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Abstract
Plant species providing Non-Timber Forest Products (NTFP) are economically impor-
tant across Africa. How this heterogeneous and understudied resource will respond to 
ongoing climate change remains understudied. Here, we modelled the impact of end-
of-the-century climate change on the distribution of 40 NTFP plant species distributed 
across tropical Africa. Occurrence data were extracted from a taxonomically verified 
database and three different ecological niche modelling algorithms were used. Species 
distributions were modelled under two end-of-century (2085) climate change models 
(RCP4.5 and RCP8.5) and two dispersal scenarios (limited and expanded). We show 
that for the 40 NTFP plant species studied here, different responses are modelled 
with some species gaining in suitable habitats (47.5%–65% under RCP4.5), whereas 
others will lose in suitable habitats (35%–52.5% under RCP4.5). Nevertheless, we also 
show that our results vary between the different methods used, such as modelling 
algorithms, dispersal scenarios and general circulation models. Overall, our results 
suggest that the response of NTFP species to climate change depends on their distri-
bution, ecology and dispersal ability.
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Résumé
Les espèces végétales fournissant des produits forestiers non ligneux (PFNL) 
représentent une importante ressource économique dans l’ensemble de l’Afrique. 
La manière dont cette ressource hétérogène et peu étudiée réagira au changement 
climatique en cours a fait jusqu’à présent l’objet d’un nombre limité d’études. Dans 
cette étude, nous avons modélisé l'impact du changement climatique de la fin du 
siècle sur la répartition de 40 espèces végétales de PFNL réparties dans l’ensemble 
de l'Afrique tropicale. Les données sur les événements ont été extraites d'une base 
de données basée sur la taxinomie et trois différents algorithmes de modélisation 
de niche écologique ont également été utilisés. La distribution des espèces a été 
modélisée selon deux modèles de projection de changement climatique (RCP4.5 et 
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1  |  INTRODUC TION

Global change will lead to important biodiversity loss (Bellard 
et al.,  2012; Thomas et al.,  2004; Urban,  2015) which is consid-
ered a major threat to the safe operating space needed for hu-
manity (Rockström et al., 2009). This is particularly true for Africa 
(Ittersum et al., 2016; Serdeczny et al., 2017) as the continent will 
face negative consequences of climate change on food security and 
malnutrition (IPCC, 2007) coupled with significant continued pop-
ulation growth (Gerland et al., 2014). Studies have demonstrated 
that climate change across Africa will impact the distribution 
and abundance of species (Heubes et al.,  2012; Ramirez-Villegas 
et al.,  2014; Zhang et al.,  2016) and forest ecosystems (Réjou-
Méchain et al.,  2021). McClean et al.  (2005) estimated that be-
tween 81% and 97% of sub-Saharan African plant species could 
face a displacement or a decrease in their suitable habitat by 2085. 
In addition, between 20% and 35% of the tropical African flora 
are already estimated to be potentially threatened by extinction 
(Brummitt et al.,  2015; Stévart et al.,  2019). Other studies have 
also underlined the vulnerability to future climate change of spe-
cific plant clades in Africa (Blach-Overgaard et al.,  2015; Davis 
et al., 2012; Sanchez et al., 2011).

The consequences of these changes will be considered, espe-
cially in Africa (Millenium Ecosystem Assessment,  2005), where 
60%–70% of the population live in rural areas (Güneralp et al., 2017) 
and are directly dependent on plant resources for their subsistence 
(Cavendish,  2000). Thus, one important question is how will tropi-
cal African plant species providing important resources be affected 
by climate change? To date, most studies have focused on the faith 
of a few macroeconomically important crops such as maize or pearl 
millet (Adhikari et al., 2015; Burke et al., 2009; Pironon et al., 2019). 
In forested regions, the economic value associated with plant species 
has generally been based on a financial appraisal of its timber stock 
(Mahapatra & Tewari,  2005). There is, however, little consideration 
for species that do not produce timber, even though they are a consid-
erable part of the population economic and well-being environment.

Non-Timber Forest Products (NTFP) are defined as natural re-
sources other than wood extracted from wild species (animal or 
plant) derived from natural, modified or managed forested land-
scapes and other wooded lands (Ingram,  2014; Ros-Tonen,  2000). 
Their products are used for food, forage, medicines, aromatic prod-
ucts, fuelwood, construction materials and other cultural uses. NTFP 

