
HAL Id: hal-03811960
https://hal.inrae.fr/hal-03811960v1

Submitted on 12 Oct 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Assessing the Predictive Power of Democratic Republic
of Congo’s National Spaceborne Biomass Map over

Independent Test Samples
Augustin Lamulamu, Pierre Ploton, Luca Birigazzi, Liang Xu, Sassan Saatchi,

Jean-Paul Kibambe Lubamba

To cite this version:
Augustin Lamulamu, Pierre Ploton, Luca Birigazzi, Liang Xu, Sassan Saatchi, et al.. Assessing
the Predictive Power of Democratic Republic of Congo’s National Spaceborne Biomass Map over
Independent Test Samples. Remote Sensing, 2022, 14 (16), pp.4126. �10.3390/rs14164126�. �hal-
03811960�

https://hal.inrae.fr/hal-03811960v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


Citation: Lamulamu, A.; Ploton, P.;

Birigazzi, L.; Xu, L.; Saatchi, S.;

Kibambe Lubamba, J.-P. Assessing

the Predictive Power of Democratic

Republic of Congo’s National

Spaceborne Biomass Map over

Independent Test Samples. Remote

Sens. 2022, 14, 4126. https://

doi.org/10.3390/rs14164126

Academic Editors: Inge Jonckheere,

Aurélie C. Shapiro, Midhun (Mikey)

Mohan, Rene Ngamabou Siwe and

Joseph Intsiful

Received: 17 June 2022

Accepted: 12 August 2022

Published: 22 August 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing  

Article

Assessing the Predictive Power of Democratic Republic of
Congo’s National Spaceborne Biomass Map over Independent
Test Samples
Augustin Lamulamu 1,†, Pierre Ploton 2,†, Luca Birigazzi 3, Liang Xu 4, Sassan Saatchi 4,5

and Jean-Paul Kibambe Lubamba 1,6,*

1 Département de Gestion des Ressources Naturelles, Faculté des Sciences Agronomiques,
Université de Kinshasa, Kinshasa 01031, Democratic Republic of the Congo

2 AMAP, Univ Montpellier, IRD, CNRS, INRAE, CIRAD, 34394 Montpellier, France
3 Forestry Consultant, Via Unione Sovietica 105, 58100 Grosseto, Italy
4 Institute of Environment and Sustainability, University of California, Los Angeles, CA 90095, USA
5 Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91125, USA
6 Wildlife Conservation Society, Kinshasa 14537, Democratic Republic of the Congo
* Correspondence: jpkibambe@unikin.ac.cd
† These authors contributed equally to this work.

Abstract: Remotely sensed maps of forest carbon stocks have enormous potential for supporting
greenhouse gas (GHG) inventory and monitoring in tropical countries. However, most countries
have not used maps as the reference data for GHG inventory due to the lack of confidence in the
accuracy of maps and of data to perform local validation. Here, we use the first national forest
inventory (NFI) data of the Democratic Republic of Congo to perform an independent assessment
of the country’s latest national spaceborne carbon stocks map. We compared plot-to-plot variations
and areal estimates of forest aboveground biomass (AGB) derived from NFI data and from the map
across jurisdictional and ecological domains. Across all plots, map predictions were nearly unbiased
and captured c. 60% of the variation in NFI plots AGB. Map performance was not uniform along
the AGB gradient, and saturated around c. 290 Mg ha−1, increasingly underestimating forest AGB
above this threshold. Splitting NFI plots by land cover types, we found map predictions unbiased in
the dominant terra firme Humid forest class, while plot-to-plot variations were poorly captured (R2

of c. 0.33, or c. 0.20 after excluding disturbed plots). In contrast, map predictions underestimated
AGB by c. 33% in the small AGB woodland savanna class but captured a much greater share of
plot-to-plot AGB variation (R2 of c. 0.41, or 0.58 after excluding disturbed plots). Areal estimates from
the map and NFI data depicted a similar trend with a slightly smaller (but statistically indiscernible)
mean AGB from the map across the entire study area (i.e., 252.7 vs. 280.6 Mg ha−1), owing to the
underestimation of mean AGB in the woodland savanna domain (31.8 vs. 57.3 Mg ha−1), which was
broadly consistent with the results obtained at the provincial level. This study provides insights
and outlooks for country-wide AGB mapping efforts in the tropics and the computation of emission
factors in Democratic Republic of Congo for carbon monitoring initiatives.

Keywords: satellite remote sensing; aboveground biomass; UNFCCC REDD+; Democratic Republic
of Congo; national forest inventory

1. Introduction

The Congo Basin hosts the second largest block of continuous tropical dense forests on
Earth, and thus plays an important role in global carbon and climate systems [1]. Direct threats
to these forests include smallholder agriculture, unsustainable forest logging, fuelwood energy
consumption and charcoal production that are exacerbated by the rapid population growth,
the lack of efficient land use planning and the weak governance in the forestry sector [2]. In
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the Democratic Republic of Congo (DRC), for instance, which is home to the largest share
of the basin’s forests, the deforestation rate has been increasing since the early 2000s, from
c. 0.9% between 2000 and 2010 to c. 1.3% between 2010 and 2014 [3]. Everything being equal
as observed over the past two decades, the DRC deforestation trend will most likely increase
in the coming years as 80–90% of DRC’s deforestation is driven by small-scale clearing for
subsistence agriculture [2,3], while the population is forecasted to increase by more than eight
times between 2000 and 2100 [4]. In this context of a growing pressure on tropical forests
and of international concerns about climate change, initiatives to curb tropical forest carbon
emissions have emerged, such as the Reducing Emissions from Deforestation and forest
Degradation (REDD+) scheme in which the DRC has been engaged since 2009 [3,5].

The implementation of forest carbon emissions monitoring initiatives such as REDD+
and others (e.g., the Emission Reductions Programs) requires participating countries to
adhere to a set of good practices that warrant the transparency, completeness and accuracy
of the results. The general methodology of such a monitoring system usually consists
of quantifying forest cover changes between consecutive monitoring dates (i.e., activity
data) and inferring associated carbon dioxide emissions (or sequestration) by multiplying
activity data with emission factors [6]. In this computation workflow, emission factors
represent the largest source of uncertainty on carbon emission estimates [7] due to the
uncertainty of forest carbon stocks prior to landcover change [8]. In contrast with Northern
Hemisphere countries where ground-based forest resource assessment is a long-standing
tradition [9], far fewer forest inventory data are available in tropical countries. In fact,
National Forest Inventories are still challenging for many tropical developing countries [7],
including DRC, due to several reasons such as the lack of adequate infrastructure and
human resources, financial constraints and security issues. Improving our understanding
of the spatial distribution of tropical forest carbon stock thus remains a central stake to
reduce uncertainties on carbon emissions, help tropical countries to fully operationalize the
REDD+ process and inform forest management decision-making.

