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Abstract

High-throughput screening of available genomic data and identification of potential antigenic

candidates have promoted the development of epitope-based vaccines and therapeutics.

Several immunoinformatic tools are available to predict potential epitopes and other immu-

nogenicity-related features, yet it is still challenging and time-consuming to compare and

integrate results from different algorithms. We developed the R script SILVI (short for: from

in silico to in vivo), to assist in the selection of the potentially most immunogenic T-cell epi-

topes from Human Leukocyte Antigen (HLA)-binding prediction data. SILVI merges and

compares data from available HLA-binding prediction servers, and integrates additional

relevant information of predicted epitopes, namely BLASTp alignments with host proteins

and physical-chemical properties. The two default criteria applied by SILVI and additional fil-

tering allow the fast selection of the most conserved, promiscuous, strong binding T-cell

epitopes. Users may adapt the script at their discretion as it is written in open-source R lan-

guage. To demonstrate the workflow and present selection options, SILVI was used to inte-

grate HLA-binding prediction results of three example proteins, from viral, bacterial and

parasitic microorganisms, containing validated epitopes included in the Immune Epitope

Database (IEDB), plus the Human Papillomavirus (HPV) proteome. Applying different filters

on predicted IC50, hydrophobicity and mismatches with host proteins allows to significantly

reduce the epitope lists with favourable sensitivity and specificity to select immunogenic epi-

topes. We contemplate SILVI will assist T-cell epitope selections and can be continuously

refined in a community-driven manner, helping the improvement and design of peptide-

based vaccines or immunotherapies. SILVI development version is available at: github.com/

JoanaPissarra/SILVI2020 and https://doi.org/10.5281/zenodo.6865909.

Introduction

In the post-genomic area, available databases and -omics datasets have been extensively

explored to discover antigens for the development of vaccines or immunotherapies [1].

Reverse vaccinology (RV) approaches hold the promise for breakthrough contributions to
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vaccine development, as in the case of the meningococcal vaccine [2]. Yet, there are still a myr-

iad of pathogens and conditions for which no vaccine has yet been successfully developed, par-

ticularly in the case of Neglected Infectious Diseases (NIDs), wherein current tools, innovation

and funding are lacking, and would greatly benefit of new preventive or therapeutic candidates

with low development costs [3, 4].

To induce protective immunity, epitope-based vaccines require identifying the minimal

immunogenic units for optimal recognition by the host’s immune system and induction of

protective immunity [5, 6]. Also, epitope-based selections offer great advantages when com-

pared to empirical antigen selection, and can be applied whenever cellular immune responses

are relevant, whether protective or detrimental [7–10]. Yet, epitope selection from databases

remains a challenging step to optimise and diversify the antigens to be tested in an experimen-

tal setting [10].

Epitope immunogenicity relies firstly on high-affinity binding to HLA-class I or -class II

molecules and on antigen abundance and kinetics of expression, conservation, low homology

to the host, intracellular processing, and the presence of T cells with specific TCRs [11–13].

To inform on these features, databases such as Immune Epitope DataBase (IEDB) and other

tools are available [14]. Nevertheless, in silico-based approaches have not supported a signifi-

cant increase in the total number of licensed products in the last decades and several challenges

remain [9, 15, 16]. Our capacity to explore the vast amount of data generated by immunoinfor-

matic algorithms is still limited to a few often web-based tools that work with different output

formats. Currently available web-servers allowing RV pipelines are: the New Enhanced

Reverse Vaccinology Environment (NERVE), Vaxign, or The Jenner-Predict [17–19]. They

provide insights on the immunogenic potential of protein antigens and reduce the initial pro-

tein candidates to test. However, these pipelines present some setbacks, such as the limited

number of input sequences and limited number of available genomes. Also, some apply auto-

matic cytosolic/surface expression filters, which are not transversal to all pathogens or diseases

(i.e. in the case of exosome-based secretion). Therefore, they may overlook key targets [20]

and restrict options and selection parameters.

Optimised T-cell epitope selection relies on knowledge of several disease-specific variables:

host susceptibility/resistance factors, HLA variability, environmental factors [21, 22] and path-

ogen-related characteristics such as virulence, tropism, immunomodulation and species con-

servation [23].

Several open-access immunoinformatics tools and databases are available to evaluate a set

of characteristics associated with immunogenic epitopes [6, 24–26]. T-cell epitope prediction

can be performed via direct prediction (predicting T-cell receptor, TCR recognition) or indi-

rect methods (predicting epitope binding to HLA molecules), the latter extensively more accu-

rate than the former [27]. HLA-binding affinity has become the first criterion when trying to

predict if a given peptide sequence constitutes an epitope, since it is the first requirement for

T-cell activation and it correlates with peptide linear sequences [26, 27]. Machine-learning

algorithms, such as Artificial Neural Networks (ANNs) and Support Vector Machines (SVMs),

display a good predictive performance for HLA-binding predictions [28–31]. HLA-class II

binding predictions are currently slightly less accurate than HLA-class I binding predictions

because they involve conformational criteria [32, 33]. Besides, HLA-class II epitopes are longer

(around 15 to 25-mer) and several binding registers or cores may be present in the same pep-

tide [34, 35].

Additional criteria for in silico predictions of epitope immunogenicity include: i) protein

abundance, subcellular localization and expression dynamics, as abundant and early expressed

pathogen-specific epitopes have increased chances of being processed and presented [36, 37];

ii) peptide-MHC complex (pMHC) binding affinity and stability [12, 38, 39]; iii) efficiency of
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pMHC processing [24]; iv) homology, either as positive selection criterion of conserved

sequences among pathogenic species, or as negative selection criterion of sequences homolo-

gous to host proteins [27]; v) other biochemical properties such as solubility help guide peptide

selection, formulation and handling [12, 28].