are important resources central to fighting hunger and in reducing 
poverty (Angelsen & Wunder, 2003). Globally, the reported value of 
NTFP withdrawals amounted to nearly USD 8 billion in 2015 (FAO 
and UNEP, 2020). Even though plant species providing NTFP (here-
after NTFP plant species) play a fundamental role in the survival and 
the well-being of people across tropical Africa, their access is not 
officially controlled and data on their socioeconomic importance are 
lacking (Ingram et al., 2010). A recent study suggested that 29 major 
crop species occurring in sub-Saharan Africa could be resilient to cli-
mate changes. This comes from their relationships with crop wild 
relatives which could be used for their improvement or adaptation 
(Pironon et al., 2019). In contrast, NTFP plant species do not seem 
to have this human-assisted advantage. A study focusing on palms, a 
major NTFP plant family across the tropics and a key plant resource 
in Africa, showed that over 70% of palm diversity will experience 
a decline in climatic suitability by the end of the century (Blach-
Overgaard et al.,  2015). In addition, they showed that this result 
was independent of the species' habitat, namely rain forest or open 
ecosystems. This suggests that important wild plant resources might 
be vulnerable to range contraction and extirpation over the next 
80 years. In contrast, useful plants, including NTFP species, tend to 
have wider geographical distributions (van Zonneveld et al., 2018) 
which could lead to wider ecological breadth allowing them to cope 
with future climatic conditions. In this case, we would expect most 
NTFP species to be able to cope favourably with future climate 
change. Finally, climate change might have a species-specific impact 
on the future distribution of NTFP plant species linked to different 
ecologies such as forest (wetter adapted species) or savannah (drier-
adapted species) dwelling NTFP species (van Proosdij et al., 2017). 
For example, in mountain ecosystems, it was shown that warm-
adapted species increased geographic ranges, whereas cold-adapted 
species decreased in distribution (Gottfried et al., 2012).

Here, we assess the impact of end-of-century climate change 
models on the potential distribution of 40 top priority NTFP 
plant species in tropical Africa. How will selected NTFP plant 
species react to the end of the century climate change in terms 
of their geographical ranges? Which species are expected to 
gain or lose climatically suitable areas under different climate 
change scenarios? Does the response of NTFP species depend on 
the extent of their distribution or their presence in forested re-
gions versus more open woodlands? To this end, we use Species 
Distribution Modelling (SDM) to project the present and future 

RCP8.5) à la fin du siècle (2085) et deux scénarios de dispersion (limité et étendu). 
Diverses réactions sont ici modélisées pour les 40 espèces végétales de PFNL. 
Certaines espèces obtiendront des habitats adaptés supplémentaires (47,5 % à 65 % 
dans le cadre du modèle RCP4.5), tandis que d'autres en perdront (35 % à 52,5 % 
dans le cadre du modèle RCP4.5). Toutefois, nos résultats varient selon les différentes 
méthodes utilisées, telles que les algorithmes de modélisation, les scénarios de 
dispersion et les modèles de circulation générale. Dans l'ensemble, nos résultats 
suggèrent que la réaction des espèces de PFNL au changement climatique dépend de 
leur répartition, de leur écologie et de leur capacité de dispersion.
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potential distribution of species under two climate change sce-
narios (RCP4.5 and RCP8.5) for the period 2070–2090 using 10 
general circulation models.

2  |  MATERIAL AND METHODS

2.1  |  Study area

Our study focused on sub-Saharan Africa known as the Afrotropical 
region (Dauby et al.,  2016). The area is broadly delimited by the 
ecoregions south of Sahel and north of South Africa (−15° and 47°of 
East longitude and −15° and 30°North latitude). It covers the tropical 
forest regions; the Guineo-Congolian centre of endemism is divided 
into three sub-centres: Upper Guinea, Lower Guinea and Congolian 
(White, 1983). Three climatic regions encompass the studied region 
the equatorial, tropical humid and tropical dry climates.

2.2  |  Non-timber forest products plant species 
distribution data

A total of 40 NTFP species considered as ‘priority’ were selected re-
lying on the classification of Ingram  (2014) based on a database of 
around 500 species from Cameroon. This database provides a rank-
ing of the species importance, or ‘priority’, based on five criteria: spe-
cies (1) with products that have a high economic trade value or are 
important for autoconsumption; (2) with products that are overex-
ploited (this is a function of in situ conservation priority status and 
domestication); (3) with products that have multiple uses (including 
conflicting); (4) with uses; (5) that are classified as threatened (e.g., on 
the IUCN Red List, CITES listed and/or protected by national laws). 
In this study, we selected the top priority NTFP species for which 
we could retrieve sufficient data about their distribution (see below). 
Occurrence data for each species were extracted from the RAINBIO 
database (Dauby et al., 2016). RAINBIO is a synthesis of several data-
bases from GBIF and several major herbaria of vascular plant occur-
rence data. It has the advantage of being curated and taxonomically 
and geographically verified. For each species, we estimated the per-
centage of their occurrence within (referred to as Forest Fraction) or 
outside forested regions using polygons representing the map of dif-
ferent ecoregions found in Africa based on (Olson et al., 2001).