Spaceborne remote sensing (RS) is seen as a key tool for country-wide, repeated
monitoring of the spatial distribution of forest carbon stocks using limited field invento-
ries [8]. However, remote sensing studies of forest carbon stocks—or its proxy, namely the
aboveground biomass (AGB)—cope with large sources of uncertainty in the AGB map-
ping chain [10]. AGB mapping uncertainty might result from several factors, including
(1) the paucity of data available to calibrate and validate RS models, (2) difficulties to
link field and RS data (mismatch in spatial resolutions [11], edge effect [12], geolocation
uncertainty [13], etc.), (3) the map over-estimation of small AGB values [14,15] and (4) the
saturation of current wall-to-wall RS data leading to underestimating large AGB values as
in dense forests [14,15]. These challenges have not been completely overcome in current
pantropical AGB maps, which show substantial disparities both in terms of the magni-
tude of forest biomass at any given place and its variation pattern over space, notably in
the Congo basin [16]. To date, countries are thus encouraged to favor AGB predictions
from national ground-based inventories over broad-scale RS maps for their international
greenhouse gas reporting [17]. While improvements of pantropical mapping products are
expected in the coming years thanks to recent and upcoming spaceborne missions (e.g., the
Global Ecosystem Dynamics Investigation (GEDI) and the BIOMASS missions from NASA
and ESA space agencies, respectively), a new carbon map is already available for the entire
DRC at 100 m resolution [18]. This map—hereafter referred to as the national spaceborne
biomass map—has been produced using original data and a mapping methodology that
should improve the quality of AGB predictions over existing pantropical products. For
instance, the mapping model has been trained on a probability sample of hundreds of
thousands of hectares of aerial Light Detection And Ranging (LiDAR) data distributed over
the entire country. In comparison with spaceborne LiDAR data from the GLAS (Geoscience
Laser Altimeter System) sensor used to train older pantropical products, the detailed char-
acterization of vegetation structure provided by aerial LiDAR data should provide more
accurate reference AGB predictions. Aerial LiDAR data also provide a complete coverage
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of reference pixels used to train the mapping model, thereby solving the issue of sampling
uncertainty introduced by the small size of GLAS shots with respect to the mapping resolu-
tion in pantropical studies [19]. Furthermore, LiDAR-derived reference AGB predictions
were upscaled using Landsat data, which has a much finer spatial resolution than MODIS
data used in pantropical studies (i.e., 30 m vs. 500 m) and should therefore allow discerning
more variability in forest dynamics to ultimately improve our capabilities to map AGB
variation. That being said, while the national spaceborne biomass map could help DRC
to reduce uncertainty on its national emission factors, the aforementioned map has not
been subject to an independent validation yet and has thus not been used by the country to
develop its Forest Reference Emission Level [3].

In the present study, we leveraged hundreds of field sample plots from the DRC’s
first NFI (National Forest Inventory) to perform an independent assessment of the national
spaceborne biomass map [18]. Specifically, we sought to (1) evaluate the map predic-
tive power on biomass variation across all plots and within broad landcover types, and
(2) compare population-level mean biomass estimates derived from NFI data with those
derived from the map at different spatial scales.

2. Materials and Methods
2.1. Study Area

The study area comprises the nine northern DRC provinces (out of 26 for the whole
country), which span a total area of c. 900,000 km2, or about half the country. The mean
altitude is 536 m (260–2436 m), the mean annual temperature is 24.6◦ (16.2–26.8◦) and the
mean annual precipitation is 1800 mm (878–2190 mm). The climate is characterized by
two rainy seasons per year, usually starting around March (for two months) and October
(for three months). The study area is dominated by forested lands and notably encompasses
the vast majority of DRC’s humid forests (c. 624,000 km2, Figure 1b, [3]), corresponding to
multi-strata, closed-canopy, large AGB, dense terra firme forests. The area also encompasses
part of the peatland complex found in the Congo Basin which hosts a variety of swamp
forest facies ranging from typical low-stature Raphia stands to high-stature dense forests
on hydromorphic soils (c. 82,000 km2) [3]. Last, dryer, more open vegetated ecosystems
(so-called Miombo woodlands, c. 29,000 km2) and woodland savannas (c. 160,000 km2) are
found in the northern and northeastern parts of the study area.
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Figure 1. (a) Location of the study area (black rectangle) in Africa. (b) Spatial distribution of sampling
units within the study area. Sampling units that were effectively sampled are represented with
filled black circles, while sampling units left unsampled are represented with empty black circles.
Thick and thin black lines represent countries and DRC provinces borders, respectively. Land cover
classes from [18] are represented over the study area, while the rest of DRC is colored in light
gray. (c) Illustrative example of one sampling unit with plots as white hashed squares and GPS
measurement locations as red circles. Satellite image background comes from Google Earth.
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2.2. Workflow of the Analysis

The methodological workflow of the analysis is shown in Figure 2. Our analysis
combines two main data sources: (i) the maps produced by Xu et al. [18], particularly
the national spaceborne biomass map that we briefly present in Section 2.3, and (ii) the
DRC’s NFI, which we describe in Section 2.4.1 (sampling design) and Section 2.4.2 (field
data protocol). We used the BIOMASS package (v. 2.1.5.9) published in 2017 by Réjou-
Méchain et al. [20] to correct the NFI plots’ geographic coordinates and computed for
each plot the AGB (and its uncertainty) from field inventory data (see Section 2.4.3). After
extracting maps values at plot location (see Section 2.4.4), we compared map-derived
biomass predictions (henceforth AGBmap) to field-derived biomass prediction (henceforth
AGBfield) and population-level mean biomass estimates derived from the two data sources
(see Section 2.5). All analyses were performed using the R statistical platform (v. 4.0.5).

Remote Sens. 2022, 14, 4126 4 of 19 
 

 

classes from [18] are represented over the study area, while the rest of DRC is colored in light gray. 
(c) Illustrative example of one sampling unit with plots as white hashed squares and GPS measure-
ment locations as red circles. Satellite image background comes from Google Earth. 

2.2. Workflow of the Analysis 
The methodological workflow of the analysis is shown in Figure 2. Our analysis com-

bines two main data sources: (i) the maps produced by Xu et al. [18], particularly the na-
tional spaceborne biomass map that we briefly present in Section 2.3, and (ii) the DRC’s 
NFI, which we describe in Sections 2.4.1 (sampling design) and Section 2.4.2 (field data 
protocol). We used the BIOMASS package (v. 2.1.5.9) published in 2017 by Réjou-Méchain 
et al. [20] to correct the NFI plots’ geographic coordinates and computed for each plot the 
AGB (and its uncertainty) from field inventory data (see Section 2.4.3). After extracting 
maps values at plot location (see Section 2.4.4), we compared map-derived biomass pre-
dictions (henceforth AGBmap) to field-derived biomass prediction (henceforth AGBfield) and 
population-level mean biomass estimates derived from the two data sources (see Section 
2.5). All analyses were performed using the R statistical platform (v. 4.0.5). 