The selection steps involving analysis of subcellular localization, abundance and good

expression dynamics are the filters with the highest selective power [36]. Completely conserved

epitopes are ideal for pan-vaccine development across multiple pathogenic strains [23]. Fur-

thermore, a combined approach that uses numerous predictors will increase the confidence in

the predicted peptides’ binding affinity, restriction and immunogenicity [35, 40]. Criteria that

can be interesting for peptide selection are proteasomal processing predictors, however, there

are still significant knowledge gaps and no significant evidence of a good selective power, mak-

ing them low prediction efficiency algorithms [36, 41]. The criteria of high peptide homology

to host proteins can be considered as an unreliable filter since self-recognition depends on

the TCR-pMHC interaction which allows a reasonable amount of molecular mimicry, and is

therefore difficult to predict [42–44]. Nevertheless, potential interferences resulting in autoim-

munity are correlated with epitope conservancy. So, BLASTp alignments can be used to com-

pare pathogen- and host-derived peptide sequences, to describe similarities through position-

specific mismatches, a feature which also included in the NERVE pipeline. Considering all

this, we propose that a robust epitope selection process should start with binding affinity pre-

diction analysis by at least two different algorithms, of a strong antigen pool (highly abundant,

conserved, exposed and accessible proteins, expressed in the appropriate timing during infec-

tion). Additional adjustable filters are homology to host proteins, promiscuity, binding affinity,

and solubility, with which we can rank epitopes.

Here we developed a workflow for epitope selection under R, named SILVI (short for: from

in silico to in vivo). The script reads epitope binding prediction data from different predictors,

processes and compares data, assimilates BLASTp alignment results [45] and feeds a final

output table with all relevant information to perform the tailored epitope selections with avail-

able information, thus helping to refine the search of the most immunogenic epitopes. We

demonstrated the relevance of SILVI’s workflow with epitope selection from the Genome

Polyprotein (P26664 and P27958) from Hepatitis C Virus (HCV), the Circumsporozoite

Protein (P19597) from Plasmodium falciparum, the 6kDa early secretory antigenic target

(P9WNK7) from Mycobacterium tuberculosis, and the Human Papilloma Virus (HPV) prote-

ome (uniprot_HPV_proteome_UP000126093). SILVI helps the process of epitope selection

from a vast amount of data produced by different open-source third-party algorithms, and to

add extra relevant information, in a non-restrictive, user-friendly manner. SILVI is readily

available for use and due to the versatility and open-access nature of the R language, it can be

improved, expanded, and easily tailored to meet users’ specific research needs.

Results

T-cell epitope selection with SILVI on example proteins from four

pathogenic microorganisms

The four examples used to demonstrate SILVI’s workflow include one viral protein with two

strain-specific sequences (HCV Genome Polyprotein, P26664 and P27958); one bacterial pro-

tein including one sequence from M. tuberculosis (P9WNK7); one parasitic protein including

one sequence from P. falciparum isolate NF54 which contains several repeated 9-mers

(P19597); and, finally, the full proteome of HPV (uniprot_HPV_proteome_UP000126093,

taxon identifier 10566) which encodes 6 proteins (Table 1).
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Individual protein fasta files, containing one or more sequences, corresponding to the

selected examples were directly uploaded in the algorithms’ web-servers and HLA-class I pre-

dictions were performed for all total and unique 9-mer peptides (Fig 1). HLA-class II predic-

tions were performed for all 15-mer full peptides (Fig 2).

With SILVI’s step A applied to the example proteins, the peptides shared between species-

specific protein sequences (seq_nums) are selected (common_among_seq_nums filter), and

only the epitopes predicted by at least two predictors are selected (common_among_predictors
filter). In the examples, proteins were analysed with only one seq_num (Pf CSP, Mtb EsxA and

HPV proteome), or two seq_nums (HCV genome polyprotein). SILVI integrated data from all

9-mer or 15-mer epitopes and respective HLA-binding prediction information, meaning only

repeated epitopes (illustrated by Pf CSP) or epitopes not shared by species-specific sequences

(illustrated by HCV genome polyprotein) were excluded from the analysis.

In the BLASTp online server, the human RefSeq proteins were used as the host proteome

(Homo sapiens, Taxid: 9606). The corresponding.txt result files were downloaded to the work-

ing directory and SILVI’s steps B and C were run sequentially (Figs 1 and 2). The intermediary

output files “2_common_blast.csv” and “3_blast_mismatches.csv”, include the short-blastp

results, position-specific mismatches, and physical-chemical properties (package Peptides) in

addition to HLA prediction data. Step C generated the final result files (res_classI.csv and

res_classII.csv), in which the IC50 value predicted by NetMHCpan (“scoreN”) for a given pep-

tide or full_peptide/core combination and final match/mismatch counts are added.

Table 1. Example proteins and validated epitopes present in the IEDB 3.0 database.

example#1 HCV GP example#2 Pf CSP example#3 Mtb EsxA example#4 HPV proteome

Organism Hepatitis C virus Plasmodium falciparum Mycobacterium tuberculosis Human papilloma virus

Protein name Genome Polyprotein Circumsporozoite

protein (CSP)

6 KDa early secretory

antigenic target (EsxA)

Complete proteome (HPVproteome)

UniprotKB

accession

P26664 from HCV genotype 1a

(isolate 1) and P27958 from HCV

genotype 1a (isolate H77)

P19597 from P.

falciparum (isolate NF54)

P9WNK7 from M.

tuberculosis (strain ATCC

25618 / H37Rv)

uniprot_HPV_proteome_UP000126093 from

HPV (taxon identifier 10566)

length (a.a.) 3011 397 95 2309 (6 proteins with 400/139/ 96/600/555/519 a.

a.)

validated 9-mer

epitopes1
106 24 42 None

validated

15-mer

epitopes1

122 27 59 None

1retrieved from IEDB.org.

https://doi.org/10.1371/journal.pone.0273494.t001

Fig 1. Results for HLA-class I T-cell epitope selection with SILVI on the 4 example proteins. I, IEDB MHC-I

binding (consensus); N, NetMHCpan; S, SYFPEITHI.

https://doi.org/10.1371/journal.pone.0273494.g001
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Since no filters were applied (e.g. percentile rank or IC50) on initial data, final binding pre-

dictions include strong-, low- and non-binding 9-mer and 15-mer peptides. For HLA-class I

binding prediction data, and for the examples with only one seq_num (Pf CSP, Mtb EsxA and

HPV proteome), all 9-mer epitopes are analysed in the final output table and promiscuity is

always equal to 11 (total number of supertypes considered by default). Similarly, for HLA-class

II results, all epitope cores are analysed in the final output table. However, because both algo-

rithms may not predict a given full_peptide/core combination, it will not be assigned HLA

restriction (“NA”) or IC50 value (“scoreN = NA”).

