equations, in particular in the final stages of coastal waves propagation where
the wave amplitude is no longer small in comparison to the depth [62, 2, 30],
but they are still weakly dispersive because of the shallow water assump-
tion (see for example [28]) which implies that their validity is restricted to
small depths. Various techniques were proposed to improve the dispersive
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properties of these equations and thus to increase their validity domain. In
particular [40] and [62] considered the velocity at an arbitrary depth instead
of the depth-averaged velocity and [4], [31] and [9] derived an asymptotically
equivalent system of equations.

Wave breaking and breakers propagation in the surf zone require to model
dissipative effects. This was achieved by different approaches. The roller
models are based on the concept of surface roller [51] viewed as a volume of
water carried by the wave at the wave velocity [47], [38]. This method leads
to several developments in particular with the inclusion of the vorticity in the
model [59], [7], [39], [61] or through diffusive-type terms on both the mass
and momentum equations [12]. This approach requires to calibrate several
parameters notably for the breaking criterion and the determination of the
roller geometry.

Another strategy is to model turbulence effects in breaking waves by an
eddy viscosity [22], [63], [26]. In some models an equation for the turbulent
kinetic energy is solved to calculate the eddy viscosity [41], [29], [64], [25].
A turbulent viscosity approach assumes a local balance between production
and dissipation and an isotropic turbulence.

The hybrid models with a switching method are another way to take into
account the dissipative effects [4], [58], [57], [24], [18], [17]. By removing
the dispersive terms, the Serre-Green-Naghdi equations reduce to the Saint-
Venant equations which, being hyperbolic, produce discontinuities in finite
time which dissipate energy. A breaking criterion is needed to determine
when the dispersive terms should be switched off and a breaking termination
criterion determines when they should be switched on. This method suffers
from numerical problems, in particular mesh grid sensitivity and non-physical
oscillations [18], [25].

A new approach based on depth-averaging the large-eddy simulation
(LES) equations was proposed by [23] in the 1D-case and extended to the
2D-case by [46], in both cases mostly for solitary waves. The large scale tur-
bulence is explicitly resolved in a depth-averaged sense with its anisotropic
properties while the small scale turbulence is modelled through a turbu-
lent viscosity hypothesis. While there is some similarity with the eddy-
viscosity strategy because of the introduction of an eddy viscosity for the
small-scale turbulence, the originality of this approach lies in the anisotropic
tensor modelling the large-scale turbulence which satisfies a tensor equation.
There is thus no need to assume neither an approximate balance between the
production and the dissipation of turbulent kinetic energy nor an isotropic
turbulence, which is not always satisfied in the large scales. The resulting
equations have the special hyperbolic structure of [53] with additional source
terms. The goal of the present paper is to validate this approach in the more
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general case of periodic and random wave trains with a special attention to
the turbulence dynamics. The dynamics of surf-zone turbulence was studied
experimentally by [54, 55, 56] who found that the turbulent kinetic energy is
transported seaward under a spilling breaker whereas it is transported land-
ward and dissipated within one wave cycle in the case of a plunging breaker.
It is interesting to see if the depth-averaged LES approach predicts a similar
behaviour.

In §2 the equations of the model of [23] are extended to the case of a
stronger turbulence which requires modelling the third moment of the hor-
izontal velocity distribution in the vertical direction. In §3 the numerical
scheme is presented together with the treatment of wave breaking. In §4 the
model is validated by numerical simulations of experiments on wave trains
obtained by [13], [54] and [3].

2 Equations of the model

2.1 Depth-averaging procedure

The main idea of the derivation of the model equations is to average over
the depth the LES equations. The details are given in [23] and only the
main points and the differences from the original derivation are given here.
Only two-dimensional flows are considered here which leads to a 1D-model.
Details on the derivation of the 2D-model are given in [46]. Starting from
the Navier-Stokes equations of incompressible fluids with a density ρ and a
kinematic viscosity ν, a filtering operation decomposes the velocity field v
into a filtered component v and a residual component vr i.e. v = v+vr. The
cutoff frequency is in the inertial subrange so that the filtered field includes
the energy-containing motions. The residual stress tensor is modelled with
a turbulent viscosity hypothesis. Contrary to the usual LES approach, the
eddy viscosity of the residual motions, denoted by νT (x, t), is not modelled
by the Smagorinsky closure but is supposed to be uniform over the depth
i.e. independent of z. This simplification is sufficient for a depth-averaged
model. Another important result is the equality of the dissipation of the
mean residual kinetic energy and its rate of production ([32]).

The notations are given in Figure 1. We denote by g the gravity acceler-
ation, h the total water depth, h0 the still water depth, b the elevation of the
bottom topography over a horizontal datum and Z = h + b. Denoting by L
the wavelength or the order of magnitude of a horizontal length and by h∗0
a reference value of the still water depth, the equations are derived with an

4



Figure 1: Notations used in the text.

asymptotic method based on the existence of the small parameter

µ =
h∗0
L
� 1 (1)

of the shallow water assumption which is also responsible for the weakly
dispersive properties of the equations. The Reynolds number is high so that
all terms due to the molecular viscosity are negligible. As in theoretical or
experimental works [52], [3], [13], [1], [64] the eddy viscosity is supposed to
be of O(µ) which means that a dimensionless eddy viscosity writes

ν̃T =
νT

µh∗0
√
gh∗0

. (2)

Note however that the eddy viscosity is here relative only to the small-scale
turbulence.