2.3  |  Climatic data

Climatic data were extracted from AFRICLIM ver. 3 (www.afric​lim.
org), a data set of high-resolution ensemble climate projections 
for Africa (Platts et al.,  2015). This database comprises monthly 
data on temperature and rainfall together with derived bioclimatic 
summary variables such as moisture indices and dry season length. 
Ten variables related to temperature and 11 related to precipita-
tion were downloaded (see Platts et al.,  2015 for more details) 
which are mainly derived from the WorldClim-Global Climate 

Database. Finally, all climatic layers were downloaded at 10′ of 
spatial resolution.

2.4  |  Climatic variable selection

Following Blach-Overgaard et al.  (2015), six climatic predictors 
suggested to be relevant for building performant distribution 
models in Tropical Africa were selected. Three variables were as-
sociated with temperature: mean annual temperature, tempera-
ture seasonality and minimum temperature of the coolest month; 
three variables were associated with humidity: annual water 
balance, water-balance seasonality and rainfall deficit. Water-
balance variables were built by using monthly precipitation and 
temperature (Blach-Overgaard et al.,  2015). Water-balance sea-
sonality represents the standard deviation of the monthly water 
balance, whereas annual water balance is the sum of the monthly 
water balance. Monthly water balance is defined as the difference 
between monthly precipitation and monthly potential evapo-
transpiration (PET). PET was computed following the method of 
Hargreaves and Samani (1985) derived from monthly minimum 
and maximum temperature. We computed the rainfall deficit rd 
as follows:

where PR is the monthly precipitation, and i is the month. This is the 
sum of the positive difference between monthly potential evapotrans-
piration and precipitation. When the precipitation is higher than the 
evapotranspiration, the difference is set to 0. High rd thus indicates a 
high rainfall deficit.

2.5  |  Species distribution modelling

For each selected NTFP plant species, distribution modelling was 
undertaken using three different algorithms: Maximum Entropy 
(MaxEnt; Phillips et al., 2006), Generalised Boosting Model (GBM; 
Ridgeway,  1999) and Generalised Linear Models (GLM; Hastie & 
Tibshirani,  1990) which were shown to be amongst the best per-
forming SDM algorithms (Elith et al., 2006; Elith & Graham, 2009). 
Models were run using the package Biomod2 ver 3.5.1 (Thuiller 
et al., 2020) in the R environment (R Core Team, 2021).

For each species, models were built following four steps:

1.	 We defined a calibration area by defining the Minimum Convex 
Polygon or convex hull (Kremen et al.,  2008) around the oc-
currence points of each species. A buffer zone of 5° degrees 
was created around the convex hull defining the calibration 
area;

2.	 We generated pseudo-absence data using the ‘Target group 
sampling’ method (Ponder et al., 2011). The number of pseudo-
absence cells (or background cells for MaxEnt) was variable 
amongst species depending on the species-specific calibration 

(1)rd =

∑12

i=1
max

(

0,PETi − PRi
)

http://www.africlim.org
http://www.africlim.org
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area. The sampling of a species was weighted by the density of 
all occurrences contained in the RAINBIO database and used as a 
proxy for botanical sampling effort across the region.

3.	 Model evaluation was achieved through a cross-validation proce-
dure by partitioning the presence and pseudo-absence data into 
calibration and validation data. We used a checkerboard approach 
for partitioning which has the advantage of maintaining the spatial 
structure of the data (Muscarella et al., 2014). The performance of 
models was estimated using two statistics calculated for each pair 
of presence and pseudo-absence data: the area under the receiver 
operating characteristics curve (AUC, Fielding & Bell, 1997) and 
the true skill statistic (TSS, Allouche et al., 2006). The AUC and 
TSS were averaged for all validation–calibration data sets to have 
a unique AUC and TSS for each algorithm and for each species. 
We excluded the models with an AUC value < 0.7; models with an 
AUC value ≥0.7 were considered reliable (Elith, 2000). TSS values 
range from −1 to +1, where +1 is an indication of a perfect model 
fit and values ≤0 are an indication of models which are no better 
than random (Allouche et al., 2006).

4.	 We constructed the potential present-day distribution of each 
species by projecting in the calibration area and the niche mod-
els built were evaluated as robust. Binary maps were produced 
to predict the presence or absence of each species. This conver-
sion was done using the optimised ROC threshold of Biomod2 
(Thuiller et al., 2020), which minimises the absolute difference be-
tween sensitivity and specificity and is ranked amongst the most 
reliable thresholds (Liu et al., 2005).