Comparison of SILVI’s outputs with IEDB-validated epitopes

Previously validated epitopes specific to the selected example proteins were retrieved from the

IEDB 3.0 database to exemplify SILVI’s workflow. From full epitope lists from the example

proteins, all 9-mer and 15-mer validated epitopes were retrieved (S1 Table). Information from

the final output files was used to characterize the validated epitopes in the IEDB database (S1

Table) and possibly hint at the most relevant filtering criteria users can utilize to reduce epi-

tope lists (S1 and S2 Figs).

For HCV GP (example#1), from the total 3003 9-mer peptides present in both protein

sequences, 2109 are shared among the two seq_nums P26664 and P27958. Similarly, among

the 2997 15-mer peptides present, 1692 are shared among the two seq_nums. The total 2519

epitopes in IEDB for the HCV GP, 256 are 9-mer linear peptides and 324 are 15-mer linear

epitopes (23%). Some of these validated epitopes are not present in the selected sequences (150

9-mers and 202 15-mers), for a total of 106 9-mer and 122 15-mer validated epitopes present

in P26664 and P27958 which were characterized with data from SILVI’s final output table (S1

and S2 Figs).

For Pf CSP (example#2), 294 epitopes are present in IEDB from several CSP and CSP-

related antigens from different P. falciparum isolates, including 41 9-mer and 30 15-mer vali-

dated epitopes (24%). Among these, 36 9-mer epitopes are from the CSP antigen (excluding

related proteins), 24 of which are present in the selected P19597 protein (S1 Fig). Similarly,

CSP has 29 15-mer epitopes in IEDB, 27 of which are present in the P19597 protein (S2 Fig).

Interestingly, the strongest binding validated HLA-class I epitopes from the HCV GP and

Pf CSP proteins have higher overall predicted binding affinity (IC50 value calculated by

NetMHCpan, “scoreN”), with over 75% and 62% of validated epitopes under 1100 nM pre-

dicted IC50, respectively, whereas for Mtb EsxA, only 19% of validated epitopes are below this

cutoff (S1 Fig). The overall average of best IC50 predictions for validated epitopes is 1618.81

nM (±3220.9) for HCV GP, 2439.32 nM (±4323.43) for Pf CSP, and 8177.56 nM (±7677.85)

for Mtb EsxA.

Fig 2. Results for HLA-class II T-cell epitope selection with SILVI on the 4 example proteins. I, IEDB MHC-II

binding (consensus) algorithm; N, NetMHCIIpan.

https://doi.org/10.1371/journal.pone.0273494.g002
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Concerning overall HLA-class I predictions, the presence of two seq_nums (HCV GP)

greatly restricted the final epitope list and predictions, and 94% of the total 256 predictions on

the 102 validated epitopes in the final output table are below 1100 nM predicted IC50 (S1 Fig).

Pf CSP and Mtb EsxA, with only one seq_num and no binding affinity filter applied to initial

HLA-binding predictions, include only 10% and 2% total predictions below the same cutoff,

respectively (S1 Fig).

Most HCV GP and Mtb EsxA 9-mer epitopes present hydrophobicity values between -1

and 1 (62% and 88%, respectively), whereas only 37,5% of Pf CSP peptides are within this

range. Most allele supertypes are represented in the examples with a superior representation of

the A02 (17–28%), B44 (13–17%) and B62 (10–26%) supertypes (S1 Fig). Regarding total mis-

matches against human proteins, an overwhelming majority of epitopes of all examples pos-

sesses between 1 to 3 mismatches (72–94%), and roughly a quarter (24–29%) of all 9-mer

epitopes have 0 anchor position mismatches, while 55–97% have at least 1 anchor position

mismatch (S1 Fig).

Regarding the best predicted affinity for validated 15-mer epitopes, HCV GP has the highest

number of validated epitopes predicted to bind with an IC50 below 1100 nM (44%), while for

Pf CSP and Mtb EsxA only 34% and 16%, respectively, are under this cutoff value (S2 Fig).

Overall average IC50 for the best predictions of validated 15-mer epitopes is 1580.76 nM

(±2803.11) for HCV GP, 1530.05 nM (±1769.1) for Pf CSP, and 2214.4 nM (±2201.65) for Mtb

EsxA.

At least 48% of validated Pf CSP 15-mer epitopes present a hydrophobicity value between

-1 and 1, increasing to 72 and 92% of validated epitopes from HCV GP and Mtb EsxA, respec-

tively. All Mtb EsxA validated 15-mer epitopes present 1 to 3 total mismatches with human

proteins, decreasing to 79% for HCV GP, and 64% for Pf CSP (S2 Fig).

Among the best HLA-class II predictions for validated epitopes, and for all example anti-

gens, most predict binding to HLA-DRB1�07:01 (38–49%) and HLA-DRB4�01:01 (7–22%) (S2

Fig). Epitope promiscuity, for HLA-class II predictions, pertains to binding core predictions

by the different algorithms, and in case of disagreement between predictors, promiscuity

equals zero. Results show the nearly 100% of validated epitopes present a promiscuity ranging

from 1 to 6 alleles, comprising 46–52% of epitopes predicted to bind to 5 or 6 alleles (S2 Fig).

Validated HLA-class I epitopes in final output table (“res_classI.csv”). For HCV GP,

the highest predicted IC50 corresponds to peptide ADTAACGDI, 18184.5 nM binding affinity

to alleles from the B44 supertype. This epitope in IEDB (ID 775) has 2/2 positive experimental

results but for binding to mouse H2-Kk alleles (Mamu-A1�011:01 and H2-Kk) (S1 Table). For

epitope ID 6435 (CINGVCWTV), the best predicted binding affinity is specific to alleles

belonging to the A02 supertype (321 nM), which agrees with the experimental data regarding

the HLA restriction of this epitope in the IEDB database (303 positive assays) (S1 Table) [46,

47]. This peptide is also predicted to bind with extremely low affinity to the alleles from the

A01 supertype (21497.1 nM) by all predictors. Experimental data is extensive for this 9-mer

peptide, with 342 assays in total and only 30 with negative results (<9%), including positive

results for binding to HLA-A3 alleles (chromium-51 cytotoxicity) and HLA-class II molecules

(ELISA IL-2 release) (S1 Table). From the 102 validated 9-mer peptides present in the final

output table for HCV GP, only 9 were not assigned the same HLA restriction by at least two

predictors (promiscuity = 0). As an example, HCV GP epitopes EVVTSTWVL (ID 14902) and

DVVCCSMSY (ID 10763) are predicted to bind strongly to alleles from the A26 supertype

