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Abstract

Dynamic models can help adapt to climate change since they inform on the impacts
of decisions and future events on sustainability. They make it possible to follow the
evolution of variables over time, to model exogenous events and adaptive policies and
to compute sustainability indicators. Various model types based on di�erent world-
views exist, and they give rise to di�erent indicators. Modellers generally choose only
one type of model, limiting the variety of indicators. However, decision-makers, who
have to be creative to face global change, need a wider diversity of indicators. The
objective of this paper is to show the diversity of insights one can get by using alter-
native system indicators and their decision implications. We test our �very diverse
indicators� approach and illustrate its results for a population at risk of �ooding and
a water-basin manager who can help the population implement protection measures.
We test many variations, including e.g. viability theory and agent-based modelling,
and di�erent indicators of viability, resilience, e�ciency and equity, based on com-
parable data sets. We show possible synergies of the obtained diversity of insights:
for example, one indicator says that it is urgent to act and another which is the best
policy to use. We discuss the di�culties of implementation and the bene�ts of our
approach for the decision-maker.
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1. Introduction

Nowadays, people face strong uncertainties about the evolution of the global
climate and the socio-economic system. The changing environment also impacts
their personal life, as is the case for instance for people exposed to more frequent
and more intense �ooding. Changing conditions require both people at risk and
decision-makers to adapt to make living sustainable. For this adaptiveness to be
e�ective, one has to consider future events and decisions, as well as their impacts.
Dynamic models are models in which one or more variables evolve over time. This
evolution may also depend on exogenous events or actions decided by the decision-
maker. Hence, dynamic models make it possible to anticipate and inform decision-
makers of possible evolutions (e.g. (Barendrecht et al., 2017; Di Baldassarre et al.,
2013).

However, designing dynamic models for decision-making requires many choices.
Firstly, there are many ways to describe the dynamics of the system: a mean �eld
approach (Mathias et al., 2017; Weidlich, 2002; Picard and Franc, 2001) represent-
ing the dynamics of average objects, or a population-based approach representing
the various dynamics of each element, through microsimulation (Ballas et al., 2007;
Orcutt, 1957), or agent-based models (De Angelis and Gross, 1992; Erdlenbruch and
Bonté, 2018; Edwards et al., 2005). Often, the dynamics are too complex to be solved
analytically. Thus, they are solved using simulation models.

Secondly, using dynamic models and describing future evolutions requires taking
uncertainties into account.There are many ways to translate uncertainty into models
(Walker et al., 2003). For example, unknown future �oods can be randomly generated
according to a distribution function, or can be represented by a worst-case scenario,
or a series of scenarios. Finally, viewpoints vary on what constitutes a relevant
indicator for decision-making. The more classical view considers that indicators
should focus on optimality, another view consists of seeking viability or resilience
(Aubin, 1991; Aubin et al., 2011; Martin, 2004, 2019; Saint-Pierre, 1994), i.e., giving
the decision maker the temporal sets of actions to undertake to remain forever in a
desirable set of states, or equity. These choices especially constrain the modelling
scale, the adaptive policies under consideration and the description of uncertain
events. Making these choices is similar to picking a particular way to describe the
world and its dynamics (McChesney, 1995; Tsoukiàs, 2008). It restricts possible
indicators that can be consulted and shapes the conclusions to be drawn from their
use (Moallemi et al., 2020; Quinn et al., 2017). These choices are generally made
by modellers instead of decision-makers, while the responsibility of the decision lays
with the decision-maker.

Some studies tried to go beyond the limitation associated to a particular choice
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of dynamic model. For example, they compared dynamic approaches (Durrett and
Levin, 1994; Edwards et al., 2003; Huet and De�uant, 2008), discussed the way one
may select one model among many (Francois and Laval, 2011; Kelly et al., 2013),
or explained ways of coupling models (Abebe et al., 2019; Dai et al., 2020). Others
focused on the indicators for decision using di�erent evaluation models, such as multi-
criteria analysis (Triantaphyllou, 2000; Raaijmakers et al., 2008) or decisions under
deep uncertainty, emphasizing the importance of dynamic policy paths (Haasnoot
et al., 2013, 2021; Kwakkel et al., 2016), or indicators of robustness (MacPhail et al.,
2018); see also Newman et al. (2017) for a review on decision support systems for
natural hazard risk reduction.

However, none of them vary both the choice of dynamic models and the type
of decision indicators. Thus, we propose to vary these two sets of choices simul-
taneously to compute "very diverse indicators" based on comparable data sets and
able to address four central questions for the management of dynamic systems under
uncertainty. First, a viability question: is there a management option that makes
it possible to maintain the system in a desirable set of states? Second, a resilience
question: if viability is not ensured, is it possible to recover desirable states given
management options and time constraints? Third, an e�ciency question: given
these management options and constraints, taking costs into account, is one option
more e�cient in terms of outcome? Fourth, a question of equity: does the informa-
tion campaign create inequalities in the population? If so, is there a way to reduce
inequality or to protect speci�c parts of the population (the most vulnerable, the
poorest, etc.)?

The objective of this paper is to show the diversity of insights one can get by
using alternative system indicators and their decision implications. To test our �very
diverse indicators� approach, illustrate its results and discuss its advantages and
limitations, we consider the following dynamic problem under uncertainty: the case
of a population at risk of �ooding. People can adopt individual protection measures
that reduce the damage in case of a �ood. Their motivation to protect themselves
is boosted by the occurrence of a �ood. However, protection deteriorates over time.
The public authorities can encourage the population to adopt these measures by
carrying out information campaigns, but this comes at a cost. Management options
are then intensity and timing of information campaigns, including the option of doing
no campaign.

The article is organized as follows. In Section 2, we discuss several method-
ological issues: we specify the underlying approaches, the application, the four risk
management issues and we detail variations of modelling that should be considered
to address these issues. In Section 3, we present some "very diverse indicators"
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computed from the implemented variations reminding which question they address,
how they deal with uncertainty and on which underlying approach they are based.
The �nal section discusses the contributions of our proposal, especially how these
indicators can be complementary to help the decision-maker. The appendices give
more details on the dynamics and the computation of the indicators, including the
related software to compute them.

2. Methods

2.1. Underlying approaches

We base our models on di�erent approaches: viability theory, optimization, nu-
merical simulation and agent-based modelling. The most appropriate approach is
chosen in the following to construct our indicators.

Viability theory develops methods and tools to analyse the compatibility between
dynamics and constraints. In this framework, the objective is to maintain the system
state variables inside a given constraint set, without optimizing a particular objec-
tive function (see Aubin (1991); Aubin et al. (2011) for an overview). Optimization
consists in de�ning the decision variables that minimize or maximize an intertempo-
ral objective function given constraints (Agrawal and Fabien, 1999; Bellman, 1957;
Pontryagin et al., 1962).

When a particular action policy is considered, answers on its impacts at the indi-
vidual level (such as its e�ciency and its equity) are computed from simulations of
an agent-based model. A simulation is an approximate imitation of the functioning
of a system, that represents its operation over time (Sokolowski, 2009). Numerical
simulation allows to explore the state-space of a system, given a range of parameter
values. Agent-based models are particular simulation models which study the inter-
actions between heterogeneous individuals and their environment, over time (Epstein
and Axtell, 1996).

2.2. Phenomena under consideration and key variables

We consider a population under threat of �ood and a manager who can decide
to carry out information campaigns to promote the adoption of individual protec-
tion measures against �ood damage. In the absence of �ood, the living conditions
are such that the inhabitants' activities generate wealth. Flood occurrences cause
damage that can be measured in terms of wealth losses. Hence, one key variable
is the inhabitants' wealth. Wealth tends to increase with time but decreases as it
can be partially used by the manager to carry out information campaigns. Wealth
can experience a sudden decrease in case of �oods. This decrease is lower when the
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individual has adopted an individual protection measure (Rogers, 1975; Rogers and
Prentice-Dunn, 1997; Maddux and Rogers, 1983; Richert et al., 2017). The adop-
tion of a measure is positively in�uenced by the awareness about the possibility of
a �ood, which is enhanced by �ood occurrence but also by information campaigns.
However, protection tends to loose its e�ciency over time because of negligence or
wear and tear. A second key variable is hence whether inhabitants have an op-
erational protection or not, at the individual level, or the protection rate, at the
aggregate level. According to the manager's choices, di�erent information campaign
policies can be implemented. Information campaigns are hence a third key variable.
All the possible strategies must be speci�ed, described by so-called control variables
since they describe the manager's decisions. The impact of these control strategies
depends upon the �ood occurrences. Finally, the variables describing the possible
future �ood sequences are also essential.

2.3. Risk management issues and sources of uncertainty under consideration

We assume that the distinction between desirable and undesirable situations only
relies on the wealth value: if the wealth is non-negative, the situation is considered
as correct, and if the wealth is negative, the situation is considered as problematic
by the risk manager. To answer the chosen questions, two types of management
issues, as well as two di�erent sources of uncertainty are addressed. They are not
independent even if presented separately in the following.