The averaged value of any quantity A over the depth is defined as

〈A〉 =
1

h

∫ h+b

b

A dz. (3)

For the depth-averaging procedure the horizontal filtered velocity is decom-
posed as

u(x, z, t) = U(x, t) + u′(x, z, t) (4)

where U is the averaged value of u over the depth and u′ the deviation of the
filtered velocity to this average value. This deviation includes the large-scale
turbulence and the depth variations of the mean (non turbulent) velocity.
The flow is supposed to be weakly turbulent and weakly sheared as in [53],
[45] and [10]. This means that

u′ = O(µβ) (5)
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where β > 0. The averaging of the momentum equation in the Ox direction
gives a term 〈u2〉 in the flux. The dimensionless filtered horizontal velocity is
defined by ũ = u/

√
gh∗0. Since by definition 〈u′〉 = 0, 〈ũ2〉 = Ũ2 + µ2β 〈ũ′2〉.

The second central moment is written with the help of the quantity

ϕ =
1

h3

∫ h+b

b

u′2 dz =
〈u′2〉
h2

(6)

which has the same dimension as the square of a vorticity and is called
enstrophy. Note that in the study of turbulent flows the enstrophy has other
definitions.

Because the enstrophy is the third variable of the model, the two other
ones being the fluid depth h and the average velocity U , a third equation
must be derived to close the system beside the averaged mass and momentum
equations. This equation can be obtained by averaging over the depth the
balance equation for the kinetic energy of the filtered motions. The enstrophy
appears also in the energy of the model. Moreover in the energy flux it
appears the third moment of the filtered velocity which can be written in
dimensionless form, with h̃ = h/h∗0 and ϕ̃ = h∗0ϕ/g, 〈ũ3〉 = Ũ3 + 3µ2βh̃2Ũ ϕ̃+
µ3β 〈ũ′3〉. The third central moment is of O(µ3β). [10] and [23] took β = 1.
The leading dispersive and viscous terms are of O(µ2) and all terms of O(µ3)
are neglected. By taking β = 1 the third central moment can be consistently
neglected. In this paper we take

0 < β < 1 (7)

so that the turbulence can be stronger and that 〈u′3〉 must be consistently
kept in the model. This implies that either an equation for 〈u′3〉 must be
provided, as in [10], or that 〈u′3〉 must be modelled. Since highly turbulent
flows can be modelled with the weak turbulence or weak shear approximation
([44], [19]) it is expected that the influence of 〈u′3〉 is small. The derivation
of an equation for this quantity would greatly complicate the model for very
little benefit. We choose instead to model this quantity with a gradient-
diffusion hypothesis by analogy with the study of turbulent flows.

The enstrophy equation can be derived from the depth-averaged mass,
momentum and energy equations. Because the enstrophy equation is much
simpler than the energy equation and since the viscous terms prevent discon-
tinuities from arising, the final system which is solved numerically is com-
posed of the mass, momentum and enstrophy equations. The enstrophy
equation can be written

∂hϕ

∂t
+
∂hUϕ

∂x
=

8νT
h

(
∂U

∂x

)2

− 2

h
〈ε〉 − 1

h2
∂

∂x

(
h
〈
u′3
〉)
. (8)
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This equation differs from the enstrophy equation derived by [23] only from
the last term with the third central moment. The quantity 〈ε〉 is the depth-
averaged dissipation of turbulent kinetic energy. A simple gradient-diffusion
model is 〈

u′3
〉

= −2
νT
σ
h2
∂ϕ

∂x
(9)

where σ is a turbulent Prandtl number which is generally taken equal to 1
in the models of turbulent flows (see for example [43] p.371). The enstrophy
equation becomes

∂hϕ

∂t
+
∂hUϕ

∂x
=

8νT
h

(
∂U

∂x

)2

− 2

h
〈ε〉+

2

h2
∂

∂x

(
νT
σ
h3
∂ϕ

∂x

)
. (10)

An even simpler way to model the last term is to write it in a conservative
form as

∂hϕ

∂t
+
∂hUϕ

∂x
=

8νT
h

(
∂U

∂x

)2

− 2

h
〈ε〉+

∂

∂x

(
2
νT
σ
h
∂ϕ

∂x

)
. (11)

Since the numerical resolution will show that the effect of this term is negli-
gible for reasonable values of σ (i.e. larger than 0.1) except that it helps to
smooth the solutions at the breaking point where there is a sudden increase
of enstrophy, the main term to be kept is the diffusion term. In practice no
difference between (10) and (11) has been noticed in the numerical simula-
tions.