(187 and 37 nM, respectively) which correlates with experimental data in IEDB (3 positive

assays out of 7, and 8 positive out of 10, respectively) (S1 Table) [48, 49]. All algorithms predict

these epitopes to bind with moderate or low affinity to other HLA-class I alleles (B07 and B62,

A01, A03, respectively).
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For Pf CSP, the maximum predicted IC50 value for a validated 9-mer epitope is 13837.8

nM, corresponding to an extremely low binding affinity for peptide NEEPSDKHI to B44

supertype alleles (representative allele B�40:01). However, IEDB MHC-I binding predicts a

binding affinity of 6510.14 nM for the same allele (I_B4001_6510.14). This is also the lowest

predicted IC50 for this peptide among the 11 predictions available. In IEDB, this epitope (ID

43604) only contains positive experimental validation assays for binding to mouse H2-Kk

alleles and 2 negative MHC binding assays for mouse Mamu-A1�011:01 and human

HLA-B�44:02 (S1 Table). Experimental data are extensive for Pf CSP epitope ID 74841 (YLN-

KIQNSL) including 20 (out of 22) positive assays and show this epitope is immunogenic,

binds to HLA-B�07:02, HLA-C�03:03 and mouse H2-b class I alleles, but mostly to the

HLA-A�02:01 allele inducing cytotoxicity (chromium-51 cytotoxicity assays), IFN-γ and IL-2

release (ELISA and ELISpot assays) (S1 Table) [50, 51]. This information is well reflected in

the HLA-binding prediction data, as this peptide is predicted to bind to alleles from the A02

supertype with an affinity of 17.3 nM, while also showing a strong binding affinity to alleles

from the B08 and B62 supertypes (351.1 and 493.8 nM, respectively). Pf CSP epitope ID 42295

(MPNDPNRNV) showed positive results in 14 out of 18 assays performed, and this experi-

mental data shows it binds to HLA-B7 alleles, HLA-B�51:01 and HLA-B�53:01 inducing cyto-

toxic responses (chromium-51 cytotoxicity assays), and IFN-γ release (ELISpot) (S1 Table)

[50, 52]. Accordingly, prediction data indicates strong binding to alleles from the B07 super-

type (456.2 nM), whereas the remaining 10 results predict a weak binding affinity to the other

allele supertypes.

For Mtb EsxA, the maximum predicted IC50 value for a validated 9-mer epitope is 30302.5

nM, corresponding to a low binding affinity for peptide AWGGSGSEA (ID 189582) to the

B62 supertype (representative allele B�15:01). For the same allele, IEDB MHC-I binding pre-

dicts a binding affinity of 13739 nM. Experimental data in IEDB shows negative results in 7

assays out of 10 performed, and only 3 positive MHC binding assays (S1 Table) show this

epitope binds to HLA-A�30:02 molecules, included in the A01 supertype [53], and the algo-

rithms predict a very low binding affinity of 15981.71 nM (MHC-I binding) and 43641.5

nM (NetMHCpan). On the contrary, experimental data is robust for Mtb EsxA epitope 3064

(AMASTEGNV) with 7/7 positive T-cell and MHC binding assays showing it binds to

HLA-A�02:01, HLA-A�30:02, and HLA-A2 alleles and induces IFN-γ release (S1 Table) [53,

54]. This information correlates with prediction data, wherein this peptide is predicted to bind

to alleles from the A02 supertype with an affinity of 634.6 nM by NetMHCpan. Additionally,

IEDB MHC-I binding predicts this peptide to bind to alleles HLA-A�02:01, HLA-A�02:03,

HLA-A�02:06, HLA-A�02:11 and HLA-A�30:02 with predicted affinity of 722.33 nM, 17.19

nM, 1434.02 nM, 11.33 nM and 664.34 nM, respectively. It also has a low binding affinity pre-

diction to the B62 supertype (3423.5 nM). Qualitative binding data shows Mtb EsxA epitope

13195 (ELNNALQNL) binds to HLA-A24 alleles (qualitative binding assays), although ELI-

Spot data shows no induction of IFN-γ release in 2 negative assays (S1 Table) [54, 55]. The best

binding prediction for this peptide is low-affinity binding to A26 supertype (4896.2), with pre-

dicted affinity to A24 alleles of 29334 nM. Similarly, IEDB MHC-I binding indicates excep-

tionally low-affinity binding to A24 alleles (28888.98 nM to HLA-A�23:01 and 28049.05 nM to

allele HLA-A�24:02).

Validated HLA-class II epitopes in final output table (res_classII.csv). For HCV GP,

the maximum predicted IC50 value for a validated 15-mer epitope is 21723.9 nM, correspond-

ing to a low-binding affinity for peptide PPLEGEPGDPDLSDG to allele HLA-DRB3�01:01

(core LEGEPGDPD). This epitope has experimental data indicating it is restricted to HLA-

class II alleles and induces IFN-γ release (ELISpot) in the IEDB database albeit with only one

positive assay out of 5 (S1 Table) [56]. This peptide has two other prediction results in the final
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output table–extremely low-affinity binding to alleles HLA-DRB1�07:01 (core LEGEPGDPD,

28796.61 nM), and -DRB1�15:01 (core LEGEPGDPD, 27088.07 nM). HCV GP epitope PLE-

VIKGGRHLIFCH (ID 48313) has positive experimental MHC binding data in IEDB showing

it binds to several HLA-class II alleles (HLA-DR1, -DR11, -DR13, -DR15, -DR3, -DR4, -DR7,

and -DRB5) (S1 Table) [57]. In accordance with prediction data, this peptide is predicted

to bind strongly or moderately to alleles DRB5�01:01 (core LEVIKGGRH, 122.71 nM),

DRB1�07:01 (core IKGGRHLIF, 403.62 nM) and DRB3�01:01 (core IKGGRHLIF, 2860.64

nM). Still, 6 out of 15 total assays (4 T-cell assays and 2 MHC binding) were negative for this

15-mer epitope (S1 Table).