2.6  |  Future climate data and distribution modelling

Future climate variables were also derived from the AFRICLIM data set 
for the period 2070–2100 (averaged at 2085). The models were built 
using coupled Atmosphere–Ocean global circulation models (GCM) 
produced by Swedish Meteorological and Hydrological Institute 
(SMHI). However, there is a variability in global circulation models 
(IPCC, 2007) linked to a different set of parameters to represent land-
use scenarios and key ecosystem processes (Doherty et al.,  2010). 
Thus, 10 different GCMs were used. In addition, for each GCM, we 
used two greenhouse gas emission scenarios named representative 
concentration pathways (RCP 4.5 and RCP 8.5). RCP 4.5 is a gas emis-
sion scenario that limits the increase in mean temperature to 1.8°C 
for 2085s, whereas RCP 8.5 limits this increase to 3.7°C (IPCC, 2014). 
RCP 4.5 is considered an intermediate emission scenario and RCP 8.5 
is a scenario with high greenhouse gas emissions (IPCC, 2014).

For the potential future distribution of NTFP plant species, we 
projected ecological niche models built from the three algorithms 
into 2085 (see above). The projections provided for the 40 species 
were a continuous suitability prediction per algorithm, GCM and 
RCP. This continuous prediction was converted into binary pres-
ence/absence pixels using the same threshold as detailed above 
(ROC threshold) to determine the suitable habitat in the future for 
each species.

2.7  |  Potential distribution of the species under 
dispersal limitations

By projecting future projections of model outputs into the whole cali-
bration area, we assume the species will be able to disperse across 
that area (Bateman et al., 2013). However, as for most species, there 
is little information on the dispersal capacity of NTFP plant species 
in Africa. Here, we take an intermediate approach between the com-
monly applied ‘no dispersal’ (i.e. dispersal only allowed within the 
present distribution) and ‘full dispersal’ (dispersal non-constrained) 
scenarios (Bateman et al., 2013) as to more realistically infer how spe-
cies could respond to climate change in a short time frame. As most 
of NTFP plant species are harvested generally in the wild and are not 
managed or assisted by humans, a full dispersal scenario, where the 
entire area is projected as suitable by the model, appears unrealistic. 
Thus, none of the above dispersal scenarios (i.e. ‘no dispersal’ and ‘full 
dispersal’) appears to be suitable for our study. Here, we use two dif-
ferent scenarios that can be considered as two extremes within our 
context: (1) ‘limited’ dispersal scenario where suitability dynamics is 
within 100 km around the convex hull of the present distribution: (2) 
and ‘expanded’ dispersal scenario where suitability dynamics is es-
timated within 500 km around the convex hull of each species. The 
choice of 500 km as a maximum upper dispersal limit is realistic for 
African plants based on the study of past (last 8500 years) plant shifts 
within our study area (Watrin et al., 2009).

2.8  |  Impact of climate change on the 
distribution of the species

The processing of projections was based on the suitability score 
of each pixel within the study area for present and future climate 
projections. For the 40 species, we considered all projection com-
binations (120 projections per species: 3 SDMs × 10 GCMs × 2 
RCPs × 2 dispersal scenarios). Since the suitability score for each 
pixel is continuous, we used a binomial draw (rbinom function in 
R) to determine whether a pixel is suitable with the probability 
being the output of each model. This procedure gives the number 
of suitable pixels for each species for each combination in its study 
area.

The impact of future climate change for each species was as-
sessed by calculating the change in climatic suitability, calculated as 
the difference between the number of pixels identified as suitable in 
the study area between the present and the future projections. This 
was calculated using Change Suitable Habitat (CSH) Thuiller et al. 
(2011) of the total area, as follows:

The CSH represents the percentage of the climatically suitable area 
lost or gained in the future by each species. Using this metric, we 
first classified all modelling combinations of the 40 species into two 

(2)CSH =

(

Areafuture − Areapresent
)

Areapresent
x100
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different categories as follows: ‘climate winners’ defined as species 
which have a positive change in climatic suitability between the pres-
ent and future models; ‘climate losers’ defined as species with a nega-
tive change. Then, for each combination, we estimated the proportion 
of ‘climate winners’ and ‘climate losers’ species in our data set as pre-
viously reported, following previous (Blach-Overgaard et al.,  2015; 
Zhang et al., 2016).

Furthermore, we evaluated the relationship between the pattern 
(narrow ranged or widespread) and the change in suitable areas of 
all the 40 species. For that, we estimated the EOO (extent of oc-
currence; that is the area contained within the shortest continu-
ous imaginary boundary of occurrences) for each species using the 
function EOO.computing of the R package ConR (Dauby et al., 2017). 
Waterbodies were excluded from the EOO calculation. We plotted 
EOO values against the relative change in habitat suitability (CSH) 
and calculated the Pearson correlation value. We also estimated 
the relationship between species belonging or not to forested re-
gions (Forest fractions) and the response of species to future climate 
change defined as CSH. We plotted the forest fraction for each spe-
cies in the function of relative change in habitat suitability (CSH) as 
for the EOO explained above. Forest fraction was estimated by cal-
culating the percentage of occurrences for each species in forested 
areas in our study area following the tropical rain forest region as 
described by Dauby et al.  (2016) which was derived from Mayaux 
et al. (2004).