 
Figure 2. Methodological workflow of the analysis. AGB predictions, AGB uncertainty and Land 
cover maps were published in [18]. 

2.3. DRC’s National Spaceborne Map 
The national spaceborne map was published by Xu et al. [18] in 2017. The map covers 

the whole DRC at a 100 m spatial resolution and is representative of forest AGB circa the 
early 2010s. The reference set of observations is based on 432,000 ha of forest scanned with 
airborne LiDAR following a designed probability sampling methodology. LiDAR data 
were used to generate a raster of mean canopy height (MCH) at the mapping resolution 
(i.e., 100 m). Xu et al. [18] used a set of 92 1-hectare forest sample plots within the LiDAR 
flight paths to calibrate a power model describing the relationship between plot AGB, 
MCH and stand mean wood density (WD). This model was then used to predict AGB over 
the entire DRC based on country-wide maps of MCH and stand mean WD. To produce 
the country-wide map of MCH, Xu et al. [18] used a maximum entropy algorithm to ex-
trapolate LiDAR-derived MCH based on Landsat 8 data, a digital elevation model derived 
from the Shuttle Radar Topography Mission (SRTM), L-band SAR data from the ALOS 
PALSAR sensor and a land cover classification (see [18] for details). The country-wide 
stand mean WD map was produced following the same extrapolation approach, but using 
139 1-hectare forest sample plots as training data. The resulting maps of AGB predictions, 
prediction of uncertainty and the land cover classification are publicly available. 

  

Figure 2. Methodological workflow of the analysis. AGB predictions, AGB uncertainty and Land
cover maps were published in [18].

2.3. DRC’s National Spaceborne Map

The national spaceborne map was published by Xu et al. [18] in 2017. The map covers
the whole DRC at a 100 m spatial resolution and is representative of forest AGB circa the
early 2010s. The reference set of observations is based on 432,000 ha of forest scanned with
airborne LiDAR following a designed probability sampling methodology. LiDAR data
were used to generate a raster of mean canopy height (MCH) at the mapping resolution
(i.e., 100 m). Xu et al. [18] used a set of 92 1-hectare forest sample plots within the LiDAR
flight paths to calibrate a power model describing the relationship between plot AGB, MCH
and stand mean wood density (WD). This model was then used to predict AGB over the
entire DRC based on country-wide maps of MCH and stand mean WD. To produce the
country-wide map of MCH, Xu et al. [18] used a maximum entropy algorithm to extrapolate
LiDAR-derived MCH based on Landsat 8 data, a digital elevation model derived from the
Shuttle Radar Topography Mission (SRTM), L-band SAR data from the ALOS PALSAR
sensor and a land cover classification (see [18] for details). The country-wide stand mean
WD map was produced following the same extrapolation approach, but using 139 1-hectare
forest sample plots as training data. The resulting maps of AGB predictions, prediction of
uncertainty and the land cover classification are publicly available.

2.4. National Forest Inventory Data
2.4.1. Sampling Design

The DRC NFI was based on probabilistic sampling principles and used a systematic
clustered sampling design. A triangular sampling grid was created and randomly posi-
tioned over the country. The grid was composed of isosceles triangles oriented along the
N-S axis with bases measuring c. 110 km and equal sides c. 78 km. Each node of the grid
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was used as the origin of a sampling unit, which was composed of four square sample plots
of 0.56 ha (i.e., 75 m × 75 m) spaced out by 250 m (Figure 1c) to limit spatial autocorrelation
in measurements among plots. The sampling strategy brought a total of 321 sampling
units spread over the country area, excluding Maï Ndombe, Kwilu and Kwango provinces,
which were not targeted by the NFI, resulting in a sampling intensity of one sampling unit
per c. 6.3 × 103 km2. A total of 143 sampling units were located in the study area, 1 of
which was located in the Congo River and 20 were not surveyed by the field teams due
to local armed conflicts, notably in the North- and Southeastern edges of the study area.
Among 122 remaining sampling units (representing 488 plots), 11 plots were not sampled
due to conflicts with local populations and access difficulties (steep slopes). Therefore, the
total number of plots for this study is 477.

2.4.2. Field Data

To perform the NFI field survey, ten field teams were simultaneously deployed by the
Forest Inventory and Management Direction (“Direction des Inventaires et Aménagement
Forestier”, DIAF) of the Ministry of Environment and Sustainable Development (“Ministère
de l’Environnement et du Développement Durable”, MEDD). Each team was composed of
two forest engineers from DIAF and a trained botanist from the University of Kisangani.
Data collection over the study area (Figure 1b) corresponded to the first phase of the NFI
and was performed between September 2017 and December 2018. For each sampling unit,
the origins (S-W corner) of the four plots were provided to the field teams and located in
the field using a handheld global positioning system (GPS) device (Garmin 64S). Plot limits
were delimited using compasses and measurement tapes. To limit plot geolocation errors
and facilitate spatial co-registration with remote sensing products, the geolocations of five
locations per plot were recorded (i.e., the four corners and the plot center, Figure 1c) by
averaging GPS measurements over a few seconds at each location.

Plot measurements followed a standard protocol. Each tree with a diameter at breast
height (dbh) ≥ 20 cm was measured and identified, while trees in the 10–20 cm dbh range
were sampled on two 0.06 ha subplots (i.e., 25 × 25 m) located on the S-W and N-E corners
of the plot. Tree dbh was measured at 1.3 m height, or 30 cm above any buttresses or
deformities. The height (h) of c. 50 trees distributed across the dbh range found in the plot
were measured using a laser rangefinder device (TruPulse 360R). Herbarium specimens
were collected on each tree for which the identification was uncertain and were stored at
the Ecology and Forest Management Laboratory (LECAFOR) of Kisangani University. The
total raw inventory dataset for the study area contains 46,963 tree dbh measurements and
13,365 h measurements. Of the 46,963 trees, 89.5% were identified at the species level, 6.6%
at the genus level and 3.9% were left unidentified. Further database screening showed that
some tree h measurements within 8 sampling units surveyed by the same field team were
unrealistic. All h measurements from those sampling units were thus discarded, leaving
a total of 12,359 h measurements in the dataset. Summary statistics on plot biophysical
parameters are provided in Table S1.