For Pf CSP, the maximum predicted IC50 values for a validated 15-mer epitope is 6994.45

nM, corresponding to a low binding affinity for peptide KPKDELDYANDIEKK to allele

DRB5�01:01 (core LDYANDIEK). This epitope (ID 32744) was shown to induce IFN-γ
release (ELISpot) and proliferation (3H-thymidine proliferation assay) in 2/4 positive assays

but no specific allele restriction is known (S1 Table) [58]. Pf CSP epitope 42473

(MRKLAILSVSSFLFV) is a promiscuous epitope with extensive positive experimental data

(27 positive assays out of 32) showing it binds to 10 alleles—HLA-DRB1�01:01, -DRB1�04:01,

-DRB1�04:05, -DRB1�07:01, -DRB1�09:01, -DRB1�11:01, -DRB1�13:02, -DRB1�15:01,

-DRB5�01:01 and -DRB1�12:01 (S1 Table). This epitope induces cellular proliferation (3H-thy-

midine proliferation assay), IFN-γ and IL-10 release (bioassay and ELISA) (S1 Table) [59]. The

prediction data for this peptide includes strong binding to alleles HLA-DRB1�07:01 (core

AILSVSSFL, 50.78 nM) and -DRB1�15:01 (core ILSVSSFLF, 66.66 nM), and moderately to

alleles -DRB3�01:01 (core ILSVSSFLF, 1102.05 nM) and -DRB1�03:01 (core ILSVSSFLF,

1726.82 nM). Yet, one MHC ligand assay was performed for the latter allele with negative

results (S1 Table) [60].

For Mtb EsxA, the maximum predicted IC50 value for a validated 15-mer epitope is

10209.32 nM, corresponding to a very low binding affinity for peptide

WGGSGSEAYQGVQQK (core EAYQGVQQK) to allele HLA-DRB5�01:01. This example

illustrates a disagreement between predictors, as IEDB MHC-II binding predicts this full pep-

tide/core combination binds to DRB5�01:01 allele with an affinity of 1170.1 nM. Furthermore,

evidence in the IEDB database showed this epitope (ID 226404) induces IFN-γ release (ELI-

Spot) and is restricted to HLA-DRB1 alleles but with only one positive assay (S1 Table) [61].

The prediction algorithms again disagree on full_peptide/core combinations binding to DRB1

alleles. IEDB MHC-II binding predicts the combination WGGSGSEAYQGVQQK/

WGGSGSEAY binds with extremely low affinity to alleles DRB1�03:01 (33097.7 nM) and

DRB1�15:01 (15465.1 nM). NetMHCIIpan has no predictions for DBR1 alleles for the full_-

peptide/core combination WGGSGSEAYQGVQQK/WGGSGSEAY, and the two prediction

algorithms do not agree on the peptide core EAYQGVQQK binding to DRB1 alleles (only

NetMHCIIpan has low binding affinity predictions for allele DRB1�03:01, 20821.11 nM).

Therefore, there are no full_peptide/core combinations yielding IC50 predictions for this

peptide and DRB1 alleles. By contrast, both algorithms predict Mtb EsxA epitope

QGNVTSIHSLLDEGK (core VTSIHSLLD) to bind to DRB1�07:01 (804.18 nM), and with

lower affinity to DRB5�01:01 and DRB1�03:01 (2493.15 nM and 6448.37 nM, respectively).

IEDB MHC-II binding predicts stronger binding affinities for this full_peptide/core combina-

tion for the same alleles (59.5 nM, 74.1 nM and 2505.9 nM, respectively); binding to other

alleles are not predicted by this algorithm. Qualitative binding information in IEDB shows

epitope QGNVTSIHSLLDEGK (ID 161673) is strongly associated with allele DRB1�04:05,

with the same core prediction (VTSIHSLLD), and weak associations with DRB1�1501 and

DRB1�1502 alleles, with 4/4 positive assays (S1 Table) [61]. Only NetMHCIIpan predicts this

full_peptide/core combination to bind to DRB1�1501 (1127.94 nM). Additionally, the
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full_peptide/core combination QGNVTSIHSLLDEGK/IHSLLDEGK is only predicted to bind

to allele DRB4�01:01 (498.3 nM) by the IEDB MHC-II binding predictor. NetMHCIIpan pre-

dicts strong binding to this allele with a different core (VTSIHSLLD, 578.09 nM).

Sensitivity and specificity of different filtering options

By applying some filtering criteria to the final output tables, one can significantly reduce the

epitope lists to test, while attempting to increase the chances of selecting and not rejecting

immunogenic epitopes. Some example filters were applied based on the information retrieved

from the validated epitopes in IEDB (mainly maximum/minimum predicted IC50, promiscu-

ity, mismatches, hydrophobicity). The final criteria to define the best filters were the highest

list reduction with the best values for sensitivity/specificity (minimum 60%, if possible).

The example low stringency filters applied on HLA-class I results on total mismatches and

predicted IC50 values by NetMHCpan allowed to reduce the initial peptide list by 52–76%,

while retaining sensitivity of 67–83% and a specificity from 62–94% (Fig 3). Other example

filters yielded good results for Pf CSP and HCV GP proteins, namely, FILTER#3 (total

mismatches� 1 and scoreN� 1000) which resulted in a list reduction of 88,4% and 80,3%,

respectively, with a sensitivity of 62,5 and 63,2% and specificity of 93,4% and 96,2%, respec-

tively (S2 Table).

Applying FILTER#5 (total mismatches� 1 + scoreN� 5000 nM) to the final HLA-class I

prediction results table for the HPV proteome, we obtained a 65,7% reduction of the initial

peptide list (758 peptides selected, with 1287 predictions).

The example low stringency filters applied on HLA-class II results on total mismatches and

predicted IC50 values by NetMHCpan allowed to reduce the initial peptide list by 47–69%,

while retaining sensitivity of 41–85% and a specificity of 70–95% (Fig 4 and S3 Table).

Applying FILTER#3 (total mismatches� 1 + scoreN� 1000 nM) to the final HLA-class II

prediction results table for the HPV proteome we obtained a 39,2% reduction of the initial

peptide list (1342 peptides selected, with 2995 predictions).

Fig 3. Sensitivity and specificity of example filters applied to final HLA-class I results table from SILVI.

https://doi.org/10.1371/journal.pone.0273494.g003
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Discussion

The ability to compare different data sources and to synergistically combine various algo-

rithms in epitope prediction remains challenging. The potential of the datasets generated by

omics technologies is limited by the lack of appropriate computer-based tools to manage and

integrate the vast amount of epitope prediction data. Experimental validation steps restrict the

number of peptide candidates to test, meaning that these candidates must be carefully selected

to increase the chances of selecting immunogenic peptides. The successful identification of

immunogenic epitopes depends on both the quality of used immunoinformatic algorithms

and on the rationale behind epitope selection criteria. These criteria must be adjusted to the

biological question at hand; they should be permissive enough not to reject immunogenic epi-

topes falsely, and sufficiently restrictive to filter HLA-binding prediction data effectively.