3  |  RESULTS

3.1  |  Data set

A total of 4380 unique occurrences (occupied cells in the climatic 
raster used) contained in 7052 herbarium specimens were recorded 
for the 40 species (Table S1). The mean number of occupied cells per 
species was 110. Rauvolfia vomitoria had the largest number of occur-
rences (360), whereas Aframomum citratum had the smallest number 
of occurrences (14). Amongst our species, Senegalia senegal is the 
most widespread species (EOO  =  17,691,058 km2) and Guibourtia 
tessmannii is the least widespread species (EOO of 260,392 km2). On 
average, the EOO of all 40 species was of 3,638,315 km2.

The species Morinda lucida, Raphia hookeri, Raphia vinifera and 
Xylopia aethiopica had their occurrences falling in forested areas, 
whereas S. senegal and A. citratum have 6% and 11% of their occur-
rence, respectively, belonging to forest areas, thus mainly being sa-
vannah species (Table S1).

3.2  |  Contribution of variables and model 
performance

The contribution of the six selected bioclimatic variables to the mod-
els differs amongst species (Table  S2). The rainfall deficit had the 
greatest contribution to the prediction models for most of NTFP spe-
cies and the mean annual temperature has the smallest contribution.

Model evaluations of all species revealed an AUC value well 
above 0.7 indicating an overall good performance of the models 
(Table 1). Models developed using MaxEnt showed the highest value 
of AUC for all species. The values of the TSS index obtained after 
evaluation of the models vary between 0.29 and 0.61 with an aver-
age value of 0.46 (±0.07). Species with an AUC score below 0.7 also 
received a TSS score below 0.5 confirming the poor performance of 
these models (Table 1).

3.3  |  Present-day and future distribution models

For more than 50% of species (Figure 1, Table 2), we projected on 
average an increase by 2085 of climate suitability compared to their 
present predicted range, referred to as ‘climate winners’ (Table 2). 
The proportion of species classified as ‘climate winners’ or ‘climate 
losers’ varied depending on the algorithms or the dispersion scenario 
used (Table  2). The most important proportion of ‘climate losers’ 
(19/40) was observed when using MaxEnt (Table 2), under a limited 
dispersal scenario and the RCP 8.5 scenario. In contrast, the smallest 
proportion of ‘climate losers’ (10/40) is observed when using a full 
dispersion scenario with a low emission RCP (4.5).

For the algorithm MaxEnt and the climatic scenario RCP 4.5, the 
highest positive change was predicted for the following ‘climate win-
ners’: Garcinia kola, Raphia hookeri and Carpolobia lutea. The highest 
negative changes (‘climate losers’) were predicted for Prunus afri-
cana, Lophira alata and Aframomum danielli (Figure 1).

Our results showed that ‘climate losers’ will lose on average 
37% of their present potential distribution by 2085 under scenario 
RCP4.5 (i.e. the most conservative in terms of radiating forcing), 
whereas they lose 56% under scenario RCP 8.5. These percentages 
vary according to the GCM, the emission scenario RCP and the dis-
persion scenario (Figures S2-S4).

For almost all species, the magnitude of change in habitat suit-
ability increased for predictions under RCP 4.5 when compared to 
RCP 8.5 (Figure 1). This difference was observed for all the model 
algorithms (Figures  S2-S4). For example, for the species Lophira 
alata, a ‘climate loser’, the suitable habitat is reduced by 30% when 
compared between scenarios RCP 4.5 and RCP 8.5. Similarly, for 
Carpolobia alba, a ‘climate winner’, its suitable habitat is increased by 
30% between scenarios RCP 4.5 and RCP 8.5.

3.4  |  Relationship between forest fractions and 
climate change

There is no correlation between the extent of occurrence of the 
species (estimated using EOO) and the predicted response to cli-
mate change (Pearson's R2 = −0.07, Figure 2). For example, species 
with small (e.g.: Poga oleosa) or wide (e.g. Raphia hookeri) distribu-
tion ranges can be positively impacted by climate change (Table 1; 
Figure S1). In the same way, there is no correlation between species 
occurring mainly in forested regions and their future response to cli-
mate change (Pearson's R2 = −0.1, Figure 2).
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TA B L E  1  Summary statistics of predictive performance (AUC and TSS) given for each algorithm and for 40 NTFPs' species

Species MAXENT–AUC GM AUC GBM–AUC MAXENT–TSS GLM–TSS GBM–TSS

Aframomum citratum 
(Zingiberaceae)