2.3.1. Viability and resilience issues

Considering the above de�nition of desirable states, viability relates to the pos-
sibility of an evolution along which the wealth remains non-negative according to
the information campaigns undertaken and despite potential �ood events. When
positive wealth cannot be ensured, the issue of resilience arises: is it possible to �nd
an evolution (possibly by carrying out information campaigns over time) that allows
to reach viable situation in the future? And if possible, how many years does the
population have to cope with negative wealth?

2.3.2. E�ciency and inequality issues

If several information campaigns are at hand, of which several may be resilient
and viable policies, one can ask which of these policies is the most e�cient, in terms
of outcomes and costs. Finally, globally viable, resilient or e�cient policies may
increase inequalities within the studied population and another issue can be the
reduction of inequalities or the protection of certain parts of the population.
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2.3.3. The uncertainty related to what is known about the parameterization

The current state of the modeled system as well as the parameter of the dynamics
are more or less known by the decision-maker and the modeler. Dynamic models
generally require to know them to be able to inform on the evolution of the system.
This is common to consider some parameters are known, and others can be calibrated
(see for example Huet et al. (2017); Lavallée et al. (2019); Xie et al. (2017)). However,
calibration is not always possible since it requires data from the past that may not
be available. Moreover, it is not obvious such data would be useful for a purpose
such as dealing with climate change. Indeed, calibration assumes that the future
behavior follows the same tendency as the past one. But what has been observed
is an unpredictable change in the frequency and the intensity of the �oods. Thus
our indicators consider either �xed known parameters with a known starting state
(except our indicators based on the viability theory which do not require to know the
starting state), or varying values for parameters as proposed by Gao et al. (2016).

2.4. Modelling assumptions

This subsection presents a synthesis of the models which allow to compute our
indicators. For the detailed descriptions, see Appendix B to Appendix E. Appendix
F makes the mathematical link between the di�erent models.

2.4.1. State variables and their dynamics: individual vs aggregate

We consider a population of individuals1. State variables may be described at
the individual level or at the aggregate one. In both cases, we assume that two kinds
of variables are necessary to describe a given situation of the population :

� at the individual level, one variable is su�cient to represent the wealth ; at
the aggregate level, the average wealth (total wealth divided by the population
size) is considered.

� the extent of protection against �ood is measured at the individual level by a
boolean which gives the information whether a protection measure is e�ective
or not ; at the aggregate level, the adaptation rate describes the proportion of
individuals in the population having implemented the protection measure.

As far as the dynamics of these variables are concerned, at the individual scale, we
use the formalism of agent-based models with discrete time steps ; at the aggregate

1Here and in the following, we use equivalently the term "individuals", "households" or "agents"
to designate an agent in the individual-based model
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scale, we use the formalism of di�erential equations (stochastic as in Leuenberger
et al. (2018) or tychastic as in Martin (2019)).

At both scales, we assume that the dynamics are governed by �ve interdependent
phenomena :

� in absence of any �ood event or information campaign, the proportion of pro-
tected individuals decreases with time (for instance protective devices deterio-
rate, people forget the procedure, ...),

� between two �ood events, individual and average wealth increases linearly with
time,

� a �ood causes a damage described by a sudden decrease in wealth which ex-
tent depends on the �ood height and on the presence or absence of protection
measures. At the individual level, the water height which triggers damage for
an individual depends on its geographical localisation ; at the aggregate level,
the average damage is considered Appendix A,

� both a �ood event and an information campaign positively in�uence the adap-
tation rate,

� carrying out an information campaign has a cost.

2.4.2. Policies and management strategies: time-dependent or state dependent

The manager has the possibility of implementing policies to in�uence the evo-
lution of the system. These policies take the form of information campaigns for
inhabitants. The campaigns aim to make them aware of the damage that �oods can
cause and thus encourage them to implement individual protection measures that
will reduce their impact. These campaigns may or may not target the most exposed
audience:

� policies that are targeted to the speci�c individual situation are called 'people
centred polices'. An expert advice given to a speci�c household can be a
people-centred policy;

� policies that are more general are called 'top-down policies'. For example an
exposition or public meeting about �oods can be a top-down policy.

Thus, the properties of the system such as viability, resilience, e�ciency, inequality,
will depend on the policies implemented and the way they are implemented. The
number of people who have adopted a protective measure and therefore the extent
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of the damage caused by future �oods will depend on the intensity and frequency of
information campaigns, i.e. the management strategy. We can choose to de�ne the
relevant management strategies to be implemented:

� according to time (for a given time which campaign has to be carried out), these
are time-dependent strategies (or open-loop in the terminology of control);

� or according to the state of the system (for a given state of the system which
campaign has to be carried out), these are state-dependent strategies (or closed-
loop in the terminology of control).

2.4.3. Upcoming �ood events description: scenario, stochastic law or set of possible

events

To determine the set of upcoming �oods, we will consider three di�erent methods:
generating sets of �oods following the generation of a sequence of exponential random
variables whose parameters are the expected average size of the �oods and the average
return time; considering the worst future and describing it by the size of the highest
expected �ood (called big �ood), possibly also by the minimum return time of it;
writing several time series of big and small �oods, called scenarios, over a period of
time. Here again, the choice of how to deal with the uncertainty related to �oods is
not independent of the risk management issues due to the constraints resulting from
the theoretical foundations of the underlying approach and the computational limits
in memory and time.

Despite considering the same phenomena and key variables, our various indica-
tors, presented in the next section, deal di�erently with the risk management issues
and the sources of uncertainty which implies di�erent modelling choices about the
scale (individual or aggregate), the action policies (state or time dependent) and the
description of the set of upcoming �oods (scenario, stochastic law or set of possible
events).

3. A diversity of indicators

We present in the following "very diverse indicators" based on di�erent model-
ing assumptions which together make it possible to answer questions of viability,
resilience, e�ciency and equity. The features of each of them are summarized in
Table 1.

Indicator 1 is a viability indicator based on a simulation approach (it can easily be
adapted to become a resilience indicator based on a simulation approach). Indicator
2 is a viability and resilience indicator, based on viability theory. Indicator 3 is a
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viability theory simulation agent-based modeling optimization
viability Ind 2/Ind 3 Ind 1
resilience Ind 2
e�ciency Ind 5 Ind 5
equity Ind 4

Table 1: Indicator features : underlying approach vs risk management issue

viability indicator, based on viability theory. Indicator 4 is an equity indicator based
on agent-based modelling. Indicator 5 is an e�ciency indicator based on agent-
based modelling and optimization. Note that some indicators are able to respond
to two questions, especially those relating to viability and resilience, while others
are speci�c to one question, as the equity indicator. The questions of e�ciency or
equity, given by indicators 4 and 5, should be computed from the various states
of the individuals composing the evaluated population. Such states are only given
by agent-based models on which our optimization approach is also based. On the
contrary, the questions of viability and resilience, based either on the viability theory
or a sensibility analysis by simulation, require a large exploration of the possible
states of the model, and is then very costly in terms of computation. Thus, such an
exploration can be reasonably done for macro states at the population level, and not
for the numerous micro states of the individuals constituting the population. This
means in practice that these indicators can be only computed from dynamic models
representing the system at a macro level such as a di�erential equation system.

Despite this di�erence of dynamic models, all these indicators are computed with
comparable sets of data (Appendix F. Indeed, Appendix F makes the mathematical
link between the individual and aggregate models. It shows the successive approxi-
mations which establish the relations between the parameters of the di�erent models.
This makes it possible to calibrate similar parameters for all models.

3.1. Indicator 1: viability under parameters and �oods uncertainties

This �rst indicator aims to provide information on what can happen, considering
all possible variations of poorly known parameters of the dynamics of the population
and the �oods. Moreover, we assume that �oods are random processes since the
upcoming �oods are unknown. The number of �oods generated and the intensity of
�oods (mean water level) follow Poisson distributions. The set of indicators relates to
the viability issue: it explores whether there are situations in which, in absence of any
policy, wealth becomes negative. For the complete description of the computation
of this indicator, see Appendix B. The map presented in Fig. 1 represents results

9



built from the simulated states of the di�erential equations system presented in 2.4.1.
The system is simulated for 30 years. The results are average outcomes of systematic
parameter value variations (for the population dynamics and the generation of �oods
functions), and variations of randomly generated time series of �oods (1000 replicas
for each set of the parameters values).

Figure 1: Frequency for a population of having a negative wealth at least once over the next
simulated 30 years, depending on the initial wealth W(t=0) (vertical axis) and the annual revenue
B (horizontal axis). As indicated by the legend on the right, the color varies from dark red (frequency
= 0), to dark blue (frequency = 1), through the white color indicating the frequency considered as
acceptable to be safe (in this drawing 0.9).