Because of the systematic sampling design, some plots overlaid different land cover
classes (e.g., humid forest, crops, etc.). For each plot, a sketch was drawn to represent
the spatial distribution of land cover classes within the plot, following a detailed clas-
sification system containing 15 classes. For the purposes of this analysis, we simplified
this classification system, aggregating NFI’s land cover classes into six aggregate classes
that matched the land cover classification used by DRC in its Forest Reference Emission
Level [3]: savannas, crops, natural regenerations on abandoned crops, dense humid forests
on hydromorphic soil, terra firme dense humid forests and other forests. This simplified
land cover classification was used for the establishment of tree height–diameter (h:dbh)
allometric models (see Section 2.4.3).
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2.4.3. Aboveground Biomass Prediction from Inventory Data

We used the BIOMASS package (v. 2.1.5.9) from Réjou-Méchain et al. [20] to predict
sample plots’ aboveground biomass and their uncertainty.

The first step of the procedure consisted of attributing a wood density (WD) estimate
(and its uncertainty) to each tree in the dataset. This was performed by the getWoodDensity
function, which relies on WD measurements available in the Global Wood Density database
(GWDdb [21,22]). For trees identified at species or genus levels, the mean WD of tropical
African trees at the appropriate taxonomic level was used. The resulting set of mean WD
is made available in [23]. When tree taxonomy was only available at the family level or
trees were unidentified, the mean WD of trees found in the same sampling unit and land
cover class was used. The getWoodDensity function provides the associated uncertainty
for each mean WD estimate. This uncertainty is either based on the standard deviation of
individual WD measurements used to compute the mean WD (when 10 measurements
or more were used) or the standard deviation of individual WD measurements across the
entire database (when less than 10 measurements were used).

Second, we built h:dbh allometric models to predict the height of trees that were
not measured in the field. Given the high spatial variability in h:dbh relationships [24],
we favored local h:dbh models (i.e., by land cover class within a sampling unit) over
more generic, regional-scale models (i.e., by land cover class across the entire dataset).
When ≥15 h measurements were available for a land cover class within a sampling unit
(which represents 91.1% of the trees), a three-parameter Weibull distribution function [25]
was fitted on those trees and used to predict the h of unmeasured trees within the same
stratum. For the remaining 8.9% of trees in the dataset, h was predicted with regional land
cover class specific h:dbh models fitted on the entire dataset (see Figure S1). h prediction
uncertainty for each tree in the dataset was computed as the residual standard error of the
corresponding h:dbh model.

Third, to account for the partial sampling of trees in the 10–20 cm dbh range, we
followed the procedure described in [26]. This procedure is embedded in the Monte Carlo
computation scheme described in the subsequent paragraph and allows simulating, for
each plot, the missing inventory data (i.e., tree diameters and identifications) for trees in
the 10–20 cm dbh range that were not sampled on the entire plot (i.e., so-called specific
functions 1 and 2 in [26]). In practice, this procedure (i) expands the count of trees in the
10–20 cm dbh class from the observed count c in the spatial fraction p of the plot that was
actually surveyed to the entire plot area by randomly generating a value from a negative
binomial distribution X~NegBin(c, p), (ii) assigns species labels to simulated trees at the pro-
rata of species abundance observed in the p fraction of the plot and (iii) assigns a continuous
diameter to each simulated tree by inverse transform sampling from a two-parameter
Weibull distribution function, with a scale parameter λ = 8.593 and a shape parameter
k = 0.737.

Fourth, we used a Monte Carlo procedure to compute the AGB of each tree (and
its uncertainty) with the pantropical AGB allometric model (Equation (4) in [27]). The
procedure propagates uncertainties arising from the simulation of missing inventory data,
WD, h, and the allometric model to tree AGB predictions (see [26] for details). The output
of the procedure is a vector of 1000 AGB replicates per tree. For a given sample plot,
the output matrix can thus be summed by Monte Carlo iterations to obtain a vector of
1000 replicates of plot AGB (i.e., AGBiter, with iter in (1–1000)), which incorporates the
different sources of uncertainty. Each AGBiter replicate represents a realization of plot
AGB for trees with dbh ≥ 10 cm over the plot area, i.e., 75 × 75 m or 0.56 ha, which we
assumed to be error-free. AGBiter replicates were thus divided by the plot area to provide
an AGB prediction per hectare and allow for comparison with biomass density values of
the national spaceborne AGB map.

Last, to account for trees in the range of 1–10 cm dbh, we used the model proposed by
Xu et al. [18]:

AGB≥1cm = 1.872 ∗ AGB0.906
iter (1)
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Following Xu et al. [18], we assumed that scaling up AGBiter to AGB≥1cm propagated
a negligible uncertainty. The mean of the AGB≥1cm vector was then used as our field
prediction of plot AGB (i.e., AGB f ield).

2.4.4. Linking Field Plots to the National Spaceborne Biomass and Land Cover Maps

An important issue when evaluating a map is to accurately position reference data.
Under forest canopy, the error on a GPS measurement acquired with a precise receiver
commonly exceeds 20 m, and can be as high as 200 m [13,28]. Therefore, reducing plot
geolocation errors requires using GPS measurements at multiple locations of the plot, so
that random GPS errors average out [13]. For each plot, we leveraged all (usually five)
GPS measurements to determine the most probable plot geolocation using the correctCo-
ordGPS function of the BIOMASS R package. The correctCoordGPS function performs a
procrust (translation, rotation) on the set of GPS coordinates while preserving the plot
size (75 m × 75 m) and a squared shape. For some plots, a few GPS measurements were
either missing or unrealistic (e.g., located ≥100 km from the plot center). To avoid in-
troducing errors in the assessment of the national spaceborne AGB map associated with
spatial mismatches between the map and the reference data, we discarded all plots with
less than three GPS measurements (n = 7). For the remaining 470 plots, we extracted
(i) the area-weighed means of AGB values in the national spaceborne AGB map (here-
after AGBmap, Equation (2)) and (ii) the modal class of the land cover map used in the
construction of the national spaceborne model, for pixels that intersected the plots.

AGBmap =
∑X

1 (AGBx × ax)

∑X
1 (ax)

(2)

where AGBx is the map AGB prediction for pixel x, ax is the area of pixel x intersected by
the plot and X is the total number of intersected map pixels.

2.5. Statistical Analyses
2.5.1. Assessment of Map Predictive Power at Plot Locations

We compared the national spaceborne biomass map predictions at plot locations
(i.e., AGBmap) to field-based predictions (i.e., AGB f ield) using the squared correlation be-
tween the two datasets (denoted R2, Equation (3)), a metric of average error (denoted
B, Equation (4)), the root mean square error (RMSE, Equation (5)) and the coefficient of
variation (CV, Equation (6)).