0.51 0.54 0.52 0.45 0.47 0.29

Aframomum daniellii (Zingiberaceae) 0.82 0.81 0.74 0.53 0.53 0.50

Aframomum melegueta 
(Zingiberaceae)

0.71 0.64 0.64 0.38 0.30 0.31

Baillonella toxisperma (Sapotaceae) 0.81 0.80 0.82 0.56 0.54 0.57

Carpolobia alba (Polygalaceae) 0.82 0.81 0.83 0.54 0.54 0.54

Carpolobia lutea (Polygalaceae) 0.78 0.77 0.79 0.46 0.45 0.48

Cola acuminate (Malvaceae) 0.78 0.77 0.76 0.47 0.45 0.44

Cola nitida (Malvaceae) 0.70 0.69 0.75 0.38 0.38 0.47

Coula edulis (Malvaceae) 0.84 0.83 0.84 0.59 0.57 0.57

Dacryodes edulis (Burseraceae) 0.83 0.82 0.82 0.52 0.50 0.52

Garcinia kola (Clusiaceae) 0.75 0.71 0.73 0.45 0.39 0.43

Garcinia lucida (Clusiaceae) 0.78 0.72 0.77 0.52 0.45 0.52

Garcinia mannii (Clusiaceae) 0.78 0.78 0.77 0.47 0.47 0.47

Gnetum africanum (Gnetaceae) 0.76 0.74 0.74 0.45 0.42 0.40

Gnetum buchholzianum (Gnetaceae) 0.70 0.72 0.67 0.40 0.40 0.36

Guibourtia tessmannii (Fabaceae) 0.68 0.66 0.67 0.34 0.35 0.34

Irvingia gabonensis (Irvingiaceae) 0.76 0.77 0.75 0.45 0.45 0.44

Irvingia wombolu (Irvingiaceae) 0.80 0.77 0.66 0.56 0.54 0.40

Khaya ivorensis (Meliaceae) 0.71 0.69 0.67 0.43 0.39 0.34

Laccosperma robustum (Arecaceae) 0.75 0.74 0.72 0.42 0.42 0.38

Lophira alata (Ochnaceae) 0.76 0.77 0.77 0.42 0.43 0.46

Milicia excelsa (Moraceae) 0.78 0.77 0.78 0.44 0.43 0.46

Monodora myristica (Annonaceae) 0.75 0.75 0.71 0.42 0.42 0.38

Morinda lucida (Rubiaceae) 0.73 0.72 0.73 0.38 0.40 0.39

Pausinystalia johimbea (Rubiaceae) 0.78 0.78 0.76 0.48 0.47 0.46

Piper guineense (Piperaceae) 0.79 0.79 0.78 0.48 0.49 0.47

Poga oleosa (Anisophylleaceae) 0.75 0.73 0.75 0.49 0.49 0.49

Prunus africana (Rosaceae) 0.87 0.86 0.85 0.61 0.62 0.61

Raphia hookeri (Arecaceae) 0.75 0.74 0.72 0.44 0.42 0.40

Raphia mambillensisb (Arecaceae) 0.62 0.72 0.64 0.57 0.61 0.57

Raphia regalis (Arecaceae) 0.73 0.69 0.68 0.47 0.39 0.39

Raphia vinifera (Arecaceae) 0.76 0.65 0.72 0.50 0.38 0.45

Rauvolfia vomitoria(Apocynaceae) 0.78 0.79 0.80 0.43 0.45 0.48

Ricinodendron heudelotii 
(Euphorbiaceae)

0.75 0.74 0.74 0.44 0.43 0.43

Scorodophloeus zenkeri (Fabaceae) 0.78 0.77 0.76 0.46 0.44 0.40

Senegalia senegal (Fabaceae) 0.84 0.84 0.84 0.57 0.57 0.57

Terminalia superba (Combretaceae) 0.69 0.66 0.70 0.36 0.30 0.36

Trichoscypha arborea 
(Anacardiaceae)

0.82 0.75 0.72 0.57 0.50 0.49

Voacanga africana (Apocynaceae) 0.77 0.76 0.75 0.43 0.43 0.42

Xylopia aethiopica (Annonaceae) 0.85 0.84 0.85 0.58 0.56 0.59

aCorynanthe johimbe K.Schum.
bSee Mogue et al. (2019) for an updated taxonomy of this species.
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4  |  DISCUSSION

4.1  |  Effect of climate change on NTFP plant 
species

Our study focused on 40 NTFP plant species described as ‘prior-
ity’ resources in Cameroon by Ingram  (2014). These 40 species 
cover, on average, a geographic range of 3.6 million km2 (Table S1). 
When compared to the geographic ranges of all tropical African 

plant taxa (from Sosef et al., 2017, Figure S5), these species are at 
the high end of the spread, being amongst the most widespread 
species. This is consistent with the idea that useful plant species 
generally have large geographic areas across the region they are 
used in and under the influence of human-induced factors (van 
Zonneveld et al., 2018). In addition, 27 species had most of their 
occurrence records (more than half) within a forested region un-
derlining the importance of forests to supply NTFP products in 
tropical Africa (Table S1).