SILVI (short for: from in silico to in vivo) is a workflow written in R language that was

developed to assist the selection of epitopes predicted by state-of-the-art HLA-binding affinity

algorithms using also other sequence-specific features such as conservation among pathogenic

species and homology to host. To help researchers make use of SILVI, the README file (avail-

able at github.com/JoanaPissarra/SILVI2020 and https://doi.org/10.5281/zenodo.6865909)

includes in-depth explanations on the necessary downloads and dependencies, input file prep-

aration and script utilisation. Researchers are free to adapt the script to particular conditions

and interests.

The SILVI pipeline was adapted to integrate data from the most widely used epitope predic-

tion algorithms with high accuracy HLA-binding predictions [62], and homology alignments

[45]. Based on this information, together with conservation among species, physical-chemical

properties, and target population HLA restriction, this epitope selection pipeline presents all

results in a single table, manageable in a spreadsheet analysis software. Users can then filter the

data and reduce the number of peptides to test while increasing the chances of identifying

immunogenic peptides. SILVI was developed for human T-cell epitope selection, so only

human alleles are expected in this version. Its extension for epitopes of interest in veterinary

immunology is desirable yet requires further implementation.

Fig 4. Sensitivity and specificity of example filters applied to final HLA-class II results table from SILVI.

https://doi.org/10.1371/journal.pone.0273494.g004
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To generate the input data, users should choose their protein sequences according to

selected features such as abundance, expression and subcellular localization. SILVI will not

apply these filters; it is up to the user to supply high-quality data from the best antigen pool.

We recommend the use of databases such as EUpathDB [63] or UniProtKB [64] and transcrip-

tomic and proteomic information to design the initial protein candidate list and integrate gene

expression data for the protein annotation from the start. Once the protein antigen pool is

selected, protein sequences in fasta format are retrieved and directly uploaded in the online

servers to perform HLA-binding predictions. SILVI allows users to perform an epitope-based

selection, aiding the diversification of antigen sources. SILVI is designed to analyse several spe-

cies-specific sequences per protein antigen (1 seq_num = 1 species-specific sequence). In the

first selection step (step A), SILVI uses homology as a positive selection filter for highly con-

served epitopes among pathogenic species (each protein can include several species-specific

sequences in fasta format). SILVI strictly considers identical epitope sequences from several

species-specific protein sequences (common_among_seq_nums filter), so it is a suitable tool for

well-conserved proteins or the discovery of highly conserved epitopes. Nevertheless, users may

run all protein sequences in a single file (1 seq_num = 1 protein, regardless of strain or species),

i.e. example#4 (HPV proteome). In this case, SILVI will return all potential epitopes from any

given protein ignoring conservation among species-specific sequences. The common_among_-
predictors filter concedes a higher level of confidence in predicted immunogenicity, since non-

redundant prediction algorithms independently predict a given epitope to be a strong binder

[27, 34]. These two filters are the only rejection steps included in SILVI. All subsequent steps

add information without filtering out peptides. Also, even if the same linear sequence is pre-

dicted as an epitope, many will not be assigned the same HLA restriction and in this case “pro-

miscuity” will equal 0. This reveals the limitations of available algorithms and the importance

of using combinatorial approaches for epitope prediction. SILVI will accept virtually all avail-

able algorithms so long as the input data is correctly formatted.

For HLA-class II binding predictions, the total epitope size is 15-mer, which includes the

9-mer motif for HLA binding: the epitope core or register. The algorithms’ predictive power

correlates better with the core prediction [29]. By comparing core predictions, we compare

predictors and consider all potential cores within a 15-mer peptide, selecting the best full_pep-

tide/core combination according to predicted IC50.

In selection steps B and C, homology to host proteins (information from BLASTp) is added

for epitope ranking and description [28]. HLA-class I alleles have known anchor binding posi-

tions, wherein 2 or 3 amino-acids are essential for stable peptide-MHC interactions [14].

Through total and anchor position mismatch counts it is possible to detect epitopes that show

high homology with human proteins, thereby reducing the chances of unwanted cross-reactiv-

ity and autoimmune responses [28].

The example proteins demonstrate the ability to integrate relevant HLA-binding predic-

tions from different algorithms and extra information to help epitope selection into a single

output table. The example proteins include several experimentally validated epitopes, some of

which with a high number of positive assays in the IEDB. Since SILVI currently only accepts

9-mer and 15-mer epitopes, we selected the total 9-mer and 15-mer validated epitopes from

the IEDB database, which we used to analyse the frequency distribution of the several proper-

ties included in SILVI’s output table (molecular weight, hydrophobicity, isoelectric point, total

mismatches, promiscuity, HLA restriction, binding affinity, and anchor mismatches to HLA-

class I predictions). While with a highly variable number of total assays and positivity rates in

the IEDB, most validated epitopes have corresponding favourable prediction data. In contrast,

others are predicted to be non-binders by the algorithms, disagreeing with experimental data
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in the IEDB database; this again highlights limitations of such HLA-binding prediction algo-

rithms in epitope prediction.

Overall, there is a high concordance between IEDB and NetMHCpan (promiscuity� 1).

Additionally, IC50 predictions are reliable, depending on allele restriction and the general

representation of pathogens in the algorithms’ databases, providing a useful filter to manage

epitope prediction data. Still, as some validated epitopes with experimental evidence in the

IEDB for cytotoxicity are predicted to have very high IC50 values, it illustrates current algo-

rithms may fail to predict binding affinity and/or immunogenicity, so low stringency filters

should be used.

The filters applied to SILVI’s output allowed a pronounced reduction of the initial epitope

lists. Despite this broad selection, and particularly for HCV GP and HPV proteome, too many

peptides are selected, which may be an issue for the experimental validation at reasonable cost.

Users may also select particular epitope-rich regions; make relative comparisons according to

the predicted HLA restriction to choose the best value per supertype or allele, or perform addi-

tional epitope analysis subsequently (e.g. immunogenicity, clustering, or population coverage

analysis).