The closure of the model requires expressions for the turbulent viscosity
and for the dissipation. As in [23], these expressions are

νT =
h2
√
ϕ

R
, (12)

where R is a dimensionless quantity which can be interpretated as a Reynolds
number, and

〈ε〉 =
Cr
2
h2ϕ3/2, (13)

where Cr is a dimensionless enstrophy dissipation coefficient. This expression
of the dissipation guarantees the positivity of the enstrophy. The equations
of the model write

∂h

∂t
+
∂hU

∂x
= 0, (14)

∂hU

∂t
+

∂

∂x

(
hU2 +

gh2

2
+ h3ϕ+

h2ḧ

3
+ Π′

)

=
∂

∂x

(
4

R
h3
√
ϕ
∂U

∂x

)
− gh ∂b

∂x
− f ′, (15)
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and

∂hϕ

∂t
+
∂hUϕ

∂x
=

8h
√
ϕ

R

(
∂U

∂x

)2

− Crhϕ3/2 +
∂

∂x

(
2
h3
√
ϕ

σR

∂ϕ

∂x

)
. (16)

The notations ḧ, Π′ and f ′ refer to

ḧ = h

(
∂U

∂x

)2

− h ∂
2U

∂x∂t
− hU ∂

2U

∂x2
, (17)

Π′ =
h2

2

D

Dt

(
U
∂b

∂x

)
(18)

and

f ′ = h
∂b

∂x

[
ḧ

2
+

D

Dt

(
U
∂b

∂x

)]
(19)

where the material derivative is D/Dt = ∂/∂t+ U∂/∂x.
These equations are rewritten in an asymptotically equivalent way, firstly

to simplify the numerical resolution (§2.2) and secondly to improve the linear
dispersive properties (§2.3).

2.2 Asymptotically equivalent model

The model formed by the equations (14), (15) and (16) presents the difficulty
for the numerical resolution to have mixed third-order derivatives in space
and time in the momentum equation (15). Following the ideas of [4] and [31],
an asymptotically equivalent model is derived with a mathematical structure
more suited to the numerical resolution. Only the main steps of the method
are recalled here and we refer to [31] for the details and justifications.

The equations are written in dimensionless form with a classical scaling
(see for example [1]). In particular, the elevation b of the bottom topography
is supposed to be of O(h∗0) and the characteristic length of its variation in
the Ox-direction is L. This implies that ∂b/∂x = O(µ). In dimensionless
form, the momentum equation (15) can be written [23]

∂hU

∂t
+

∂

∂x

(
hU2 +

h2

2
+ µ2βh3ϕ+ µ2h

2ḧ

3
+ µ2Π′

)

= µ2 ∂

∂x

(
4

R
h3
√
ϕ
∂U

∂x

)
− h ∂b

∂x
− µ2f ′. (20)

In this equation and thereafter, to lighten the notations, the same symbols
are used for the dimensionless quantities.
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The second derivative (17) is rewritten

h2ḧ

3
= −h

3

3

∂

∂x

[
1

h

(
∂hU

∂t
+
∂hU2

∂x

)]
+

2

3
h3
(
∂U

∂x

)2

. (21)

The terms involving the bottom topography b are reorganized to separate the
terms including the material derivative DU/Dt, which necessitates a special
treatment, and the other terms. The momentum equation (15) can then be
rewritten(

I +µ2T
)(∂hU

∂t
+
∂hU2

∂x

)
+ h

∂h+b

∂x
+ µ2β ∂h

3ϕ

∂x
+ µ2hQ′1

+
µ2

2

∂

∂x

(
h2
∂b

∂x

DU

Dt

)
− µ2h

2

2

∂b

∂x

∂

∂x

DU

Dt
+ µ2h

(
∂b

∂x

)2
DU

Dt

= µ2 ∂

∂x

(
4

R
h3
√
ϕ
∂U

∂x

)
+O(µ2+β) (22)

where I is the operator identity, T is the operator defined for any quantity
W by

TW = −1

3

∂

∂x

(
h3

∂

∂x

W

h

)
(23)

and

hQ′1 =
∂

∂x

[
2

3
h3
(
∂U

∂x

)2
]

+
∂

∂x

(
h2

2
U2 ∂

2b

∂x2

)
+ h2

∂b

∂x

(
∂U

∂x

)2

+ hU2 ∂b

∂x

∂2b

∂x2
. (24)

The operator T corresponds to the first term at the right-hand side of (21)
whereas the quantity Q′1 gathers the terms corresponding to the last term of
(21) and all topographic terms which do not include the material derivative
DU/Dt. From (22) it is possible to write this material derivative

DU

Dt
= −∂h+b

∂x
+O(µ2β). (25)

It is then possible to rewrite consistently (22) with the same precision

(
I +µ2T

)(∂hU
∂t

+
∂hU2

∂x

)
+ h

∂h+b

∂x
+ µ2β ∂h

3ϕ

∂x

+ µ2h (Q′1+Q2) = µ2 ∂

∂x

(
4

R
h3
√
ϕ
∂U

∂x

)
+O(µ2+β) (26)
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where

hQ2 =
h2

2

∂b

∂x

∂2h+b

∂x2
− 1

2

∂

∂x

(
h2
∂b

∂x

∂h+b

∂x

)
− h

(
∂b

∂x

)2
∂h+b

∂x
. (27)