F I G U R E  1  Relative change in suitable habitat (CSH) using MaxEnt for: (a) considering RCP 4.5 and expanded dispersion scenario; (b) 
considering RCP 4.5 and limited dispersion scenario considering RCP 4.5; (c) considering RCP 8.5 and expanded dispersion scenario and 
(d) considering RCP 8.5 and limited dispersion scenario. Values represent arithmetic means of all model combinations from 10 general 
circulation models. The box indicates the interquartile range. Colour gradients of boxes show a range of species from ‘loser species’ (CSH < 0) 
in red to ‘winner species’ (CSH > 0) in green
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We used a curated and verified tropical African occurrence da-
tabase (Dauby et al., 2016) combined with three SDM algorithms, 
and 10 different Global Climate Models (GCMs) under two differ-
ent future predictions (RCP 4.5 and 8.5) to estimate how these 
valuable plant species will be impacted by end of the century 
(2085) climate change (Figure 1). Based on these models, species 
were categorised into two different groups: ‘climate winners’ and 
‘climate losers’ (Table 2). Our results suggest that, independent of 
the models or dispersal scenarios used, NTFP species across trop-
ical Africa will not respond in a similar manner to end-of-century 
climate change (Figure  1; Table  2; Figures  S1-S4). Interestingly, 
under the RCP 4.5 scenario, there is a higher percentage of climate 
winners than losers for NTFP species (Figure 1, Table 2). Indeed, 
between 55% and 65% of NTFP species will be climate winners 
within their present range distribution, whereas between 35% and 
45% of species will be climate losers (Table 2). Thus, more NTFP 
species will gain or remain stable in the future than lose suitable 
habitat. However, the trend is inverted when considering the RCP 
8.5 scenario where more species will lose climate suitability in the 
future than win (between 42.5% and 62.5%, Table 2; Figure 1). The 
RCP 8.5 scenario depicts a future on intensive fossil-fuel usage, 
excludes any kind of climate mitigation policy and is generally not 
considered a realistic scenario (Hausfather & Peters, 2020; Moss 
et al., 2010). Considering the two dispersal scenarios used in this 
study, we found that for some species (12/40), the location of fu-
ture suitable habitat is not within their present range distribution 
but rather inside the buffer zone of 500-km area around the pres-
ent distribution. Thus, we decided to mainly interpret the results 
from the RCP 4.5 scenario from here on, unless otherwise explic-
itly stated.

Overall, our results contrast with several studies generally 
showing a decrease in future climate suitability for single useful 
species (e.g. Senegalia senegal (Lyam et al.,  2018); Adansonia digi-
tata L. (Sanchez et al., 2011), Hyphaene petersiana Klotzsch ex Mart. 
(Blach-Overgaard et al., 2009) or for a keystone plant family in gen-
eral like palms (Blach-Overgaard et al., 2015). Our results suggest 
that a common global climate change response of a heterogeneous 
group of plant species is probably not valid as suggested for some 
floras of Africa (van Proosdij et al., 2017). This is certainly linked to 
the fact that different environmental variables selected here ex-
plain the distribution of different species (Figure S6). Interestingly, 
individual species-dependent responses to past climate change (e.g. 
Last Glacial Maximum, ca. 20 k  years ago) have also been demon-
strated in Africa based on pollen (Watrin et al., 2009) or genomic 
data (Helmstetter et al., 2020).

Neither geographical range nor ecology (via ‘forest fraction’) ap-
pears to be driving factors in understanding how these species will 
respond. Indeed, there is no correlation between EOO or forest frac-
tion with change in habitat suitability (Figure 2). The most widespread 
species in our data set, Senegalia senegal (gum acacia), is a tree of the 
dry Sahel region occurring throughout tropical Africa and parts of 
southern Africa. Our models show that this species will be amongst 
the most affected of the group, losing around 80% of suitable habitat TA
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by 2085 regardless of the dispersal scenario (Figure 1). Our result is 
in agreement with a similar but more focused study showing a likely 
reduction of Senegalia senegal suitable habitat in the future in West 
Africa (Lyam et al., 2018). The palm Raphia mambillensis has the most 
restricted range in our study (but see Kamga et al., 2019 for an up-
date on its taxonomy). This species is restricted to altitudes above 
1500 m in the Cameroun Volcanic Line in western Cameroon and 
eastern Nigeria (Cosiaux & Couvreur, 2020). It is one of the most im-
portant plants in the region both economically and socially (Mogue 
Kamga et al., 2020). As for Senegalia senegal, R. mambillensis is esti-
mated to lose around 80% of its range independent of the dispersal 
scenario (Figure 1). Because it is a mainly montane species, dispersal 
to higher altitudes will be limited resulting in a drastic reduction of 
its distribution possibly resulting in the extinction of this species in 
the Cameroon Volcanic Line. The loss of this species could lead to 
important economic and social impacts for the societies that depend 
on it (Cosiaux & Couvreur, 2020).