This indicator takes the form of a map of various results which are depicted
for di�erent types of populations, characterized by di�erent levels of initial wealth
(vertical axis) and di�erent levels of annual revenue (horizontal axis). The initial
wealth and the annual revenue have been chosen as axes for the map since they
are values assumed to be more or less known by the decision-maker (contrary to
other parameters values). A threshold can be set to distinguish acceptable results
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(in blue) from unacceptable results (in red). This threshold is drawn in white. Many
di�erent results can be presented using this map. For example, it is easy to show the
variations of the frequency for a population to be viable over a simulation time of 30
years (as presented in Fig. 1, but also the frequency for a population to be resilient
after 30 years (meaning it possibly had a negative wealth during these 30 years but
�nishes �nally with a positive wealth). In the same spirit, it is possible to inform the
decision-maker on the variations of the value of the wealth, of the adoption rate for
the protection measure, but also on the average size of the �oods that do not result
in negative wealth during the simulation period, etc.

Such an exploration can help determining whether to act (i.e. de�ning an infor-
mation campaign) and which individuals to target. Individuals having acceptable
results without any policy intervention may be less urgent to target than individuals
who experience unacceptable results (for example a negative wealth at a time) and
may su�er more and more from the next coming �oods.

3.2. Indicator 2: viability in case of one big and small �oods

This second indicator aims at assessing situations in which it is possible, possibly
after a delay, to protect the population from the undesirable consequences of a rare
big �ood (see 2.4.3) occurring now or in the future, in the presence of possible smaller
�oods, also occurring now or in the future. The big �ood is expected to occur only
once at an unknown date. Small �oods can occur several times. The size of the
small �oods is supposed to be bounded. For example, in Figure 2, the size of the
big �ood is 250 cm, and small �oods are supposed to have a maximum size of 150
cm. If they follow each other too quickly the population cannot be protected. For
each situation the indicator computes the minimum return period under which it is
possible to evolve towards states where the population is protected. This indicator
is valid until the big �ood actually occurs. After this time, if the population was
protected before the big �ood, it is then only protected against the small �oods.
The indicator still shows the time without any �ood necessary to be protected again
against a new big �ood.

As in the previous section, being protected means that the average population
wealth remains non negative over time. The evolution of the population wealth
and adaptation rate is computed from the di�erential equations system presented in
2.4.1. The parameters of the dynamics are �xed. For the complete description of the
indicator computation, see Appendix C.

The maps derived from this indicator can show: in which situations (in terms of
mean adaptation rate and wealth) the population is protected now and in the future
against a unique big �ood of a given size; viable situations where it is protected
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against this big �ood even with occurrences of smaller �oods of a given maximum
size. The computation gives the minimum period without any �ood su�cient to
guarantee the viability against the big �ood in presence of the smaller �oods. It
also gives the period of time without any �ood which is su�cient to ensure that
the population situation evolves towards situations where it is protected. This is an
inverse measure of resilience as de�ned by Martin (2004). The larger this period of
time, the less resilient is the situation, since it can evolve to viable states only in
the absence of �ood. The indicator can also take into account di�erent information
campaign policies.

For instance, in Figure 2 the area above the white dashed line depicts situations
where the population is protected against a big �ood of a size of 250 cm. However,
in the region below the plain line (the line above), the population is not protected
against the big �ood when smaller �oods can also occur. In the region above the
plain line the population is protected even in the presence of smaller �oods, as soon
as their succession is not too fast. (Actually, when a small �ood occurs when the
population state is in the viability area, the wealth of the population is impacted
but the state after the �ood will stay above the dashed line, so the population is still
protected against the big �ood). The map shows the minimum period of time without
�ood necessary to return to the viability area where it is once again protected even
in the presence of smaller �oods. More precisely, the map shows that the dashed line
lies in the area where a time period of 13 years without �ood is necessary to reach
the viability area. So when small �oods succeed one another less frequently than 13
years, with a size smaller than 150 cm, the population whose state is in the viability
area is protected forever against the big �ood. Other maps which are not shown here
allow to verify that after a big �ood the population is still always protected from
small �oods with this return period.

With these maps, it is also possible to decide whether it is necessary to implement
a policy or whether it is reasonable to wait doing nothing until the population state
reaches the viability area. For example, if small �oods are known to succeed one
another more frequently than every 13 years, it is not possible to guarantee that the
population will ever be protected against the big �ood and waiting is not a good
strategy. On the contrary, if small �oods are known to succeed one another less
frequently than e.g. every 15 years, waiting can be a good strategy.

3.3. Indicator 3: viability in case of successive �oods given a maximal height of each

of them and a minimal period of time between them

This indicator determines from which situations it is possible to maintain the
population in a set of acceptable situations regardless of successive �oods provided
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Figure 2: Map of the period of time without �ood levels before everlasting protection against a
unique big �ood of size 250 cm occurring now or in the future, in the presence of smaller �oods of
maximum size of 150 cm, with no information campaign. The region above the white dashed line
describes situations that are protected against the big �ood. The region above the white plain line
describes situations that are also protected in the presence of smaller �ood with a minimum return
period that can be seen on the map: It is the level of the period of time without �ood that contains
the white dashed line. Model described in Appendix C with annual gain of wealth B = 1, 933 ke.

that they belong to a given set of anticipated �oods.
Among the options described in the method section (Section 2), this indicator relies
on viability theory methods and addresses viability issues under uncertainty related
to the upcoming set of �oods. The underlying model is an aggregated model with 3
global variables (the average wealth of the population, the adaptation rate and the
time since the last �ood) which takes into account the phenomena under considera-
tion described in Subsection 2.2.The wealth and the adaptation rate are computed
from the di�erential equations system presented in 2.4.1. The parameters of the
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dynamics are �xed.
Given an upper bound for each �ood event height (called big �ood as presented in

section 2.3) and a lower bound for the time period between two �oods, the anticipated
�oods are successive �oods that satisfy both bounds. Hence, this indicator proposes
to explore the consequences of all possible information campaigns (as indicator 2)
and all possible successive �oods that belong to the set of anticipated �oods, and
then to determine situations (called viable) from which there exists at least one
sequence of information campaigns over time that produces dynamics with positive
wealth whatever the anticipated successive �ood occurrences. Moreover, from viable
situations, state-dependent management strategies that really ensure the viability
over time can be derived. For the complete description of the indicator computation,
see Appendix D.

Figure 3 displays the maps that can be associated with this indicator. The
parameter values are given in Appendix D. As far as the information campaign
parameters are concerned, they correspond to "top-down policies" via the averages
described in Appendix F. As for the anticipated successive �oods parameters, the
height is expected to be smaller than 250 cm and the time period between two �oods
bigger than 10 years.

The following maps display the situations (pairs of wealth and adaptation rate)
for which it is possible to undertake information campaigns in order to maintain
the population wealth non-negative whatever anticipated successive �oods. Such
situations are more numerous when the time before the next �ood is longer and
leaves more time to undertake information campaigns if necessary. The di�erent
panels of the �gure depict di�erent expected times before the next �ood and the
associated viable situations. Moreover, these maps highlight situations (red and
blue points) which are viable but which are on the boundary of the viability domain.
Red points indicate situations where an information campaign should be undertaken
immediately to remain viable. Actually, the management strategies provided by this
indicator are state-dependent. For viable green situations, undertaking information
campaign may be necessary in the future but not immediately.

If the situation under consideration does not belong to the green area, whatever
the information campaigns, there exist successive �oods among the anticipated ones
that will result in negative wealth. In such situations, the same analysis with higher
maximal information campaign intensity would show if increasing the proportion of
population reached by the information campaign would allow to maintain a positive
wealth despite these successive �oods.
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(a) Potential imminent
�ood

(b) 1 year before potential
next �ood

(c) 2 years

(d) 3 years (e) 4 years (f) 5 years

(g) 6 years (h) 7 years (i) 8 years

Figure 3: The green areas gather viable pairs (adaptation rate, wealth) from which accurate infor-
mation campaigns ensure the protection against successive �oods of height smaller than 250 cm and
time period between two �oods bigger than 10 years according to the time period expected before
next �ood. In red are the situations where information campaigns must be undertaken immediately
to remain viable.

3.4. Indicator 4: the impact of policies on inequalities

This indicator details situations at the individual level and at the aggregate level.
Its exact formulation as well as the underlying models are described in Appendix E.
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Its aim is to discuss inequalities issues.
This indicator and the following are constructed using an agent-based model

similar to the one developed in Erdlenbruch and Bonté (2018). The simulations are
based on an arti�cial population of 2760 heterogeneous individuals. The numerous
parameters of the dynamics are �xed. Their values have been determined based on a
quantitative survey among 331 households conducted in 2015, following statistic and
econometric analyses Richert et al. (2017); Erdlenbruch and Bonté (2018). Agents
are hit by di�erent �ood heights according to their geographical situation in one of
three areas around a river. Floods are considered through di�erent scenarios, i.e.
di�erent intensities and date of occurrence of events, over a given time-horizon:

� in the �rst scenario, two small �oods occur in years two and three;

� in the second, two big �oods occur in years two and three;

� in the third, two big �oods occur in years 20 and 21;

� in the fourth, a big �ood occurs in year 10 and a small �ood in year 20;

� in the �fth, a small �ood occurs in year 10 and a big �ood in year 20;

� the sixth scenario considers three �oods: a small in year two and two big �oods
in years 20 and 21.