R2 = Cor
(

AGBmap, AGB f ield

)2
(3)

B =

(
ÂGBmap − ̂AGB f ield

)
̂AGB f ield

(4)

RMSE =

√
1
n
∗

n

∑
1

(
AGBmap, i − AGB f ield, i

)2
(5)

CV =
RMSE
̂AGB f ield

× 100 (6)

where n is the number of sample plots, AGBmap, i and AGB f ield, i are the biomass of plot i

extracted from the map and derived from field data, respectively, and ÂGBmap and ̂AGB f ield
are their mean across the n plots.

While AGB f ield data are assumed to be of greater quality (that is, of greater accu-
racy) [29] than AGBmap, both sets of predictions are subject to a non-negligible uncertainty.
In Section 2.4.3, we described the Monte Carlo procedure used to generate 1000 AGB repli-
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cates by plot, incorporating and allowing the quantification of the uncertainty on AGB f ield.
The uncertainty on map AGB predictions have also been made available at the pixel level
in Xu et al. [18], and can be aggregated among pixels intersected by each plot (SEplot) using
standard error propagation rules. To account for the imperfect nature of AGB predictions
when evaluating the national spaceborne map, statistics of map predictive power (i.e., R2,
B, RMSE and CV) were computed by comparing each of the 1000 plot AGB replicates
(i.e., AGB≥1cm) to a realization of AGBmap, defined as the sum of AGBmap to an error ran-
domly drawn from the distribution N(0, SEplot,i). This led to a vector of length 1000 for
each performance metric, from which we report the mean and its 95% confidence interval.

The temporal mismatch between the biomass map (which is representative of the early
2010s) and NFI data (which were acquired in 2017–2018) may also introduce uncertainty in
the assessment of map predictions. For example, if a forested land was converted to a crop
in the year 2015, the map would display a large biomass for that land while the biomass
prediction from NFI data would be small, hence resulting in a large prediction error for the
map. This prediction error would not reflect the predictive performance of the mapping
model but would be attributable, in this example, to the 2015 land cover change. To further
investigate the influence of this temporal mismatch, we used GLAD (Global Land Analysis
& Discovery) vegetation loss data [30] to remove all plots where one (or more) vegetation
loss was detected in the 2010–2017 period. Map validation statistics were then computed
using both the full set of 470 plots and the subset of undisturbed plots (n = 411).

2.5.2. Design-Based Inference from the Field Sample Plots and Error Propagation

AGB per unit area for the whole area of study and for the subpopulations of interest
was estimated using field plots data. The field plots were treated as a systematic cluster
sample of size n = 122. The 122 elements in the sample represent all clusters in which at
least one plot was accessible by the field crews and whose tree variables could be measured.
The average AGB per unit area was estimated using ratio estimators [31,32], which are
widely used for estimating population parameters in large-area forest surveys [33–37].
The ratio estimators were chosen because of the ability to accommodate cluster plots with
partial nonresponse [38] and because they can be used efficiently for providing estimates for
targeted subpopulations (also known as domains), such as forest types and administrative
boundaries [37,39,40]. For estimation purposes, we assume that the set of nonresponse
plots is missing at random, and they are not systematically different from the responding
ones [41]. The population AGB per unit area is estimated using the following ratio estimator
(also known as ratio-to-size estimator [32,40,42]):

µ̂RATIO =
∑n

j=1 AGBcluster, j

∑n
j=1 a j

(7)

V̂ar(µ̂RATIO) =
n

(n − 1)
∑n

j=1 (AGBcluster, j − a jµ̂RATIO)
2

∑n
j=1 (a j)

2 (8)

where n is the total sample size (n = 122), AGBcluster, j is the aboveground biomass estimated
from the inventory data in the jth cluster and a j is the area of the jth cluster which was
accessible by the field crew. Averages by land use class and provinces are also estimated
using the following domain ratio estimators:

R̂d =
∑n

j=1 AGBcluster, j,d

∑n
j=1 a j,d

(9)

V̂ar
(

R̂d
)
=

n
(n − 1)

∑n
j=1 (AGBcluster, j,d − a ,djµ̂RATIO)

2

∑n
j=1 (a j,d)

2 (10)
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where AGBcluster, j,d is the aboveground biomass estimated from the inventory data in
domain d and in the jth cluster and a j,d is the area of the jth cluster falling into do-
main d that was accessible by the field crew. Despite the fact that ˆVar(µ̂RATIO) and
V̂ar

(
R̂d
)

from Equations (8) and (10) may be biased when applied to systematic sam-
pling, they are likely to overestimate the variance [31], offering an acceptable conservative
approach to the sample estimates. It is worthwhile to notice that the variance estimators
(Equations (8) and (10)) account for the fact that both the aboveground biomass and the
area measured are random variables.

The uncertainties arising from the missing inventory data, WD, h and the allometric
model obtained through the Monte Carlo simulation procedure described in Section 2.4.3
were propagated to the large-area estimates of mean AGB following the methodology
provided by [41] (see also [43]). For each kth Monte Carlo replication, the mean AGB, µ̂k

and variance of the mean V̂ar
(

µ̂k
)

for the overall study area and for each domain were
estimated using the ratio estimators (Equations (7)–(10)) described above. The mean and
variance over replications were estimated by:

µ̂ =
1

nrep

nrep

∑
k=1

µ̂k (11)

V̂ar(µ̂) =
(
1 + 1/nrep

)
W1 + W2 (12)

where nrep is the number of replications, W1 = (nrep−1)
−1 ∑

nrep
k=1

(
µ̂k − µ̂

)
is the among-

replication variance and W2 = (nrep−1)
−1 ∑

nrep
k=1 V̂ar

(
µ̂k
)

is the mean variance within replications.

2.5.3. Model-Based Inference from the Biomass Map

For the calculation of mean biomass over large regions from the biomass map, we
used the model-based estimator (MB) given in Equation (13), which simply consists of
averaging map predictions over the region of pixels.

µ̂MB =
1
N

×
N

∑
i=1

AGBmap, i (13)

where i indexes the pixels and N is the total number of pixels within the region. We did
not compute the variance of the MB estimate, which would require additional information
on the biomass map, such as the spatial autocorrelation among the residuals, which were
not available.