The method of using this asymptotically equivalent formulation was first
proposed by [4]. The advantage of this method is that the system can be
solved without any third-order derivative. However this operator is time-
dependent which makes its inversion time-consuming. The final step is the
constant method which introduces a time-independent operator by using the
following asymptotically equivalent equation [31]

(
I +µ2T

)(∂hU
∂t

+
∂hU2

∂x

)
+ h

∂h+b

∂x
+ µ2β ∂h

3ϕ

∂x
+ µ2h (Q′1 +Q2) +Q3

= µ2 ∂

∂x

(
4

R
h3
√
ϕ
∂U

∂x

)
+O(µ2+β) (28)

where the time-independent operator T is defined for any quantity W by

TW = −1

3

∂

∂x

(
h30

∂

∂x

W

h0

)
(29)

and

Q3 = S

[(
I + µ2T

)−1(
h
∂h+b

∂x

)]
(30)

where the operator S is defined for any quantity W by

SW =
1

6

∂h2 − h20
∂x

∂W

∂x
+

1

3

(
h2 − h20

) ∂2W
∂x2

− 1

6

∂2h2 − h20
∂x2

W. (31)

The operator I +µ2T is inverted only once at the beginning of the numerical
resolution, using the still water depth. This method decreases markedly the
computation time and is efficient and robust [31].

2.3 Optimization of the dispersive properties

The Serre-Green-Naghdi equations are weakly dispersive. Their dispersive
properties are accurate while the depth is not too large, more precisely un-
til kh0 ' 1 [11] where k is the wavenumber. For practical applications, a
larger validity domain is often required which implies to use an optimization
technique. The optimization procedure of [4] can be easily adapted to this
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system. An asymptotically equivalent system is derived, once again using
(25). It is then possible to write

µ2T
(
∂hU

∂t
+
∂hU2

∂x

)
= µ2αT

(
∂hU

∂t
+
∂hU2

∂x

)
+ µ2 (α− 1)T

(
h
∂h+b

∂x

)
+O(µ2+2β) (32)

where α > 1. This gives the following asymptotically equivalent system with
improved dispersive properties

(
I +µ2αT

)(∂hU
∂t

+
∂hU2

∂x
+
α− 1

α
h
∂h+b

∂x

)
+

1

α
h
∂h+b

∂x
+ µ2β ∂h

3ϕ

∂x
+ µ2h (Q′1 +Q2) +Q3

= µ2 ∂

∂x

(
4

R
h3
√
ϕ
∂U

∂x

)
+O(µ2+β), (33)

together with the mass equation (14) and the enstrophy equation (16). The
optimal value of α is [4]

α = 1.159. (34)

With this value the phase velocity is accurate until kh0 ' 4.5, the group
velocity until kh0 ' 2.5 and the shoaling coefficient until kh0 ' 2 [4], [11].

3 Numerical aspects

Neglecting the O(µ2+β) residuals in (33) and going back to variables with
dimensions, the final set of equations, completed with (14) and (16), is dis-
cretized on the basis of the Discontinuous Galerkin scheme proposed by [16],
originally designed for the 1D Serre-Green-Naghdi equations. From a nu-
merical viewpoint, the extension to the present model consists in a slight
modification of the momentum equation and the addition of a transport
equation in the discrete formulation. This can be done without particular
technical difficulties, and the reader is referred to [16] for implementation
details (see [46] for the 2D case).

As regards the wave-breaking treatment, we follow the strategy proposed
by [23]. As reported in this work, injecting enstrophy at the very beginning
of the computations may have an impact on the amplitude of the waves,
even outside breaking areas. To prevent this, the idea is to turn on viscous
(creation) terms in the enstrophy equation only when needed. To achieve
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this, a breaking criterion is used, relying on the concept of virtual enstrophy,
denoted ψ in the sequel. This new quantity satisfies a second transport
equation, introduced to evaluate the amount of enstrophy that the model is
able to produce, but without retroaction on the physical flow variables. Put
in other words, the virtual enstrophy is computed exactly as the enstrophy,
with viscous terms evaluated in the whole computational domain. Wave
breaking can then be characterized by a sudden growth of virtual enstrophy.
In practice, breaking areas are identified as those for which ψ > ψ0, (with
ψ0 a threshold to be defined) resulting in a local activation of the viscous
terms in the effective enstrophy equation. It should be noted, however, that
the use of such a tool is unnecessary for simulations implying small relative
amplitudes. Following [23], the trigger threshold is thus defined as:

ψ0 = ψ0s =


g

h0

(
0.1 + 0.031

h∗0
a

)
if
a

h∗0
> 0.05 ,

0 otherwise .
(35)

with h∗0 the still water depth at the initial position of the wave and a the
initial amplitude of the wave. Regarding the other parameters of the model,
the (dimensionless) Reynolds number is given by

R = R0 = 0.85 + 60 s , (36)

s being the bed slope, and the dissipation coefficient present in (16) has the
universal value Cr = 0.48. The eddy viscosity can be written