A small �ood generates a water height up to 100 cm, a big �ood generates a water
height between 150 cm and 250 cm. The time horizon is of 30 years.

Figure 4 depicts the distribution of wealth for di�erent �ood scenarios at the end
of the time horizon. It also indicates the number of poor individuals (red number)
as an indicator of inequality. The top line is the situation without any policy: under
�ood-sequence 1 for example, 133 individuals (out of 2760) have a negative wealth
by the end of the simulation horizon.

The second line represents the situation with a people-centred communication
policy: for example, under �ood-sequence 1, there are 8 individuals less with negative
wealth than without policy (125 vs. 133). The third line represents the situation
after a top-down communication policy: under �ood scenario 1, the policy performs
less well than the people centred policy (only 6 individuals are saved from poverty,
compared to 8 under a people-centred communication policy); in our examples, a
top-down policy always performs worse than a people-centred policy. Generally,
whether communication policies are useful depends on the �ood scenario considered
and on the degree of inequalities that the decision maker accepts.
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Figure 4: Distribution of wealth of individuals at the end of the time horizon for di�erent �ood
scenarios (x-axis). First line: without communication policy, second (resp. third) line: with a
people-centred (resp. top-down) communication policy. In red: number of individuals with negative
wealth.

3.5. Indicator 5: The e�ciency of policies

This indicator relies on the same underlying model as the previous indicator:
an agent-based model. Details are described in Appendix E. It uses the same
assumption on �ood scenarios and parameters values. Its aim is to evaluate the
e�ciency of di�erent types of communication policies.

The most e�cient policy does also depend on communication costs. Let us con-
sider the choice between a people-centred communication policy costing 200 EUR
per population reached and a top-down communication policy costing 15 000 EUR
annually. One can compute the sum of wealth minus costs over the simulation pe-
riod for di�erent �ood-scenarios. Figure 5 presents such a comparison. In red, the
net wealth gain without policy intervention (no-com), in green the net wealth gain
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Figure 5: Wealth gain over simulation period minus costs of communication policies, in tens of
millions of Euros. Red: no communication policy; Green: people-centred communication policy;
Blue: top-down communication policy.

with a people-centred communication policy, in blue, the net wealth gain with a
top-down communication policy. One can see that for �ood-scenarios with one early
occurring �ood (�ood scenarios 1 and 2), it is not e�cient to communicate. It is
best to use a top-down communication policy when considering scenario 4. It is best
to use the people-centred policy when considering scenarios 3 and 5. Both policies
perform equally well when considering scenario 6. Overall, it seems that early oc-
curring �oods can not easily be managed with communication policies, the top-down
communication policy is more e�cient when a big �ood occurs in an intermediate
time lapse, the people-centred communication policies is more e�cient when a big
�ood occurs in a later time lapse.
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4. Conclusion and Discussion

We showed how building diverse indicators conceived from di�erent worldviews
such as the viability approach or optimization is possible. These indicators can
help a decision-maker protect a population against future �oods. Our approach has
required formalizing some common principles for the dynamics and a generic dy-
namic model representing a synthetic abstraction of more detailed models. Despite
this e�ort to make the results of our various models compatible, they still represent
di�erent worldviews. Hence, classical multi-criteria analysis methods couldn't be
used. Nevertheless, our following discussion will show this point is not necessarily
a strong limitation, but can be considered as an advantage. Our 'very diverse indi-
cators' approach implies some issues for modelers and decision-makers. However, it
o�ers a more relevant and very informative description of the impacts of the various
uncertainty sources, enabling the decision-makers to make informed decisions.

4.1. Issues for modellers

The �rst intuitive concern is about complexity for modelers who have to work in
an interdisciplinary context. Studies across disciplinary �elds are not an easy task.
Apart from institutional obstacles, scientists involved in interdisciplinary work must
face cognitive obstacles, including methodological and conceptual barriers (MacLeod,
2018; Szostak, 2013). Indeed, in order to understand each other, scientists from
various �elds of study must share the same language and openness to novelty and
di�erence. They must also recognise the potential contribution of other disciplines
in answering key research questions despite their bias toward their own group's con-
tributions (Urbanska et al., 2019).

Thus, dealing with our 'very diverse indicators' approach is very challenging for
modelers. First, they should not only build a common view of the phenomena un-
der consideration, but also a formalization of the dynamics which gives comparable
results for resolutions. Secondly, they should at least understand each others' for-
malism and frameworks. This requires a lot more knowledge than working as usual
in a unique modelling paradigm. Each paradigm has its own view on what can
be of interest for a decision-maker (McChesney, 1995). Working together requires
learning not only the methods and the tools of the other modelers, but also the way
they think of the problem. However, a real multidisciplinary approach represents a
new way of thinking and a promising future for education and research (Darbellay,
2015). Moreover, this is needed to overcome the challenge of climate change (see for
example Murphy (2011)).
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4.2. Issues for decision-makers

The second intuitive concern is about complexity for the decision-maker. Un-
derstanding and assimilating two indicators instead of one is already di�cult, but
assimilating even more indicators can be cognitively burdensome enough to be more
confusing than informative. However, considering our indicators are di�erent an-
swers to di�erent risk management issues, it becomes possible for a decision-maker
to deal with our diversity using the complementarity of the various indicators.

At �rst sight, the best indicator is the one preferred by the decision-maker. Which
indicator is favored by the decision maker depends on several elements: �rstly, his
knowledge about the system; e.g. does he know the current wealth distribution
of the population or does he need to guess? Has he already started setting up
information campaigns and just wishes to re�ne their timing or does he want to
know what happens if he does not implement any particular policy? Secondly, the
indicator depends on his vision of the �ood phenomena; e.g. he may think that the
probabilistic nature of �oods is an essential element or he may prefer elaborating a
scenario of protection against a particular �ood, such as the 100-year �ood. Thirdly,
it depends on the decision-maker's objectives: does he want to protect the overall
population or certain parts of it? What damage and hence what reduction in revenues
is acceptable according to him? Providing di�erent indicators derived from di�erent
approaches hence can help decision-makers to de�ne their standpoint and to balance
out their opinions.

On the other hand, for indicators 1 to 3 few information is necessary, except the
size of the expected biggest �ood. Thus the computation of these indicators can
be a �rst cheaper step to de�ne if more detailed approaches, such as the indicators
4 and 5, would be of interest - especially to know more about the most e�cient
campaign and social and spatial inequalities. Indeed, using several indicators can also
improve the decision maker's knowledge of the dynamics of the phenomena under
consideration: with indicator 1, he can detect potentially unacceptable situations in
which population wealth becomes negative; indicator 2 provides information about
the size of the �ood that could be withstood; indicator 3 can help de�ne viable
policies; indicator 4 can inform about the distribution of wealth and hence the number
of poor individuals.

Some indicators respond to similar objectives in a di�erent manner. For example,
with indicator 1, one can de�ne the wealth-revenue space for which unacceptable sit-
uations arise. With indicator 3, one knows whether unacceptable situations persist
after implementing information campaigns. Indicator 1 assumes probabilistic occur-
rences of �oods whereas indicator 3 assumes a maximum �ood event and a minimum
return period against which the population is protected.
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In contrast, some indicators make similar assumptions but respond to di�erent
objectives: Indicator 5 aims at e�ciency by de�ning optimal policies given a �ood
scenario and implementation costs. Indicator 3 aims at viability by de�ning viable
policies given a set of �oods and implementation costs. Di�erent objectives can most
directly be seen within the same modelling approach: indicator 2 allows knowing the
size of the biggest �ood that can be withstood immediately without being in a non-
viable situation. It also de�nes the period of time necessary to get back to a viable
situation after an even bigger �ood. Likewise, indicators 4 and 5 allow de�ning the
most e�cient policy to protect against certain �oods but also the policy that leads to
the greatest equity in the population. The most e�cient and most equitable policies
are not generally the same.

We can �nally stress that indicators 1 and 4 are very rich in terms of information
given about the uncertainty related to who is impacted by various scenarios of �oods,
but very poor in terms of de�ning policy strategies susceptible to maintain the pop-
ulation protected against �oods. On the contrary, indicators 2 and 3 are less able to
inform on the variation of the recommendation due to the various cited sources of
uncertainty. However, they are extremely precious for their ability to design policy
strategies allowing the population to be continuously protected against �oods when
it is possible. From this point of view, the utility of our 'very diverse indicators'
approach becomes obvious. This being said, it would be a challenge to formalize
and exemplify further the synergies that can be built from our approach. But this
is beyond the scope of this paper.