Binding affinity is a crucial characteristic of peptide immunogenicity and the general cut-

off value of 500 nM has been extensively used in T-cell epitope selection. Yet, validated epi-

topes in the IEDB have divergent predicted IC50 values, ranging from predicted strong binders

to non-binders, particularly the Pf CSP and Mtb EsxA examples. For HCV GP and Pf CSP

over half of validated epitopes have predicted binding affinities below 1100 nM, which hints

on a potential less stringent IC50 cutoff value. We use low stringency IC50 cut-off values in the

examples, but SILVI allows the use of broad filters and/or allele-specific filters, which are more

predictive [13]. Users may also analyse the final output table applying allele-specific binding

information to establish cut-off values and promiscuity, which is also a common characteristic

observed for validated epitopes. BLASTp information on homology to host proteins from vali-

dated epitopes also validates the use of mismatches with human proteins as a filtering crite-

rium, as at least one total mismatch is found and allowed to reduce substantially the epitope

lists.

In contrast to HLA-class I, the total number of HLA-class II predictions are generally more

extensive, which correlates with the prediction algorithms’ performance, higher epitope pro-

miscuity, and the existence of multiple binding cores within a peptide, which can be used as

additional filters.

No single universal filter will be suitable for all protein antigens or T-cell epitope selection

workflows. Some experimentally validated epitopes present ambiguous experimental data and

low HLA-binding predictions, revealing current limitations. Users may also add more data

from other immunoinformatic tools by integrating those results into the SILVI dataframe.

Present limitations of this pipeline version are: epitope size restricted to 9-mer and 15-mer

peptides, which correspond to only around a quarter of total validated epitopes; user-depen-

dent preparation of .csv files with HLA-binding prediction data; and adaptations needed to

adjust the common_among_seq_nums filter to analyse multiple proteins without species-spe-

cific sequences. However, as SILVI is written in the R language, a free software environment

widely used by researchers across different research fields, all existent included features and

criteria can be modified. For instance, including an automated BLASTp analysis to reduce

user-dependent steps. More importantly, SILVI is entirely open-access. Also, any script

improvements will be made in a community-driven manner, tackling different scientific chal-

lenges, and paving the way for broader discussions on immunogenicity predictions and epi-

tope selection, which can eventually lead to a packaged version of the SILVI pipeline or the

development of a graphical user interface (GUI). Furthermore, continuous improvement of
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data analysis in silico tools like SILVI will ultimately decrease the need for conventional animal

testing, reduce the time needed for pre-clinical development, and fast-track product

deployment.

Conclusions

SILVI uses available high-performing HLA-binding predictors and relevant rational criteria

associated with immunogenicity, allowing a swift selection of T-cell epitopes from large data-

sets and thereby restricting the total number of peptides to test at the bench while increasing

the chances of selecting the most conserved and immunogenic epitopes. This pipeline also

helps epitope-mapping experiments by identifying in silico high immunogenicity regions in

several antigen candidates. The integration of BLASTp data is a great advantage since it is the

most well-established method to find homologous sequences in all host organisms and pro-

vides excellent insight regarding the cross-reactive potential of an epitope. SILVI applies to

any pathogenic organism, allele restriction and prediction algorithm. It allows users to inte-

grate diverse outputs with the freedom to select the most relevant criteria in a fast and repro-

ducible manner. Finally, SILVI is customisable allowing for additional development

(automated BLASTp, refined and/or extra criteria, synthetic summary, etc). We believe that

this open-source tool will significantly help future epitope-based vaccines and immunothera-

pies design.

Materials and methods

Script development

SILVI’s workflow involves two user-dependent steps (input HLA-binding prediction data and

BLASTp alignment results against the target proteome) and three semi-automated steps (Fig

5), detailed in the file README.md. SILVI is an open-source script, written in the R

Fig 5. SILVI’s computer-based pipeline for T-cell epitope selection. Steps in black (a. to c.) are user-dependent; steps in green

(“Epitope selection with SILVI–Step A to C”) are automatically applied by the script. �Users input protein sequences in web-based

algorithm interfaces and export results.

https://doi.org/10.1371/journal.pone.0273494.g005
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programming language (https://www.r-project.org/) and is freely available to download from

GitHub and Zenodo (see github.com/JoanaPissarra/SILVI2020 or https://doi.org/10.5281/

zenodo.6865909 for instructions). The R package dependencies are tidyverse [65]; stringr [66];

and Peptides [67].

Input data. Input data consists of 9- or 15-mer predicted epitopes and respective pre-

dicted binding affinity to several HLA alleles, according to the target population (allele list

upload files for world population coverage are available), generated by HLA-binding predic-

tion algorithms. For HLA-class I prediction data, users must prepare the .csv files containing

results from at least two non-redundant and well-performing HLA class-I binding prediction

algorithms (e.g. NetMHCpan 4.0 [68], IEDB MHC-I binding [69], and SYFPEITHI [70]). A

low stringency score filter can be applied to select the top percentile of predicted epitopes (e.g.

10–50%) to reduce initial epitope lists. HLA-class I peptide.csv files should be named “protein-

code_predictorcode.csv” and should contain the columns: “allele”; “peptide” (9-mer); “ic50”

or “score”; “seq_num” (sequence_number).

For HLA-class II prediction data, users must prepare .csv files containing results from at

least two non-redundant and well-performing HLA class-II binding prediction algorithms

(e.g. NetMHCIIpan [71], IEDB MHC-II binding [30, 33]), with the desired cut-off value (e.g.

top 10–50%). HLA-class II peptide.csv files should be named “proteincode_predictorcodeii.

csv” and contain the columns: “allele”; “full_peptide”; “core”; “seq_num”; “ic50”; “rank” (Fig

1a and 1b).

Users may check the file code/db_headers to confirm the correct column names, for both

HLA-class I and class II predictions.

First selection step (step A). The script imports and integrates all data into a single data

frame class in R and, to address conservation among pathogenic species, by default, it directly

compares all 9-mer peptides or cores among different sequences from the same protein, select-

ing only the ones that are 100% identical (common_among_seq_nums filter). Simultaneously,

the script compares the full epitope lists generated by each prediction algorithm used and

selects only the 9-mer epitopes predicted by at least two predictors to bind to a given allele or

supertype (common_among_predictors filter). Predicted HLA restriction is added to the

exported table (Fig 5 - Epitope selection with SILVI- step A).

SILVI’s step A generates a single data frame where all input information is gathered and

applies the only truly selective filters in the script (common_among_seq_nums & common_a-
mong_predictors). SILVI’s steps B and C simply add extra information without decreasing the

list size, to allow the user to characterize the predicted epitopes and perform tailored

selections.