νT = B
h2
√
ϕ

R
(37)

with B = 0 where ψ < ψ0 and B = 1 elsewhere. Note that these choices
proved to be relevant in a large variety of 1D and 2D applications implying
solitary waves propagating over non-trivial topographies (see [23, 46]), thus
conferring a predictive character to the model. The main purpose of the
present work is to investigate its applicability to wave trains. As will be
seen through the next examples, although being almost immediate, some
specific aspects must be taken into account. The main reason is that the
enstrophy produced by a single wave is not always dissipated during one
period, and may be partially recovered by the following ones. This can lead to
an accumulation phenomenon at the level of the breaking point, resulting in a
slight underestimation of the wave’s amplitude. Note that these observations
are in accordance with the complex turbulent interactions induced by wave
trains reported in experimental works (see for instance [54]). We shall see
that a small increase of the Reynolds number or the breaking threshold is
sufficient to remedy this problem.
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Figure 2: Cox’s experiment - Snapshot of the flow during the propagation,
together with gauges location (top). Corresponding spatial distribution of
the virtual (middle) and effective enstrophy (bottom).

4 Model validation

4.1 Cox’s experiment [13]

The first test we consider is based on the experimental study carried out
by [13] and implies a regular train of cnoidal waves with relative amplitude
a/h∗0 = 0.29, and period T = 2.2 s, propagating in a wave flume with a
constant bed slope 1/35. The still water level h∗0 in the constant depth
section of the channel is h∗0 = 0.4 m. In this context, as the waves approach
the shore, they start shoaling under the effect of the topogaphy, steepen and
experience breaking of spilling type. The objective is therefore to evaluate
the capacity of the present model to faithfully reproduce these characteristics.
The computational domain is [0, 24] and includes a sponge layer of 5 m at the
left boundary to allow a proper generation of incident waves. The topography
is parametrized as follows:

z(x) = max

(
0,
x− 6

35

)
. (38)

The time evolution of the free surface was recorded at six wave gauges,
located at x = 10.6 m, x = 13 m, x = 14.2 m, x = 15.4 m, x = 16.6 m and
x = 17.8 m as indicated in Fig. 2 (top). Note that the present configuration
leads to ψ0 = ψ0s = 5.07 s−2 for the breaking threshold. As can be seen
on Fig. 2 (middle), this limit value is reached around x = 13 m, between
WG2 and WG3, which marks the beginning of the breaking area. This is
in accordance with the experiments and other numerical results [57]. From
this point we clearly see local entropy peaks follow the breaking of the waves
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Figure 3: Cox’s experiment - Comparison between experimental (circles) and
numerical time-series of the free surface elevation, obtained with a switching
strategy (-.-) and the present model (solid curve).

until the shore. As noted above, looking at virtual and effective enstrophy
(Fig. 2 middle and bottom), we also observe that the turbulent energy of
the model h2ϕ/2 has no time to completely dissipate between two successive
waves, which is in accordance with the results found by [54] and [56] on
spilling-type breaking. Part of this energy is thus reintroduced in the train,
with the effect of slightly decreasing the wave’s amplitude. As mentioned,
one possibility is to increase the Reynolds number to balance this residual
turbulent energy. In the presented results, it is fixed to R = 1.2R0 = 3.08,
where R0 is the Reynolds number given by (36).

Comparison with experimental time series of the free surface are available
in Fig. 3, together with numerical results obtained with a classical switching
strategy. We observe an overall good agreement, especially for the three last
gauges, where the present model seems in better agreement with structural
aspects of the wave. In particular, breaking waves treated as shock with the
switching method tend to present steeper fronts, notably at gauge WG4 and
WG5 where the present model gives a more accurate profile.

For both strategies we also notice an underestimation of the wave height
at the breaking point, which is characteristic of the Serre-Green-Naghdi so-
lutions. These observations are supported by Fig. 4, giving the spatial
distribution of the amplitudes and mean value of the free surface (top), wave
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Figure 4: Cox’s experiment - Spatial evolution of several diagnostic quantities
around the breaking point. Comparison between experimental measurements
(symbols), numerical results obtained with a switching strategy (-.-), and the
present model (solid curves) . Top : Mean Water Level (o), crest elevation
relative to MWL (M), trough elevation relative to MWL (O). Middle: Wave
skewness. Bottom: Wave asymmetry.
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skewness Sk (middle) and wave asymmetry As (bottom). These two last
quantities are computed as follows [26]:

Sk =
(η − η̄)3

(η − η̄)2
3/2

, (39)

As =
H(η − η̄)3

(η − η̄)2
3/2

, (40)

whereH stands for the Hilbert transform, η̄ is the mean elevation andX is the
time-averaged value of any quantity X. Both models are in agreement with
the experiments in the shoaling zone (before 12 m). There are some discrep-
ancies in the breaking zone (around 13–14 m) since no depth-averaged model
can describe accurately the breaking process and because the Serre-Green-
Naghdi equations tend to predict waves less peaked than observed waves and
thus with a lower skewness. In the inner surf zone (after 15 m), the present
model improves significantly the skewness factor and the asymmetry factor
compared to the switching model. The switching approach underestimates
the skewness in the inner surf zone and overestimates markedly the asym-
metry. Since the switching model treats the front of breaking waves as a
shock, the predicted asymmetry should be much higher than the experimen-
tal values. The numerical viscosity can decrease somewhat this discrepancy
resulting in a deterioration of the solution with mesh refinement in the case
of the switching model.