3. Results
3.1. Predictions of Plot-to-Plot Biomass Variation
3.1.1. Relationship between AGBMAP and AGBFIELD across All Plots

Using the full set of 470 sample plots, we found that the map predicted 58% of
AGBFIELD variation (Figure 3a) with an average prediction error (RMSE) of 103.6 Mg ha−1

or 36.9% (CV). The relationship between AGBFIELD and AGBMAP was slightly biased
(slope of Major Axis regression: 1.16, 95% CI: 1.08–1.25), leading to a small underestima-
tion of the biomass across plots (B = −2.4%, Figure 3b). Removing plots where a loss of
vegetation cover was detected between 2010 and the establishment of NFI sample plots
(hereafter “disturbed” plots, n = 59) did not lead to noticeable changes in the results
(Figure S2).
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Figure 3. Relationship between sample plots’ aboveground biomass derived from inventory data
(AGBFIELD) and from the biomass map (AGBMAP). (a) Scatterplot of AGBFIELD vs. AGBMAP. AGBFIELD

predictions are bounded by their 95% confidence intervals including uncertainties arising from
the simulation of missing inventory data, WD, h and the allometric model (gray segments). The
dashed line represents the fit of a major axis regression. (b) Distributions of AGBFIELD and AGBMAP.
Distribution means are represented with thick circles (bounded by ± one s.e.). Dotted lines connect
distribution means between data sources (i.e., forest inventories or biomass map).

3.1.2. Mapping Error by Classes of AGBFIELD

Breaking down the assessment of map prediction error by AGBFIELD classes of 50 Mg ha−1

width, we found that map predictions were nearly unbiased on the early range of biomass
(0–150 Mg ha−1, Figure 4a), which mostly comprised non-forest and open-canopy forest
areas (Figure 3a). Beyond 150 Mg ha−1, map prediction error showed a non-linear pat-
tern of bias. Across plots of intermediate biomass (c. 150–300 Mg ha−1), the map showed
a moderate positive median error (c. 24.5–47.0 Mg ha−1, Figure 4a). From 300 Mg ha−1

onward, map prediction error decreased as AGBFIELD increased, becoming negative
around c. 350 Mg ha−1 and further decreasing up to the largest values of AGBFIELD,
which were largely underestimated (median error: −234.6 Mg ha−1, n = 10). Removing
disturbed plots unveiled a simpler bias pattern beyond 150 Mg ha−1 consisting of a
single linear decreasing trend (Figure S3a). This bias pattern suggests a loss of map
predictive power on the second half of the AGBFIELD range. Using piecewise regression,
we found a significant breakpoint in the AGBMAP–AGBFIELD relationship at 286 Mg ha−1

(Davies’ test p < 0.0001, Figure 4b), after which the linear correlation between AGBMAP
and AGBFIELD was weak (R2 = 0.1). The location of the breakpoint did not change when
excluding disturbed plots (Figure S3b).
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3.1.3. Relationship between AGBMAP and AGBFIELD per Landcover Classes

We split the set of plots by landcover classes and assessed map predictions within
classes, excluding the Miombos woodland class which only contained three plots.

Unsurprisingly, the map explained a greater share of AGBFIELD variation in the small-
biomass class of woodland savanna (R2 = 0.41) than in larger-biomass forest classes (Table 1).
In the latter classes, the map captured 33% of AGBFIELD variation within humid forests,
and did not discriminate any AGB variation within swamp forests (as seen in Figure 3a).
This pattern of map predictive error among landcover classes is consistent with the notion
of signal saturation for larger AGBFIELD values (≥c. 290 Mg ha−1) and was strengthened
when removing disturbed plots, with a higher predictive power on woodland savanna
(R2 = 0.58) and a lower predictive power on humid forests (R2 = 0.20, Table S2).

Table 1. Relationships between field- and map-derived plots’ aboveground biomass by land
cover class.

Landcover N R2 B RMSE CV

Woodland
Savanna 77 0.41 ± 0.07 −33.3 ± 3.1 54.4 ± 3.2 94.9 ± 5.1

Swamp
Forests 46 0.02 ± 0.03 −17.6 ± 1.4 113.3 ± 4.4 37.4 ± 1.3

Humid
Forests 344 0.33 ± 0.02 0.8 ± 0.7 110.5 ± 2.9 33.6 ± 0.9

It is noteworthy that map predictions on the set of NFI plots were virtually unbiased
in humid forests (B < 1%) but underestimated the average biomass of swamp forest plots by
17.5% and that of woodland savanna plots by 33.2%. Removing disturbed plots accentuated
the negative bias on the woodland savanna class (B = −45.0%, Table S2). Since map
predictions were nearly unbiased on the early biomass range (0–150 Mg ha−1), the large
underestimation of biomass in the woodland savanna class shows that this negative bias
was in fact balanced by a positive bias on plots classified as forests (either swamp or humid)
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in this biomass range (Figure 5a). Landcover classification based on field observations
made during the NFI showed that undisturbed plots classified as woodland savanna by
the landcover map in fact corresponded to a variety of non-forest classes. These classes
are commonly found in the agro-mosaic landscape of Central Africa, including savanna
(37.0%), crops (10.9%), natural regeneration on abandoned crop (13.0%) and mixes of non-
forest (17.4%) or non-forest and forest (21.7%) classes (Figure 5b). Concerning undisturbed
plots classified as forest by the landcover map, most plots (i.e., 69.2%) indeed corresponded
to forest classes in the NFI classification (notably forests on hydromorphic soil) but with
much smaller biomass value than that predicted by the map, while the remaining plots
were attributed to non-forest classes (Figure 5b), reflecting classification errors in the
landcover map.
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of AGBFIELD). (b) Pie charts showing the proportion of landcover classes from the NFI landcover
classification found among plots belonging to the woodland savanna or to a forest class in the
landcover map. Black numbers represent the number of plots by slice.

3.1.4. Predictions of Mean Biomass at Population Level

We used the field sample plots to compute mean biomass estimates at different scales
(i.e., the full study area, the land cover classes, the provinces) and compared these estimates
to the ones obtained from the biomass map.

At the scale of the study area, the mean biomass estimate derived from field sample
plots was 280.6 Mg ha−1, and its 95% CI (252.2–309.0 Mg ha−1) included the estimate
derived from the map (i.e., 252.7 Mg ha−1, Figure 6).

Among land cover classes, both data sources led to similar mean biomass estimates
for the humid forests class (i.e., 328.8 and 319.7 Mg ha−1 for field sample plots and
the map, respectively), but using field plots led to larger mean biomass estimates for
woodland savanna (i.e., 57.3 Mg ha−1, 95% CI: 39.8–74.9 Mg ha−1) and swamp forests
classes (i.e., 302.7 Mg ha−1, 95% CI: 251.6–353.7 Mg ha−1) than using the map (i.e., 31.8 and
247.8 Mg ha−1, respectively).
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Among provinces, 95% CIs around mean biomass estimates derived from field sample
plots were large owing to the relatively small number of plots by provinces (ranging
from 28 to 97 Mg ha−1, see Table S3 for details) and included mean biomass estimates
from the map in six out of the nine provinces. At the province scale, the general trend
observed is that using field sample plots led to larger mean biomass estimates as compared
to estimates from the map. This observation is consistent with the results obtained with
mean biomass estimates per land cover classes. In contrast, the mean biomass estimates
for the Sud-Ubangui and Tshopo provinces were larger with the map than with field plots,
indicating that the deviation between map and field mean biomass estimates differed in
those provinces from the regional trend. In the Tshopo province, for instance, where the
humid forest class covered 92.3% of the land, the mean biomass estimate for that class
was larger with the map (341.3 Mg ha−1) than with field sample plots (292.6 Mg ha−1,
Figure S4).