HLA-class I epitope selection: users open the file ‘Fire_classI.R’, introduce the directory

pathway to input .csv files and run the first code lines (step A). To assign HLA restriction, the

comparison is made per supertype (11 supertypes), which allows the comparison among pre-

dictors [72]. The correspondences between allele and supertypes (11) are in the file /code/

map_supertype_alleles.csv, where users may add new alleles.

HLA-class II epitope selection: users open the file ‘Fire_classII.R’, introduce the directory

pathway to input .csv files and run the first code lines (step A). To assign HLA restriction,

SILVI compares per allele, so it is important to perform predictions with the same allele lists.

As an intermediary output, the script generates a .csv file for the initial epitope list (“1_com-

mon_I/II.csv”) with all collected information thus far (source protein, all predicted allele/

supertype restrictions, peptide sequence, number of predictors, number of seq_nums, scores

and raw data file). Step A also generates a .txt file with all 9-mer peptides or cores in FASTA

format, to be uploaded for online short-BLASTp analysis (“1_blast_me.fasta”). Users choose

the host reference dataset (e.g. Homo sapiens taxid: 9606, RefSeq) and desired alignment
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parameters (e.g. default for short sequences). We recommend users to reduce the size of the

alignment result file by selecting a maximum of 10 aligned sequences to display, in the ‘Max

target sequences’ option in algorithm parameters, general parameters tab. Users download the

short-BLASTp alignment result in .txt file format to be imported again in R (Fig 5c).

Second step (B). Users introduce the path and name of the short-BLASTp result file and

run the code (step B). To verify the alignment result file is complete, SILVI confirms all pep-

tides were included in the alignment result file. In this step, SILVI reads the first short-BLASTp

alignment hit for each 9-mer epitope or core and counts the position-specific matches (“m_1”

to “m_9”). Positive residues are considered a match, and when alignment gaps are introduced

the succeeding positions are considered as mismatches (Fig 5 - Epitope selection with SILVI-

step B). SILVI calculates the total number of matches/mismatches in each epitope or core

(“match” and “mismatch”), as well as supertype-specific anchor position mismatches for class

I peptides (“anchormm”). SILVI generates two intermediary output .csv files (“2_common_-

blast_I/II.csv” and “3_common_blast_I/II.csv”).

Third step (C). Once the new dataframe is generated by the 2nd step, users run the last

code lines and SILVI adds extra information: molecular weight, hydrophobicity using the

GRAVY (grand average of hydropathy) hydrophobicity index, calculated by adding the

hydropathy value for each residue and dividing by the length of the sequence [73], and pI

using the Bjellqvist pK scale with the Peptides package [67]. Moreover, SILVI calculates the

“promiscuity”, the total number of alleles/supertypes to which a given epitope is predicted to

bind to, and duplicates the rows according to this information, allowing selections based on

predicted HLA restriction. Also, SILVI highlights the predicted IC50 to specific alleles from

the NetMHCpan algorithm (“scoreN”) to help the user select the top predicted binders (Fig 5 -

Epitope selection with SILVI- step C). All IC50 predictions are kept in the “score” column.

As the final output, SILVI generates a .csv file (“res_classI/II.csv”) containing the initial

peptide list from the first selection step, plus the short-BLASTp alignment results (step B) and

all the other relevant information added in the last selection step (step C). The user is then free

to analyse the list, complement with more data if needed, and prioritize the different criteria as

desired.

Script implementation

Example proteins. The IEDB database includes thousands of validated pathogen-specific

epitopes, and the following search strategy was used to find extensively validated T-cell epi-

topes: Linear epitopes + Positive assays only + No B cell assays + Human host + Infectious Dis-

ease (S1 Table). The Hepatitis C Virus (HCV) genome polyprotein (GP), Plasmodium
falciparum’s circumsporozoite protein (CSP), Mycobacterium tuberculosis’s 6 kDa early secre-

tory antigenic target and the HPV proteome were used as example proteins to undergo T-cell

epitope selection with SILVI.

HLA-class I binding predictions were performed on: 1) NetMHCpan 4.0 [68] predictions

for 11 supertype representative alleles, 2) IEDB MHC-I binding [69] (Prediction Method Ver-

sion 2013-02-22, recommended predictions for 36 alleles), and 3) SYFPEITHI predictions

(default predictions for 22 alleles). The allele reference panel provided by IEDB MHC-I bind-

ing (27 alleles) was expanded to include 36 alleles (S4 Table). Individual csv files were prepared

with all predicted epitopes and named “protein_predictori.csv”.

HLA-class II binding predictions were performed on: 1) NetMHCIIpan [71] (predictions

for 7 alleles), and 2) IEDB MHC-II binding [33] (recommended predictions for 7 alleles), and

nn_align core and IC50 values [30]. The allele reference panel of 7 alleles was selected as
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suggested by IEDB MHC-II binding and described in Paul et al, 2015 [74] (S5 Table). Individ-

ual csv files were prepared with all predicted epitopes and named “protein_predictorii.csv”.

Supporting information

S1 Fig. Distribution analysis of class-I epitope properties. Validated HLA-class I 9-mer epi-

topes from the IEDB database were characterized according to hydrophobicity (A), isoelectric

point (B), molecular weight (C), total mismatches (D), anchor mismatches (E), HLA restric-

tion (F), minimum binding affinity prediction (G), and all predicted binding affinities (H).

(TIF)

S2 Fig. Distribution analysis of class-II epitope properties. Validated HLA-class II 15-mer

epitopes from the IEDB database were characterized according to hydrophobicity (A), isoelec-

tric point (B), molecular weight (C), total mismatches (D), promiscuity (E), HLA restriction

(F), minimum binding affinity prediction (G), and all predicted binding affinities (H).

(TIF)

S1 Table. Validated epitopes from IEDB.org and corresponding experimental data (T-cell

and MHC binding assays).

(XLSX)

S2 Table. Sensitivity and specificity of example filters applied on SILVI HLA-class I results

table.

(XLSX)

S3 Table. Sensitivity and specificity of example filters applied on SILVI HLA-class II

results table.

(XLSX)

S4 Table. HLA-class I alleles and supertypes. Supertypes according to Sydney J. et al 2008

BMC Immunology 9:1.

(XLSX)

S5 Table. HLA-class II alleles. IEDB 7 allele reference set according to Paul S et al 2015 Jour-

nal of Immunological Methods 422:28–34.

(XLSX)
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