4.3. A very informative approach regarding uncertainties

The last point relates to how the various sources of uncertainties are informed
through our 'very diverse indicators' approach. Whatever the interest of the decision-
maker (de�ning when the population will be viable facing di�erent �oods, whether
some information campaign can help the population be protected against future
�oods, etc.), the answer is based on a transition between one set of values of the
population state to another set of values. This is the case for viable to non-viable
situations for instance. Such transitions, representing a frontier, are always much
more sensitive to possible sources of uncertainty than some stable situations of vi-
ability or non-viability far from this frontier (Alvarez and Martin, 2011; Huet and
De�uant, 2008). Considering di�erent sources of uncertainty built from di�erent
practical constraints guarantees more robust information and decision.

Robustness is an important indicator for decision-making (MacPhail et al., 2018).
In our 'very diverse indicators' approach, the way robustness is expressed depends
on the indicator chosen: for indicator 1, robustness refers to the ability to stay in
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an area where wealth is positive following external disturbances or changes in model
design parameters; for indicators 4 and 5, it refers to the fact that the ranking of
policies stays the same following external disturbances or changes in model design
parameters. For indicators 2 and 3, robustness refers to the guaranteed viability

kernel, i.e. the set of states from which there exists a policy that maintains the
system inde�nitely in the constraint set, following external disturbances or changes in
model design parameters. A decision-maker could use robustness as a meta-indicator
to take his decisions about information campaigns.

To sum-up having many diverse indicators is not a limitation but an advantage.
Future work should characterize further the synergies that emerge from such a di-
versity of indicators.
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Appendix A. Damage evaluation of a given �ood

Damage curves depend on the �ood height and on the presence or absence of
protection measures. We use one of the French o�cial damage curves described in
Christin and Peinturier (2014) and adapt it for the presence of two jointly imple-
mented protection measures: a slot-in �ood barrier which hinders water to enter the
building until a height of 80 cm and the storage of half of the individuals' poten-
tially exposed furniture upstairs. The resulting two damage curves are represented
in Figure A.6. These damage curves imply that the adoption of protection measures

Figure A.6: Damage curve without protection measure (blue, above) and with protection measures
(red, below)

reduces �ood damage without totally avoiding it, except for small �oods with less
than 80 cm water height. We use regressions to approximate both damage curves by
polynomial functions of degree three, depending on vi one for each adaptation status
bi:

D(vi, bi = 0) := Max(0; a1vi − b1v
2
i + c1v

3
i + d1) (A.1)

D(vi, bi = 1) :=

{
a2v − b2v

2 + c2v
3d2 if v > 80,

0 otherwise.
(A.2)

with a1 = 188.3733; b1 = 0.635664; c1 = 0.0010903; d1 = 2417.68; a2 = 232.5365;
b2 = 0.8880617; c2 = 0.0015029; d2 = −5564.097. At the individual level, the water
height, vi, which triggers damage for individual i according to the general damage
function, depends on the geographical localisation of the individual i. At the aggre-
gate level, the average damage is considered. The average damage to be charged on
the average wealth when a �ood v characterized by height vi for individual i occurs
can be approximated by:

D(v, α) :=

∑N
i D(vi, 1)

N
α +

∑N
i D(vi, 0)

N
(1− α). (A.3)
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Appendix B. Formalization of indicator 1

Appendix B.1. Model description

We consider three state variables: the average wealth of the population, w (total
wealth divided by the population size), the proportion of individuals in the popu-
lation having implemented the protection measure, α, and the time since the last
�ood, T .

This model takes into account the uncertainty due to �ood events which are
characterized by their average return time and height of water, r and v. It is assumed
that �ood events occur following a composed Poisson Point Process: times between
�ood events, as well as heights of the �oods, are distributed as exponential variables.

The dynamics of the triplet (T, α, w) is governed by a stochastic di�erential equa-
tion

d(T, α, w) = f(T, α)dt+

∫ ∞
0

φ(T, α)N(dv, dt)

where the deterministic part governs the dynamics in the absence of �ood and the
stochastic part describes the consequences of a �ood event. N(dv, dt) is a Poisson
random measure with intensity L(v)dvλdt. This means that λ is the frequency of
the �ood events and L is the density of the �ood heights.

The functions f and φ are de�ned by:

f(T, α) =

(
1,− ln(2)

Tm − Ta(v)1τ(t)≤T̃
α(t) + A1 ∗ A0(1 + Aα(t))(1− α(t)), B

)
(B.1)

and
φ(T, α) = (−T,∆ρ1(v)(1− α),−damage(α, v)) (B.2)

where parameter B is the annual revenue, A1 is the proportion of the non adapted
population motivated to protect, A0 is the ratio of the population convinced to adopt
safety measures even when no one has already implemented it, A is the coe�cient of
the increase of this ratio through the in�uence of neighbours' adoption. Tm rules the
duration of the e�ectiveness of the protection (the protection becomes inoperative
after Tm years for half the population). When a �ood occurs, the adaptation rate
experiments a sudden increase of a proportion ∆ρ1(v) of the non-adapted inhabitants
which depends on the �ood strength, v ; and the the duration of the e�ectiveness is
reduced by Ta during a T̃ time period.The impact of a �ood on the wealth depends
on the adaptation rate and the �ood height according to damage function (A.3).
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Appendix B.2. Indicator formalization

Given a value of the initial wealth of the population, a value of the annual increase
of this wealth and a temporal horizon, large sets of virtual experiments translating
the various possible dynamics of the population given by the previous model are per-
formed. For each trajectory, tests are carried out (does the wealth become negative,
is it negative at the end of the simulation...) and the frequencies of answer "yes" are
evaluated.

Appendix B.3. Indicator calculation of subsection 3.1

Equation (B.2) is discretized in time. Simulations are performed with time steps
equal to dt = 0.01 year and time horizon equal to 30 years. For the behavioural
dynamics of the population, the initial wealth w(0) ranges from 20 to 74020 by steps
of 2000, B ranges from 30 to 4930 by steps of 100, the initial adaptation rate, α(0)

ranges from 0.05 to 1 by steps of 0.1, T̃ from 35 to 43 by steps of 1, ln(2)
Tm

from 0.086
to 0.116 by steps of 0.01. The other parameters' value are A1 = 1, A0 = 0.00375,
A = 0.392, the functions of the height Ta(v) = Tm − 1

1/Tm+A1x(v)/ln(2)
where x(v) is

piecewise constant function de�ned by :
v 0 10 20 30 40 50 60 70 80 90 100

x(v) 0.0 0.07895 0.07898 0.07900 0.07900 0.07900 0.07898 0.07896 0.07893 0.07889 0.07884

v 110 120 130 140 150 160 170 180 190 200 210

x(v) 0.06554 0.06508 0.06462 0.06417 0.06372 0.06328 0.06285 0.06242 0.06200 0.06159 0.06118

v 220 230 240 250 260 270 280 290 300

x(v) 0.06078 0.06038 0.05999 0.05960 0.05943 0.05926 0.05909 0.05903 0.05903

and the function ∆ρ1(v) is piecewise constant function de�ned by :
v 0 20 40 60 80 100 120 140 160 180 200

∆ρ1(v) 0.0 0.00307 0.00615 0.00922 0.01230 0.01538 0.18464 0.19672 0.20880 0.22088 0.23296

v 220 240 260 280 300

∆ρ1(v) 0.24503 0.25711 0.26587 0.27132 0.27219

For the �ood generation model, the average return time of the �ood event r and
the average size of �ood v vary in couple (r;v) as follows : (3;110), (5;140), (7;175),
(9;205), (9;225) and (11;265).

The computation code and the related data are available at
https://www.comses.net/codebases/b999826c-2205-47c5-8f7a-2689cd0df396/releases/1.0.0/

Appendix C. Formalization of indicator 2

Appendix C.1. Model description

The model takes into account two state variables: the proportion α of the pop-
ulation who has adopted protection measures, and the mean population wealth, w.
It also takes into account a one-dimensional control variable, u, which stands for the
communication e�ort. Flood events are characterized by their height v.
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The variable dynamics are governed by a continuous control dynamical system:
dα
dt

= − ln(2)
Tm

α + A1(u+ A0)(1 + Aα)(1− α)
dw
dt

= B − Cu
u ∈ [0, Umax]

(C.1)

Parameters B, A, A0, A1 and Tm have the same meaning as in Appendix B. Pa-
rameter C > 0 is the unit cost of a communication campaign, Umax is the maximum
instantaneous e�ort of a communication campaign, Their values are adjusted to
match the mechanism of the agent-based model of Appendix E with hypotheses and
methods described in Appendix F. Floods of height v > 0 are seen as a perturbation
of the dynamics C.1, and they induce a shift θ(v) in both wealth and protection level.
The impact on the wealth is negative whereas it is positive on the protection level.