We show that the dispersal capacity will be an important compo-
nent of the future of NTFP species (Figure 1, Table 1). Even though 
dispersal is hard to estimate in general and not implicitly taken into 
account in the modelling process (Bateman et al., 2013), we applied 
two intermediate scenarios (limited or expanded) allowing species 
to migrate between 100 and 500 km during this short time frame. 
Consistently, and, independent of both the SDM models and RCP 
scenarios, the proportion of winner species increased between 10% 
and 17.5% under the expanded model when compared to the limited 
one (Figure 1, Table 2). These results confirm the findings of several 
studies that predicted a higher loss of habitat currently assessed as 
suitable (Lei et al. 2014) or an important extinction of species under 

a no-dispersal hypothesis (Thomas et al., 2004; van Proosdij, 2017). 
This suggests that given enough geographical space (and time), our 
selection of NTFP species could migrate to more favourable regions, 
a common response in plants when faced with rapid climate change 
(Corlett & Westcott, 2013; Huntley, 1991).

We also showed that closely related species might have alterna-
tive responses to future climate change, complicating generalisa-
tions. For example, two sister fern species of the Gnetaceae family 
(Hou et al., 2015), Gnetum africanum and Gnetum buchholzianum, 
have similar geographical distributions and both occur in humid 
tropical rain forests below 1500 m (Clark & Sunderland,  2004). 
However, our models estimated different habitat loss proportions 
by 2085. According to MaxEnt predictions, Gnetum africanum 
will experience a loss of suitable habitat between 50% and 70%, 
whereas Gnetum buchholzianum will undergo a more moderate 
loss of about 12%–35% (Figure 1). Thus, other factors depending 
on each species (physiological traits) interfere in the estimation 
of a species response to climate change. Indeed, several studies 
have demonstrated that other variables related to local adapta-
tion and phenotypic plasticity, dispersal capabilities and physio-
logical responses can be involved in the estimation of the future 
distribution of species in the response to climate change (Gardner 
et al., 2019; Ruiz-Benito et al., 2020).

4.2  |  Climatic variables

In this study, we selected six bioclimatic variables known to be eco-
logically relevant to determine the distribution of tropical species in 

F I G U R E  2  Relation between the sensitivity of NTFP species to climate change and (a) the range of the species and (b) the belonging 
of the species to forested regions. (a) correlation between the mean change in suitable habitat (CSH) and extent of occurrence (EOO). (b) 
correlation between the mean change in the total area of suitable habitat (CSH) and Forest fractions mean CSH are calculated here for ‘RCP 
4.5’ and ‘limited dispersion’
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general (Blach-Overgaard et al., 2015). Other alternatives concerning 
the selection of variables exist. For example, Peterson et al.  (2012) 
suggested an analysis of collinearity to select variables or a transfor-
mation of original variables to many combined variables via a PCA. 
Another method is to use all variables simultaneously and let the 
algorithm select the most important variables through variable per-
mutation or the use of AIC (Akaike Information Criterion; Braunisch 
et al.,  2013). However, models build from a few number or many 
variables have lower quality (Warren & Seifert, 2011). Although the 
method of selection used here appears robust, the question remains; 
is it judicious to use the same variables for all species included in the 
study? Leibold (1995) suggests that the number or the type of predic-
tors used to estimate the niche should depend on the ecology of each 
species. Nevertheless, most of our models have a good predictive po-
tential suggesting that our models are robust (Table S1).

4.3  |  Modelling algorithm and evaluation

Modelling algorithms are a major source of uncertainty in predict-
ing the impact of climate changes on species (Beale & Lennon, 2012). 
Indeed, 29%–51% of uncertainty in future projections are explained 
by model algorithms (Buisson et al., 2010). Here, we accounted for 
this uncertainty by using three different algorithms (MaxEnt, GBM 
and GLM) to model present and future potential distributions. Overall, 
these different models tended to result in similar predictions (for 34 
species out of 40) in terms of winner and loser species. However, this 
was not always the case. For example, for the species Cola nitida and 
Garcinia kola, the MaxEnt and GBM predicted a gain of suitable habi-
tats (winner species), whereas GLM predicted a loss of suitable habi-
tats (loser species; Figures S1-S4). One alternative, not applied here, 
would be to use ensemble forecasts (Araújo & New, 2007), whereby 
the different outputs of the models are averaged.
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