4. Discussion

Validation of RS-derived maps is both essential to compare and improve mapping
methodologies and to build confidence in mapping products and support their adoption
by end-users [44]. Here, we performed an assessment of the national spaceborne AGB map
of DRC using NFI data regularly distributed over the northern part of the country, which
hosts the majority of the Congo basin dense forests, an ecosystem for which AGB mapping
is notoriously challenging. Our results show that the map predicts about 60% of plot-to-plot
variation in field-derived AGB, but that its predictive performance is not homogeneous
along the AGB gradient. Here, we discuss our findings and their implications in using
map-derived AGB in the context of REDD+ and forest management.
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4.1. The Overall Relationship between RS- and Field-Derived AGB Predictions Is Coherent

An important challenge when mapping forest AGB over a geographic extent as broad
as the one covered by the DRC country (2.3 Million km2) is to build a prediction model that
is sufficiently general, i.e., that allows producing reliable AGB predictions in areas that are
far apart from model training data, which necessarily represent a tiny fraction of the study
area. To cope with the lack of field-derived reference data available to train RS models
and the potential bias in their spatial distribution, which limits their representativity of the
study area [45], it is increasingly recognized that a two-stage calibration strategy leveraging
aerial LiDAR data is adequate [10,13]. In practice, the limited set of field inventory data is
used to train aerial LiDAR data, and LiDAR-derived predictions are then used to calibrate
the wall-to-wall RS model, which largely expands the size of the RS model training dataset.
This strategy, which was used by Xu et al. [18], has been successfully employed on relatively
small geographic areas (i.e., from a few hundreds to thousands km2), but implementations
at the country scale and independent assessments of the resulting maps remain seldom (but
see [46] for an implementation over Peru). Despite the vast geographic extent of DRC and
the availability of only 92 1-hectare plots clustered in a few sampling sites to calibrate the
LiDAR-model, our results show that the mean deviation (or bias) of map AGB predictions at
NFI plot locations is smaller than 3%. Furthermore, the national spaceborne map explained
about 60% of plot-to-plot variation in AGB across all plots, which is well within the range
of results reported by local case studies using spatial cross-validation [14,47] and confirms
the scalability of the two-stage calibration strategy.

4.2. The RS Signal Saturates on Dense Forests—But at Relatively Large AGB Levels

While map validation statistics over the entire AGB gradient sampled by NFI plots
were satisfying, we nonetheless observed a saturation phenomenon in the relationship
between map- and field-derived AGB predictions around c. 290 Mg ha−1, above which
the map’s ability to predict plot-to-plot variation was weak (R2 = 0.1). The saturation
of multispectral imagers on large-biomass forest has been widely reported and the AGB
threshold at which the loss of sensitivity occurs varies among sensors and forest types.
Interestingly, the saturation threshold found in the present study is higher than that usually
reported for Landsat data (100–200 Mg ha−1) [48] and even higher spatial resolution imagers
(e.g., 250 Mg ha−1 for Worldview-3 [14]). We suggest that two main reasons explain this
difference. First, Xu et al. (2017) used both Landsat and L-band ALOS PALSAR imagery
to extrapolate LiDAR-derived predictions. The positive relationship between L-band
backscatter and AGB has been widely used in AGB mapping studies, which usually report
an attenuation of the signal around c. 150 Mg ha−1. While this attenuation is interpreted as
a complete loss of sensitivity (saturation), it has been shown that the relationship between
L-band backscatter and forest AGB changes on dense forest canopies but could remain
informative far beyond 150 Mg ha−1 [49]. It is thus possible that by using the MAXENT
algorithm, which accommodates for non-linear relationships between model’s covariates
and the dependent variable, the inclusion of L-band radar in the mapping model allowed
widening its range of sensitivity. Second, Xu et al. (2017) mapping methodology consisted
of separately mapping forest canopy height and stand wood density prior to fusing the
two maps into an AGB map. In contrast with the more common methodology which
consists of directly relating spaceborne data to forest AGB, the indirect approach used in
Xu et al. [18] may better model variation in forest structure—through canopy height—and
in fine capture more spatial variability in AGB. Indeed, variation in stand wood density
among field sample plots may have “noise” in field-derived AGB predictions that cannot be
predicted by the mapping model, as current wall-to-wall spaceborne sensors have shown
some sensitivity to variation in forest structure, such as forest canopy height [50], while
mapping wood density remain challenging [51].
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4.3. The Map Shows Contrasted Performances within Landcover Classes

We used a simple landcover classification composed of two classes of forests (hu-
mid and swamp) and a single non-forest class (woodland savannas) to disaggregate the
map predictive performance by landcover classes. Given the non-homogenous perfor-
mance of the map along the AGB gradient (i.e., saturation) and the structuration of land-
cover classes along this gradient, we naturally observed contrasted map performances per
landcover classes.

The mean biomass for forest classes (i.e., 303 and 329 Mg ha−1 for swamp and humid
forests, Table S3) were above the saturation threshold of the spaceborne mapping model,
leading to a weak correlation between map predictions and field-derived AGB predictions,
with R2 values of 0.20 and 0.02 on humid and swamp forests (after excluding disturbed
plots, Table S2), respectively. While map predictions were unbiased on the humid forest
class (B < 1%), which cover most of our study area, we observed a systematic under-
estimation of swamp forests AGB (c. −17.5%, Table S2). We suspect that the relatively
poorer performance of the map on swamp over humid forests, both in terms of ability
to capture the AGB gradient and the mean of the distribution, is related to the lack of
field sample plots from this forest class in the training set of the national spaceborne
mapping model (i.e., a single swamp forest plot, information from the authors of [18]).
Since swamp forests are clearly discernable from terra firme forest in optical very-high-
resolution spaceborne data, and given the influence of humidity on the radar signal, it
is indeed likely that relationships between the model’s covariates and forest AGB differs
among swamp and humid forests.