θ(v) =


∆α = +(1− α)βv(v)(1− θt)(θ0 + (θm − θ0) v2

v2
m+v2

∆w = −damage(α, v)
v ∈ R+∗

(C.2)

Bigger �oods have a bigger impact, with a saturation e�ect on α: a �ood of intensity
2v has a bigger impact than a �ood of intensity v, but not twice the impact. vm is
the �ood intensity for which the impact of the �ood on the protection shift is half its
maximum. βv(v) is the proportion of the population impacted by a �ood of size v.
It depends on the space con�guration. The e�ect of �ood is considered to take place
immediately. Parameter θt > 0 allow to to take into account the fact that the e�ect
of the �ood on the adoption rate can decrease with time. Parameters θ0 and θm
adjust the size of the shift according to the mean shift of other models as described
in Appendix F.

The e�ect on the wealth w depends on the �ood intensity v following (A.3).
We assume that acceptable situations are those for which aggregate wealth is

greater than 0. They are thus de�ned by: K := {(α,w)|w ≥ 0}.

Appendix C.2. Indicator formalization

To formalize indicator 2, we use the concepts of mathematical viability theory.
This indicator is de�ned using the concept of viability kernel Aubin (1991): given
control dynamics and a constraint set (subset of the state space), the viability kernel
gathers the states from which there exists at least one control function that governs
a dynamics which remains in the constraint set over time; and the concept of capture
basin Aubin (2001): given control dynamics, a constraint set and a target, the capture
basin gathers the states from which there exists a control function that governs a
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dynamics which remains in the constraint set until it reaches the target. The set of
states supporting a given �ood intensity, v, now or in the future, is the viability kernel
Vv associated to dynamics (C.1) under constraintsKv := {(α,w) ∈ K | (α,w)+θ(v) ∈
K}. The boundary of V250 is shown in white dashed line in Figure 2. The time
necessary to reach a situation that ensures the protection against �oods of intensity
v now and in the future is derived from the capture basin for dynamics (C.1) with
an additional variable, T , which measures the elapsed time (T ′ = −1) of the target
Vv × {0}. Actually, the capture basin is its epigraph. We note CS(T ) the capture
basin of subset S in time T . We consider the viability kernel Vv+v2 associated to the
subset Kv+v2 = {(α,w)| (α,w) + θ(v) + θ(v2) ∈ K} to take into account the presence
of smaller �oods of maximum given intensity v2. The boundary of V250+150 is shown
in white plain line in Figure 2. We note Tv the smallest time T such that Vv is
included in CVv+v2

(T ). We note Tv2 the smallest time T such that K is included in
CVv2 (T ). Then states that belongs to Vv+v2 are protected from the big �ood v now
and in the future in the presence of smaller �oods v2 when their return period is
greater than max(Tv2 , Tv).

Appendix C.3. Indicator calculation of subsection 3.2

Approximations of sets Kv, Kv+v2 , viability kernels Vv, Vv+v2 and capture basins
are performed by the ViabiliTree Sofware Rouquier et al. (2015), Alvarez et al. (2016).
The computation code and the related data are available at
https://forgemia.inra.fr/isabelle.alvarez/RAZ13_ia.

The parameter values are set according to Appendix F: Tm = 8, A = 0.392,
A0 = 0.00375, A1 = 1, C = 70.15e, B = 1933e, Umax = 0.456 (for personalized
campaign), Umax = 0.0 (for doing nothing). Additional parameters due to simpli-
�cation in this model are the following: vm = 100cm, θt = 0.0158, θ0 = 0.0243 ,
θm = 0.272.

Appendix D. Formalization of indicator 3

Appendix D.1. Model description

We consider three state variables: the average wealth of the population, w (total
wealth divided by the population size), the proportion of individuals in the popu-
lation having implemented the protection measure, α, and the time since the last
�ood, T . The model also takes into account a one-dimensional control variable, u,
the communication e�ort.
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The dynamics of the triplet (T, α, w) is governed by an hybrid system: the con-
tinuous part governs the dynamics in the absence of �ood

(T ′(t), α′(t), w′(t)) = F (T (t), α(t), u(t))

and the discrete part describes the consequences of a �ood event

(T (t+), α(t+), w(t+)) = Φ(T (t−), α(t−), w(t−), v(t−)).

F and Φ are maps de�ned by :

F (T, α, u) = (1,

− log(2)
Tm−Ta1τ(t)≤T̃

α(t) + A1(u(t) + A0)(1 + Aα(t))(1− α(t)),

B − Cu)
u ∈ [0, Umax]

(D.1)

and
Φ(T, α, w, v) = (0,

α + ∆ρ1(v)(1− α),
w − damage(α, v))

v ∈ [0, Vmax] if T ≥ Tmin
v = 0 otherwise.

(D.2)

where u ∈ [0, Umax] is the campaign intensity which can vary with time but which is
bounded by Umaxas in Appendix C. Parameters Tm, Ta, A0, A1, B, T̃ and functions
damage(α, v) and ∆ρ1(v) represent the same quantities as in the Appendix B and
C and Umax represent the same quantities as in the Appendix C.

Vmax is the maximal �ood intensity expected and Tmin the minimal time period
between two �oods expected.

Appendix D.2. Set of anticipated �oods

We consider the possibility of successive �oods, but we only consider the scenarios
satisfying the two following constraints: the intensity of each �ood is smaller than
a given intensity Vmax and the time period between two successive �oods is larger
than a positive time Tmin. The set of admissible perturbations is then de�ned by :

v ∈ V (T )

with V (T ) = [0, Vmax] if T ≥ Tmin and {0} otherwise.
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Appendix D.3. Set of acceptable situations

We assume that acceptable situations are those for which the aggregate wealth
is greater than 0. They are thus de�ned by:

K := {(T, α, w)|w ≥ 0}.

Appendix D.4. Indicator formalization

To formalize indicator 3, we use the concepts of mathematical viability theory
Aubin et al. (2011). This indicator is de�ned as the indicator function of the guar-
anteed viability kernel of the set K for the dynamics described by F , Φ, U and
V .

Appendix D.5. Indicator calculation of subsection 3.3

Approximations of guaranteed viability kernels are performed following Saint-
Pierre's algorithm Saint-Pierre (1994). The computation code and the related data
are available at
https://www.comses.net/codebases/e5c17b1f-0121-4461-9ae2-919b6fe27cc4/releases/1.0.0/.
The parameter values are the following:

� Tm = 7

� Ta = 2.835

� A1 = 1

� A0 = 0.00375

� Umax = 0.170,

� T̃ = 39.19,

� A = 0.392,

� B = 2200,

� C = 31.98,

� Vmax = 250,

� Tmin = 10,

� function ∆ρ1(v) is piecewise constant function de�ned by :
v 0 20 40 60 80 100 120 140 160 180 200

∆ρ1(v) 0.0 0.00307 0.00615 0.00922 0.01230 0.01538 0.18464 0.19672 0.20880 0.22088 0.23296

v 220 240 260 280 300

∆ρ1(v) 0.24503 0.25711 0.26587 0.27132 0.27219

34



Appendix E. Formalization of indicators 4 and 5

Appendix E.1. Model description: an individual based model

In the individual based model, agents' heterogeneity is taken into account. We
consider i = 1, 2, ...N heterogeneous agents, which are spatially distributed. Each of
them is characterized by individual wealth wi ∈ R and a boolean bi which indicates
if the agent has an e�cient protection against �oods or not. Time is discrete.

Heterogeneous agents. Individuals are characterized by di�erent attributes, x: e.g.
perceived probability of the risk, perceived consequences of the risk, coping appraisal,
�ood experience, being in a social network. Each individual has an individual speci�c
attribute level, ax,i for example: having no �ood experience or having a strong �ood
experience, varying from 1 to 5.

Probability of adoption. The protection motivation for each individual to adopt adap-
tation measures is a function of the di�erent attributes and attribute levels:

P ((ax,i)x∈X) :=
cΠx∈Xor

ax,i
x

cΠx∈Xor
ax,i
x + 1

(E.1)

where the attributes x belong to X the full set of attributes, orx the odds ratio for
each attribute, ax,i the individual speci�c attribute level and c a constant parameter.2

It can, for example, be derived from a logistic regression.
More precisely, in our model, the set X has �ve elements (perceived probability

of the risk, perceived consequences of the risk, coping appraisal, �ood experience and
a social network) and all attribute levels take their values in set V := {1; 2; 3; 4; 5},
then P is a function from V 5 to R.

The protection motivation may be transformed into action with a probability
of 1/M , which is the probability for each individual to adopt adaptation measures.
Hence the adoption rate for individual i is: P ((ax,i)x∈X)/M during one time step.