The calculated mean water level (MWL) is in agreement with the exper-
iments including the small set-down effect and the set-up effect. The crest
and trough elevations relative to the mean water level are also correctly re-
produced except, as noted above, the crest elevation at the breaking point
(gauges WG2 and WG3).

Numerical convergence was reached with a space step of ∆x = 0.02 m. A
fundamental advantage of the present approch over switching-type strategies
relies on its low sensitivity with respect to the space discretization parame-
ters. Indeed, very similar results were obtained at higher orders and for more
important mesh resolutions. Reversely, switching strategies are less robust
since a modification of the space step may entail significant variations of the
numerical results, and require a new calibration of the breaking parameters
(see [57, 25]). Furthermore, in the case of the switching model, spurious
oscillations appear with mesh refinement and these numerical instabilities
increase if the cells become thinner which prevents mesh convergence. This
problem does not take place with our model.
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4.2 Ting and Kirby’s experiment [54]

Based on the same experimental set-up, [54, 55] conducted a series of works
dedicated to the study of breaking wave trains of spilling and plunging type.
We first focus on the spilling breaker case, corresponding to a wave period
T = 2 s and an amplitude a = 0.125 m. Computations are run on the interval
[0, 40] and we consider the following topography:

z(x) = max

(
0,
x− 10

35

)
. (41)

Based on the empirical laws (35), (36), the optimal choice for the break-
ing constants is R = 1.3R0 = 3.3 and ψ0 = 1.3ψ0s = 6.3 s−2, where ψ0s is the
value given by (35), which are almost the same values as for Cox’s experi-
ments. The numerical results were obtained for a mesh size ∆x = 0.04 m.

Figure 5: Ting and Kirby’s experiment - Spilling breaker : Comparison
between experimental and numerical time-series of the free surface elevation.
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Comparisons between measured and simulated time-series of the free sur-
face elevation at several wave gauges located along the domain are available
on Fig. 5. We can observe an overall good agreement, except at the breaking
point (around 27–28 m) where the waves have a smaller amplitude and are
wider and less peaked. We also note that the wave characteristics are partic-
ularly well reproduced in the inner surf zone (after 28 m). In particular, we
recover the expected amplitudes and observe a faithful reproduction of the
steepness profiles.

These observations are confirmed by the skewness and asymmetry calcu-
lations available in Fig. 6 (middle and bottom, respectively). In particular,
the estimation of the asymmetry indicators marks a noticeable improvement
when compared to switching-type strategies [57]. Surface elevation profiles,
including wave crest, wave trough and mean elevation are given in Fig. 6
(top), exhibiting a good agreement with the experiment, in line with other
works available in the literature (see [12, 36, 57]). The skewness coefficient is
too small in the breaking zone, because the waves are wider and lower, but
is correctly estimated in the inner surf zone. The mean water level presents
a noticeable set-down effect at 28 m which was not measured in the experi-
ments and a set-up effect in accordance with the measured values. The crest
and trough elevations relative to the mean water level are in agreement with
the experiments except for a lower crest elevation at the breaking point.

The ability of the model to describe the evolution of the turbulent energy
can be assessed through Fig. 7. The time-series of the dimensionless turbu-
lent energy are presented, as well as the dimensionless velocity, at three wave
gauges located in the inner surf zone. As in the previous case, the amount of
enstrophy produced by the mechanism of breaking is not dissipated during
one period. A large proportion is still present in time windows associated
with a negative velocity, which means that a substantial part of the turbulent
energy is carried offshore. This result is qualitatively in accordance with [54]
who found that the turbulent kinetic energy is transported seaward under
the spilling breaker.

Keeping the same discretization parameters, we now turn to the case of
the plunging breaker studied by [55]. The period is T = 5 s and the amplitude
is a = 0.128 m. The optimal parameters of the model are R = 1.2R0 = 3.1
and ψ0 = 1.1ψ0s = 5.3 s−2.

The distributions of wave amplitudes and mean water level given in Fig.
8 are well reproduced when comparing to experimental results of [54]. As for
the spilling breaker case, a small set-down effect is noticeable in the mean
water level curve which was not measured in the experiments. The set-up
at the end of the inner surf zone is in agreement with the measures. The
calculated crest and trough elevations are very closed to the experimental
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Figure 6: Ting and Kirby’s experiment - Spilling breaker : Spatial evolu-
tion of several diagnostic quantities around the breaking point. Comparison
between experimental measurements (symbols), numerical results obtained
with the present model (solid curves). Top : Mean Water Level (o), crest el-
evation relative to MWL (M), trough elevation relative to MWL (O). Middle:
Wave skewness. Bottom: Wave asymmetry.
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Figure 7: Ting and Kirby’s experiment - Spilling breaker : time-series of the
dimensionless velocity U/

√
gh (dotted curves) and the dimensionless turbu-

lent energy hϕ/2g (solid curves) at the level of the breaking point. Zero
velocity reference appears in dashed lines.

results, even the maximum value of the crest elevation at the breaking point
which is similar to the experimental value.