As expected, the map showed a much higher predictive power on plot-to-plot AGB varia-
tion in woodland savannas (R2 = 0.58, Table S2), where the mean plot AGB (i.e., 57.3 Mg ha−1,
Table S3) was much smaller than the saturation threshold of the mapping model. While a
common bias pattern in biomass mapping models is to over-estimate small AGB values and
to under-estimate large AGB values [14,15], map predictions were—at first glance—nearly
unbiased below the model saturation threshold. However, decomposing map predictive
performance by landcover classes revealed a more complex pattern of error among small
AGB plots, with a large under-estimation of AGB on woodland savanna plots (B = −45%)
and an over-estimation of AGB on forest plots in the range 0–150 Mg ha−1 (Figure 5a). A
possible reason for the underestimation of vegetation AGB in woodland savannas could be,
again, an improper calibration of the LiDAR model due to a lack of field data, since only
five plots located in savannas were available for model training.

4.4. Implications for DRC’s Carbon Emissions Reporting and Outlooks

The recent availability of a NFI in DRC gives to the country, for the first time, the op-
portunity to estimate mean carbon stocks of landcover classes in a design-based inferential
framework, warranting the unbiasedness of the estimates [13].

Using a ratio estimator, we obtained an estimate of mean AGB for the dominant
humid forest class that was very close to the estimate derived from the national spaceborne
map, but mean AGB estimates for the two other landcover classes (i.e., swamp forest and
woodland savanna) differed markedly between the two data sources (Figure 6). We thus
do not recommend the use of the national spaceborne map in a model-based inferential
framework to compute landcover classes mean carbon stocks, and in fine national emission
factors, for REDD+ MVR (Measurement, Verification and Reporting) under UNFCCC
(United Nations Framework Convention on Climate Change). This is not to say that the
current national spaceborne map or the tremendous investment made to acquire aerial
LiDAR data over the country cannot be valued in REDD+ framework.

The logical next step to this study would be to assess the usefulness of the current
national spaceborne map to reduce the uncertainty on landcover class mean carbon stocks
when combined with (rather than separately from) NFI plots. For instance, the map could
be leveraged to increase the precision of the AGB estimates in the context of design-based
inference through model-assisted estimation [13], which still relies on the probabilistic
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nature of the NFI plot design and warrants the unbiasedness of resulting estimates, despite
potential biases in the map. Such an approach has proven to reduce the standard error on
mean carbon stocks by more than twofold on Miombo woodlands of Tanzania [52], for
example. Auxiliary data coming from the national spaceborne map can also be used to
address the non-response in ground data collection, in combination with special estimation
techniques such as weighting or imputation [41,53].

The current acquisition of GEDI data [54] and the availability of NFI data also open
avenues to improve the DRC national spaceborne carbon map. GEDI data, for instance,
could be integrated in the AGB mapping chain in several ways, either in addition to aerial
LiDAR data in the training dataset of the forest canopy height mapping model, or as an
independent validation dataset. In the latter case, the independent set of GEDI canopy
height measurements could be used to select the covariates of the mapping model so as
to maximize its transferability in space [55]. Similarly, the large size of the NFI dataset,
its regular distribution over DRC and its independence from the data used to build the
national spaceborne AGB map make NFI data an ideal validation dataset both to refine the
functional forms of the models used to build the AGB map (i.e., canopy height and wood
density mapping models) and to assess the uncertainty of the final AGB product. Last, we
also suggest that the landcover map used in the AGB mapping chain should match the
official landcover stratification used by DRC in its international greenhouse gas reporting,
which would facilitate the adoption of the AGB map by the country.

5. Conclusions

We performed an assessment of the DRC’s national spaceborne AGB map using
field inventory data from the country’s NFI. Our results show a coherent and nearly
unbiased relationship between map prediction and NFI’s sample plot AGB across all plots,
with a relatively high saturation threshold (c. 290 Mg ha−1) considering known limits of
spaceborne wall-to-wall data (i.e., signal saturation). Decomposing this relationship by
landcover classes, however, we found that the map explained more AGB variability in
the small AGB class (woodland savannas) than in large AGB classes (humid and swamp
forests). In contrast, map predictions tended to over-estimate AGB in the small AGB class
while being closer to mean biomass predictions in large AGB classes. We attribute this
error pattern to the uneven distribution of field sample plots across landcover classes when
calibrating the mapping model and to the relatively weak relations existing between current
wall-to-wall spaceborne data and AGB in large AGB tropical forests.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/rs14164126/s1, Figure S1: Regional h:d models per landcover stra-
tum derived from NFI data (DHF TF: dense humid forest terra firme; DHF HS: dense humid forest on
hydromorphic soil; Sav.: savanna; Cult.: culture; Regen. cult.; regeneration on abandoned crop; Other:

other landcover type). Parameters of the three-parameter Weibull model (h = a ×
(

1 − exp
(
−dc

b

))
,

with h and d the tree height and the trunk diameter, respectively) are provided between brackets;
Figure S2: Scatterplot of sample plots aboveground biomass derived from inventory data (AGBFIELD)
and vs the biomass map (AGBMAP). AGBFIELD estimates are bounded by their 95% confidence interval
(grey segments). The dash line represents the fit of a major axis regression. For information, disturbed
plots are highlighted by red crossed circles, but these plots were not used when computing map per-
formance statistics and fitting the major axis regression model; Figure S3: a., Breakdown of mapping
error by classes of aboveground biomass derived from inventory data (AGBFIELD). b., Breakpoint
in the relationship between sample plots aboveground biomass derived from the biomass map
(AGBMAP) and AGBFIELD. The red line represents the fit of a piecewise regression. The dashed
vertical line highlights the location of the breakpoint. For information, disturbed plots in a and
b are highlighted by red crossed circles, but are not used when generating boxes (a) or fitting the
pricewise regression (b); Figure S4: Provincial distributions of aboveground biomass (AGB) in field
sample plots (red) and in the map (dark grey) for the Humid forests class. Distribution means are
represented with thick circles (bounded by ± one s.e.); Table S1: Biophysical parameters of forest
samples plots from the National Forest Inventory. N stands for the number of trees, G for plot’s basal
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area (in m2 ha−1), Dg for the quadratic mean tree diameter (in cm), WDp for the basal area-weighted
wood density (in g cm−3), H98 for the 98th quantile of tree predicted height (in m) and AGB for the
aboveground biomass (in Mg ha-1); Table S2: Relationships between field- and map-derived plots
aboveground biomass by land cover class. Disturbed plots were removed from the analysis. N, R2,
B, RMSE and CV stand for the number of plots, the squared correlation, the average error, the root
mean squared error and the coefficient of variation, respectively; Table S3: Mean biomass estimation
(in Mg ha−1) by stratum using field sample plots (including “disturbed” plots) and the biomass map.
N and CI stand for the number of plots and the confidence interval, respectively.
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