Dynamics. Three phenomena may in�uence positively the adoption rate:

� �oods, characterized by variable v, increase the attribute level ax associated to
the "experience" variable of a proportion βv of the population. In particular the

2The odds are de�ned as the number of events that produce an outcome over the number of
events that do not produce this outcome. The odds ratio measures the strength of association
between two events: it is the ratio of the odds of event A in absence of event B divided by the odds
of event A in presence of event B.
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�fth attribute linked with the network is not modi�ed. Hence, their probability
of adoption is impacted. Given v, there exists a function fv which associates for
all individual i its attributes before �ood v (i, (ax,i)x∈X) with the new attribute
levels after �ood v with X is X minus the network attribute.

� information campaigns increase the attribute levels ax associated to the "risk
perception" and "coping" variables in the probability of adoption. The network
attribute level is also not modi�ed. There is a probability βu that an individual
is targeted and reached by the communication message. Given u, there exists a
function fu which associates for each individual i its attributes before campaign
u (i, (ax,i)x∈X)) with the new attribute levels after campaign u.

� the social network may increase the attribute level ax associated to the "social
network" variable in the probability of adoption, depending on the number of
neighbors who have adopted a measure.

Two phenomena may decrease the adaptation rate over time:

� protection may fade over time, with a probability Q per time step for each
individual.

� protection motivation may also fade overtime, the attribute levels of X de-
crease for a proportion βg of the population at each time step. There exists a
function g which associates for every individual i its attributes before decrease
(i, (ax,i)x∈X)) with the new attribute levels after decrease.

Individual wealth is determined in the following way:

� in absence of �oods, individual wealth, wi, increases linearly in time with con-
stant earnings, Bi and decreases with tax payments, which are proportional to
individual wealth, rwi,

� when �oods occur, individual wealth decreases with the damage of the �ood,
which depends on the �ood water height and the individual adaptation status.
We consider 3 di�erent areas in which individuals may be situated, with dif-
ferent distances to the river and hence di�erentiated water heights. In these
areas, small �oods generate water heights of maximum 100 cm, big �oods of
maximum 250 cm. Call vi the water height at individual i

′s position when the
�ood height is v, we have the following damage:

D(vi, bi = 0) = a1vi − b1v
2
i + c1v

3
i + d1 (E.2)

36



D(vi, bi = 1) =

{
a2vi − b2v

2
i + c2v

3
i − d2 if v > 80

0 otherwise,
(E.3)

with parameter values as in the general damage function, described in equations
(A.1) and (A.2). Individual wealth hence evolves as follows:

wi(t+ ∆T ) = wi(t)(1− r) +Bi −D(i, vi, bi) (E.4)

The regulator is an agent on its own:

� the regulator can implement communication policies. The cost of a policy, Cu,
is function of the regulation e�ort, u. It can be di�erent for di�erent policies,
Cj, here j=1,2, where 1 corresponds to the "people centred" policy and 2 to
the "top-down" policy.

� in the baseline scenarios, regulation e�ort is constant over time.

� the regulator's wealth, wr increases linearly with tax income and decreases
linearly with the costs of regulation.

wR(t+ ∆T ) = wR(t) + r
N∑
i=1

wi(t)− Cu. (E.5)

Appendix E.2. Indicator formalization

The inequality indicator represented above determines the number of poor indi-
viduals, i.e. for which the individual wealth is below a certain threshold noted W,
at the end of the time horizon:

Ip1 = card({i|Wi(T ) < W}).

The e�ciency indicator determines the increase in population wealth, as measured
by di�erence of the wealth at the end and the beginning of the simulation period,
after deduction of the costs of information campaigns:

Ie2 =
n∑
i=1

(Wi(T )−Wi(0))−
T∑
t=1

C(u(t)).

Appendix E.3. Parameter values

� λ = 7, N = 1,

� C1 = 200, C2 = 15000, r = 0.02,
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� ax,i(0) ∈ [1; 5], Wi(0) = 0, Wr(0) = 0, α(0) = 0.2464,

� Bi(0) =


B10 ∈ [0; 900]
B10−50 ∈ [901; 1700]
B50−90 ∈ [1701; 3100]
B100 ∈ [3101; 5000]

,

� B̄i(0) = 1932,

� Di ∈ [0; 35000],

� Odds ratios: or1 = 1.036665763, or2 = 2.231593606, or3 = 1.204434523, or4 =
1.799138048, or5 = 2.126908471 with
1 :'perceived probability', 2 :'perceived consequences' 3 :'coping appraisal'
4 :'appraisal of past �ood experience' 5 :'social network'.

The computation code for the indicator and the related data are available at
https://www.comses.net/codebases/b6c94b49-51a9-49db-bc9e-fb853f5acf78/releases/1.0.0/.

Appendix F. Formalization of a common aggregate model with homoge-

neous agents

Wemake the following assumptions to derive an aggregate model from the individual-
based one: individuals who have a protection measure are uniformly distributed in
the network. The �rst aggregate variable we consider is α the mean proportion of in-
dividuals who have a protection measure. Its dynamics between times t and t+ ∆T
is a combination of the number of new adoptions (Eq. (E.1)) and the number of
abandonments:

α(t+ ∆T ) = α(t) +
1

M

1

N
(
N∑
i=1

P ((ax,i)x∈X)))(1− α(t))−Qα(t) (F.1)

As we are considering an aggregate model in continuous time, we �rst linearize
the variations during the time step of size ∆T . We are thus considering the time
derivative:

α′(t) =
α(t+ dt)− α(t)

dt
=

1

M∆T
(

1

N
(
N∑
i=1

P ((ax,i)x∈X)))(1− α(t))−Qα(t)) (F.2)

38



Let us �rst focus on the e�ect of the social network on the probability to imple-
ment the protection measure. For individual i, this e�ect is taken into account via
its attribute a5,i

Figure F.7 displays curves of P ((ax,i)x∈X) as a function of a5,i for several values
of (ax,i)x∈X (the set X is the set X minus the network attribute).

Figure F.7: P ((ax,i)x∈X) as a function of a5,i for several values of (ax,i)x∈X . From the lowest
to the highest curve, (ax,i)x∈X takes the following values : (1,1,1,1), (2,2,2,2), (3,3,3,3), (4,4,4,4)
and (5,5,5,5). c = 0.00035299, or1 = 1.036665763, or2 = 2, 231593606, or3 = 1, 204434523 and
or4 = 1, 799138048.

From this �gure we decide, as a �rst approximation, to consider that

ρ :=
1

N

N∑
i=1

P ((ax,i)x∈X))

is a linear function of the mean 1
N

∑N
i=1 a5,i of a5,i over the population, where we

recall that for each individual i, a5,i may take all the integer values between 1 and
5. Hence if we introduce for the sake of readability the notations:

ρ1 :=
1

N

N∑
i=1

P ((ax,i)x∈X), a5,i = 1)
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which ranges from ρ1,min := P ((1)4, 1) to ρ1,max := P ((5)4, 1), we obtain

ρ ≈ ρ1 +

(
1

N

N∑
i=1

(a5,i − 1)/4

)
Aρ1 (F.3)

with

A =
P ((5)4, 5)− P ((5)4, 1)

P ((5)4, 1)
(F.4)

to ensure that when all attributes in the population equal 5, ρ = P ((5)5) = P ((5)4, 5).
For each individual i, a5,i ranges from 1, when no neighbour of i has implemented

the protection measure, to 5, when all the neighbours of i have implemented the pro-
tection measure. As we assumed that the individuals having implemented the protec-
tion measure are uniformly distributed on the graph, we deduce that (

∑N
i=1 a5,i)/N

is a linear function of α, which equals 1 when α = 0 and 5 when α = 1. Thus
(
∑N

i=1 a5,i)/N = 1 + 4α. Inserting this expression into Equation (F.3) yields

ρ ≈ ρ1 + αAρ1

= (1 + αA)ρ1
(F.5)

and we approximate equation (F.2) by

α′(t) =
1

M∆T
(ρ1(1 + Aα(t))(1− α(t))−Qα(t)) . (F.6)

When an information campaign u occurs, the attributes of the proportion βu of
individuals who are reached by the campaign are modi�ed by function fu. Hence an
information campaign causes a jump of ρ1 and the mean value of ρ1 just after the
campaign u and denoted by ρ1,u equals:

ρ1,u = 1
Card(V )4N

∑
(ax,i)x∈X∈V 4N

1
N

∑N
i=1 (βuP (fu((ax,i)x∈X)), 1) + (1− βu)P ((ax,i)x∈X , 1))

= 1
Card(V )4

∑
(ax)x∈X∈V 4 (βuP (fu((ax)x∈X), 1) + (1− βu)P ((ax)x∈X , 1))

(F.7)
Next, the in�uence of the campaign decreases with time due to the attribute

level decrease described by function g. Actually, at each time step a proportion βg
of the population undergoes this attribute level decrease and the mean value of the
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subsequent decrease of ρ1 denoted by ∆ρ1,g equals :

∆ρ1,g = 1
Card(V )4N

∑
((ax,i)x∈X)∈V 4N

1
N

∑N
i=1

(
βg(P ((ax,i)x∈X , 1)− P (g((ax,i)x∈X 1

Card(V )4
), 1)

)
= βg

Card(V )4

∑
(ax)x∈X∈V 4 (P ((ax)x∈X , 1)− P (g((ax)x∈X), 1))

(F.8)
Hence, the mean consequence of campaign u at time 0 is described by the values

of ρ1 which decrease with time :

ρ1(t) = max(ρ1,u −∆ρ1,gt, ρ1,min) (F.9)

and then the area between this curve and a the constant value ρ1,min equals
(ρ1,u−ρ1,min)2

2∆ρ1,g
.