The results available in Fig. 9 highlight a notable difference with spilling
breakers. At the level of the breaking point, we note that the turbulent energy
produced by a single wave has time to dissipate almost completely before
the following wave, so that each wave is handled independently by its own
enstrophy production. As a result, the amount of turbulent energy carried
offshore is very low, marking a sharp distinction with respect to spilling
breakers. The turbulent energy of the model is very small when the averaged
velocity is negative (seaward) which means that the overall turbulent energy
transport is shoreward. This is in agreement with the result of [54] who
noted that in the case of the plunging breaker the turbulent kinetic energy
is transported landward and that it is dissipated within one wave cycle.

The model is thus able to predict the variations of the turbulent energy
and the direction of its transport and to distinguish between the case of a
short wave period, such as the spilling breaker with T = 2 s of [56], where
the turbulent energy is not dissipated within one wave cycle resulting in a
seaward transport, and the case of a longer wave period, as the case of the
plunging breaker with T = 5 s of [55], where the turbulent energy is dissipated
in one period and transported landward.

Note that the measurements of the turbulent kinetic energy of [55] and
[56] cannot be quantitatively compared to our numerical results because the
turbulent energy of the model is a depth-averaged quantity and includes
not only the large-scale turbulence but also the depth variation of the mean
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Figure 8: Ting and Kirby’s experiment - Plunging breaker : Comparison be-
tween experimental measurements (symbols) and numerical results obtained
with the present model (solid curves). Top : Mean Water Level (o), crest el-
evation relative to MWL (M), trough elevation relative to MWL (O). Middle:
Wave skewness. Bottom: Wave asymmetry.

velocity (which means that this “turbulent” energy includes a non-turbulent
component) whereas the turbulent kinetic energy is measured by [56] at a
specific depth and does not include the variation of the mean velocity. In
particular there is no experimental measures in the highest part of the flow,
near the free surface, where the turbulent kinetic energy has often its highest
values (see for example the measures of [27]). Furthermore the variation
with the depth of the mean velocity gives a contribution of the same order
of magnitude as the turbulent kinetic energy itself to the depth-averaged
“turbulent” energy of the model. This explains that our values are higher
but qualitatively similar.

4.3 Study of wave set-down

The purpose of this section is to study, in the case of the experiments of [6],
the characteristic variations of the mean water level induced by the presence
of wave trains and in particular the set-down phenomenon, corresponding to
the characteristic depression of the mean water level observed near the break-
ing point. The calculated set-down is governed by the dispersive properties
of the model. The experiment includes propagation, breaking and run-up of
a train of regular sinusoidal waves. Several configurations studied by [6] have
been studied with different wavelengths and initial amplitudes. For instance
the experiment with a wavelength of λ = 2.02 m, a period of T = 1.14 s
and a deep water wave height of H0 = 6.45 cm leads to a computed value
of −0.37 cm compared to the still water level whereas the experimental set-
down was measured by [6] at −0.32 cm. Similar results were obtained for the
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Figure 9: Ting and Kirby’s experiment - Plunging breaker : time-series of
the dimensionless velocity U/

√
gh (dotted) and the dimensionless turbulent

energy hϕ/2g (lines) at the level of the breaking point.

other configurations. Overall, the model overestimates the set-down effect
(the calculated mean water level is lower than the measured one) by 10–20%
approximately. This is consistent with what is commonly noticed in other
models.

4.4 Breaking of irregular waves [3]

On the basis of the experimental study of [3], we now investigate the be-
haviour of the proposed breaking model in the context of irregular waves.
Beji and Battjes conducted a series of experiments implying regular and ir-
regular wave trains propagating over a submerged bar. The experimental
basin is 37.7 m long, 0.8 m wide and is equipped with a trapezöıdal bar ex-
tending from x = 10 m to x = 15 m, with 1/20 front and 1/10 back slopes.
We initially consider a flow at rest with a total depth h∗0 = 0.4 m. Among the
experimental data set available, we focus on JONSWAP type random waves
breaking above the bar as spilling breakers, corresponding to a peak period
T = 2.5 s, and a characteristic frequency f = 0.4 Hz. The time evolution of
the free surface was recorded at eight experimental gauges, represented in
Fig. 10 (top). The signal available at the first wave gauge WG1 (x = 6 m) is
used to impose the initial condition at the left boundary.

Note that as in the case of the experiments of [3] on regular waves [46],
due to the relatively small nonlinearity of the incident waves involved in this
test, no breaking criterion is needed here (in other terms, we use ψ0 = 0). Ac-
cording to [23] and [46] the admissible range for the dimensionless Reynolds
number is 5 ≤ R ≤ 10 for waves with a small nonlinearity such that no break-
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Figure 10: Breaking of irregular waves - Snapshot of the flow during the
propagation, together with gauges location (top). Corresponding spatial dis-
tribution of the enstrophy (bottom).

ing criterion is used. The value R = 5 is chosen. Also, numerical results with
R = 9.5 are also proposed for the sake of completeness. Comparison between
measured and simulated time-series of the free surface elevation are proposed
at WG2 (x = 11 m), WG5 (x = 14 m) and WG7 (x = 16 m) within the time
window [200 s, 230 s].