So, if the cost of campaign u is Cu, the in�nitesimal cost c according to its impact
on ρ1 denoted by c equals:

c =
Cu

(ρ1,u−ρ1,min)2

2∆ρ1,g

(F.10)

Now we have to de�ne umax, the maximal instantaneous campaign intensity. We
choose it such as making a maximal campaign during one unit time has the same
cost as a campaign at one time of the discrete model, Cu.

Hence umax =
(ρ1,u−ρ1,min)2

2∆ρ1,g
.

Finally, if we enlarge the campaign possibilities to consider control functions
u(t) ∈ [0, umax], we can describe the dynamics by:

α′(t) =
1

M∆T
((u(t) + ρ1,min)(1 + Aα(t))(1− α(t))−Qα(t)) (F.11)

When a �ood v occurs, the attributes of the proportion βv of individuals who are
reached by the �ood are modi�ed by function fv. Hence a �ood causes a jump of
ρ1 and the mean value of this jump compared to the di�erence between ρ1 and its
maximal value ρ1,max denoted by ∆ρ1,v equals:

∆ρ1,v = 1
Card(V )4N

∑
((ax,i)x∈X)∈V 4N

1
N

∑N
i=1

(
βv

P (fv((ax,i)x∈X),1)−P ((ax,i)x∈X ,1)

ρ1,max−P ((ax,i)x∈X ,1)

)
= βv

Card(V )4

∑
(ax)x∈X∈V 4

(
P (fv((ax)x∈X),1)−P ((ax)x∈X ,1)

ρ1,max−P ((ax)x∈X ,1)

)
(F.12)

Hence just after �ood v, the value of ρ1 can be approximated by ρ1+∆ρ1,v(ρ1,max−ρ1),
and this value decreases with time due to function g as described above, so the mean
consequence of �ood v at time 0 is described by the values of ρ1 which decrease with
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time :
ρ1(t) = max(ρ1 + ∆ρ1,v(ρ1,max − ρ1)−∆ρ1,gt, ρ1,min) (F.13)

Consequently, from (F.6), the evolution of α after a �ood in absence of other �ood
or information campaign is described by :

α′(t) =
1

M∆T
(max(ρ1+∆ρ1,v(ρ1,max−ρ1)−∆ρ1,gt, ρ1,min)(1+Aα(t))(1−α(t))−Qα(t))

(F.14)

We note that max{t ≥ 0|ρ1(t) > ρ1,min} ≤ (ρ1,max−ρ1,min)

∆ρ1,g
:= T and we choose to

approximate these dynamics on interval [0;T ] by:{
α(0) = α0 + ∆vα0

α′(t) = − 1
M∆T

(Q+ xv(α0))α(t))
(F.15)

with a jump of α0 proportional to the one of ρ1:

∆vα0 := ∆ρ1,v(1− α0) (F.16)

and with the constraint that if the system governed by (F.6) is at equilibrium before
the �ood, that means that the value of ρ1 denoted by ρ1,0 equals

ρ1,0 =
Qα0

(1 + Aα0)(1− α0)
(F.17)

then both systems (F.15) and{
α(0) = α0

α′(t) = 1
M∆T

(max(ρ1,0 + ∆ρ1,v(ρ1,max − ρ1,0)−∆ρ1,gt, 0)(1 + Aα(t))(1− α(t))−Qα(t))
(F.18)

have the same value at time T .
Let us denote by α̃0 the solution of (F.18), we then want that :

α̃0(T ) = (α0 + ∆α0)e−
1

M∆T
(Q+xv(α0))T (F.19)

that is

xv(α0) = −M∆T

T
ln(

α̃0(T )

α0 + ∆α0

)−Q (F.20)
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We then de�ne x the mean value of x(α0) over α0 which equals:

xv =

∫ 1

α0=0

−M∆T

T
ln(

α̃0(T )

α0 + ∆α0

)−Qdα0 (F.21)

and choose to approximate (F.18) over [0;T ] when a �ood v occurs at t = 0 and
without any information campaign by{

α(0) = α0 + ∆vα0

α′(t) = − 1
M∆T

(Q+ xv)α(t))
(F.22)

We �nally have to de�ne the maximal value Vmax of the variable v(t) which
will range over all possible �oods and extrapolate from the individual based model
which can provide triplets (v,∆ρ1,v, xv) functions from v to (∆ρ1,v, xv), we denote by
∆ρ1(v) and x(v). And then, combining (F.11) and (F.22), we obtain the dynamics
description including �ood v(t) and information campaign u(t) possibilities:



α(t+) = α(t−) + ∆ρ1(v)(1− α) if v(t) > 0
α′(t) = 1

M∆T
((u(t) + ρ1,min1τ(t)≤T )(1 + Aα(t))(1− α(t))− (Q+ xv1τ(t)≥T )α(t))

τ(t+) = 0 if v(t) > 0
τ ′(t) = 1
u(t) ∈ [0; ρ1,max − ρ1,min]
v(t) ∈ [0;Vmax]

(F.23)
The second aggregated variable we consider is the average wealth w := 1

N
wR +∑N

i=1 wi with the discrete dynamics from Eq. (E.4) and (E.5) when a campaign u is
carried out and a �ood v(t) occurs at t:

w(t+ ∆T ) = w(t) +

∑N
i=1Bi

N
− Cu −

∑N
i=1D(i, v(t), bi)

N

With the assumption of homogeneous distribution of protected individuals,
∑N
i=1 D(i,v,bi)

N

can be approximated by:

∑N
i=1D(i, v, bi)

N
≈
∑N

i=1 αD(i, v, 1) + (1− α)D(i, v, 0)

N

= D(v, 1)α +D(v, 0)(1− α)
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with D(v, b) :=
∑N
i=1D(i,v,b)

N
.

For the information campaign, we have derived the instantaneous cost c from
(F.10).

Hence, the dynamics of w can be described by an hybrid system:

w(t+) = w(t−)− (D(v(t), 1)α(t) +D(v(t), 0)(1− α(t))) if v(t) > 0
w′(t) = 1

∆T
(B − cu(t))

u(t) ∈ [0; ρ1,max]
v(t) ∈ [0;Vmax]

(F.24)

with u(t) the intensity of campaign u at time t.
This model is then based on three state variables: the proportion α of the popu-

lation who has adopted protection measures, an indicator of populations' aggregate
wealth, w, and the time period duration since last �ood, τ . It also takes into account
a one-dimensional control variable, u, which corresponds to the communication ef-
fort, and a certain number of �ood events that are characterized by their water height
v. From (F.23) and (F.24), the dynamics are given by the hybrid system:

α(t+) = α(t−) + ∆ρ1(v)(1− α) if v(t) > 0
α′(t) = 1

M∆T
((u(t) + ρ1,min)(1 + Aα(t))(1− α(t))− (Q+ xv1τ(t)≤T )α(t))

τ(t+) = 0 if v(t) > 0
τ ′(t) = 1

w(t+) = w(t−)− (D(v(t), 1)α(t) +D(v(t), 0)(1− α(t))) if v(t) > 0
w′(t) = 1

∆T
(B − cu(t))

u(t) ∈ [0; ρ1,u − ρ1,min]
v(t) ∈ [0;Vmax]

(F.25)
with

D(v, 1) = D(v, 1)/3 +D(v − 50, 1)/3 +D(v − 100, 1)/3

and
D(v, 0) = D(v, 0)/3 +D(v − 50, 0)/3 +D(v − 100, 0)/3.

We can simplify the equation writing by setting :

� B := 1
∆T
B

� C := 1
∆T
c

� Umax := ρ1,u − ρ1,min
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� damage(α, v) := D(v(t), 1)α(t) +D(v(t), 0)(1− α(t))

� A1 := 1
M∆T

� Tm := ln(2)M∆T
Q

� Ta := Tm − ln(2)M∆T
Q+xv

Then Eq. F.25 becomes :

α(t+) = α(t−) + ∆ρ1(v)(1− α) if v(t) > 0

α′(t) = − log(2)
Tm−Ta1τ(t)≤T

α(t) + A1(u(t) + ρ1,min)(1 + Aα(t))(1− α(t))

τ(t+) = 0 if v(t) > 0
τ ′(t) = 1
w(t+) = w(t−)− damage(α, v) if v(t) > 0
w′(t) = B − Cu(t))
u(t) ∈ [0;Umax]
v(t) ∈ [0;Vmax]

(F.26)
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