We observe a very good agreement on all gauges (Fig. 11). In particular,
the flow experiences a significant increase of enstrophy at the level of the flat
part of the bar, corresponding to the breaking area identified experimentally
(Fig. 10). Comparisons with experimental data at WG5 and WG7 given
in Fig. 11 also indicate a good behaviour of the numerical solution at the
rear side of the bar, able to reproduce correctly the free surface deformations
with an accurate estimation of the amplitudes. Contrary to many models,
this experiment on irregular waves can be simulated with our model with
a good accuracy without any breaking criterion, neither for the breaking
initiation nor for the breaking termination.

Repartition of the experimental and numerical spectral density with re-
spect to frequency is proposed in Fig. 12, in which we clearly recognize the
first harmonic at f = 0.4 Hz. The present model is also able to capture the
second peak frequency at f = 0.8 Hz, even at the last gauges. The highest
harmonics are damped due to a residual viscosity which is still present after
breaking. The damping effect is significantly reduced if R is increased from
R = 5 to R = 9.5 because this decreases the viscosity. Indeed, as evidenced
by Fig. 12, setting the viscous terms artificially to zero shortly after breaking
reduces almost completely the damping effect on the high frequencies, im-
proving the simulation of the free surface in the rapidly varying parts (Fig.
11). More precisely, in the case R = 9.5 and νx>14m = 0, we locally set
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Figure 11: Breaking of irregular waves - Time evolution of the free surface and
enstrophy flux at WG2, WG5 and WG7 for two different Reynolds numbers.
Comparison with experimental data.

24



Figure 12: Breaking of irregular waves (colour online) - Spectral density
of the signal at gauges 2, 5 and 7. Comparison with the spectrum of the
experimental results.

νT = 0 from x = 14 m in (16) and (33). Even if the free surface elevation
is correctly reproduced in all simulations with small differences, the nonlin-
ear phenomenon of high-frequency generation in the shallow horizontal part
above the bar and in the deepening part of the propagation is better sim-
ulated with R = 9.5 which gives a satisfactory treatment of the nonlinear
interactions.
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5 Conclusion

In this work the recent model of [23] and [46] for coastal waves, mainly
dedicated to solitary waves, was supplemented with a turbulent diffusion
term and extended to the case of regular and irregular wave trains. The
model is fully nonlinear and has the same dispersive properties as the Green-
Naghdi equations, but is also able to account for the large-scale turbulence
and the depth variations of the mean velocity through a new variable called
enstrophy. The new diffusive term is useful only for the numerical treatment
to smooth the solutions at the breaking point.

The turbulent dissipation coefficient Cr has a universal value (0.48) and
needs no calibration. In the case of waves with a small nonlinearity, as in
the experiments of [3], no breaking criterion is needed and we found that
the values in the range given in [23] for the turbulent Reynolds number can
be used, preferably at the upper bound to minimize the attenuation of the
high-frequency harmonics generated near the coast. For wave trains with
a higher nonlinearity, the breaking criterion of [23] can be used with the
same empirical laws for the turbulent Reynolds number and for the breaking
threshold except that the values of these two dimensionless quantities should
be increased by up to 30% in the case of the wave trains studied in this paper.

The model includes a term in the energy equation which is called tur-
bulent energy but which includes, in a depth-averaged sense, the large-scale
turbulence and the non-uniformity in the depth of the mean velocity. The
variations of this turbulent energy in a wave train are qualitatively in agree-
ment with the experimental measures of [54] on the transport of the turbulent
kinetic energy: in the case of the spilling breakers with a short wavelength
[56], the turbulent energy is not dissipated within one wave cycle and it
is mostly transported seaward since it keeps an important value when the
depth-averaged velocity is seaward (this can be interpretated as the effect
of the undertow); in the case of the plunging breakers [55], because of the
longer wave period, the turbulent energy is dissipated within one wave cycle
and keeps significative values only in the part of the wave where the averaged
velocity is shoreward, giving a shoreward transport of the turbulent energy.

The simulation of irregular waves over a bar shows that the nonlinear
effects due to shoaling, breaking, propagation in a shallow horizontal part
and de-shoaling are correctly reproduced, including the generation of higher
harmonics. The model predicts accurately the set-up phenomenon but over-
estimates slightly the set-down effect and underestimates the wave amplitude
at the breaking point. The calculated skewness and asymmetry coefficients
are underestimated in the breaking zone but they are in agreement with the
experiments in the inner surf zone. The deviations in the breaking zone are
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common to many models including the Serre-Green-Naghdi models but, com-
pared to the switching approach, the present model improves significantly the
asymmetry coefficient of the breaking waves in the inner surf zone.

From a numerical point of view the model is more robust than the switch-
ing approach because of its low sensitivity to the space discretization parame-
ters and its ability to reach the numerical convergence. The predictive ability
of the model is interesting since the empirical laws give the values of the one
or two variable dimensionless parameters with very little tuning but of course
it should be tested in an even wider range of situations before reaching defini-
tive conclusions on this matter. This model would be significantly improved
if the need for a breaking criterion could be removed in all cases whereas
such a criterion is presently needless only in the case of waves with a small
nonlinearity.
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