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Abstract: Inflammatory bowel diseases (IBDs) have emerged as a public health problem worldwide
with a limited number of efficient therapeutic options despite advances in medical therapy. Although
changes in the gut microbiota composition are recognized as key drivers of dysregulated intesti-
nal immunity, alterations in bile acids (BAs) have been shown to influence gut homeostasis and
contribute to the pathogenesis of the disease. In this review, we explore the interactions involving
BAs and gut microbiota in IBDs, and discuss how the gut microbiota–BA–host axis may influence
digestive inflammation.

Keywords: inflammatory bowel diseases; gut microbiota; bile acids; microbiome; holobiont

1. Introduction

Inflammatory bowel diseases (IBDs), including both Crohn’s disease (CD) and ul-
cerative colitis (UC), are disabling chronic immune-mediated disorders that have been
increasing worldwide [1]. The etiology of IBDs remains elusive but several factors are
known to contribute to its pathogenesis, including genetic predispositions, environmen-
tal triggers, intestinal immune dysregulation and gut dysbiosis [2]. The latter has been
highlighted by several studies that noted reduced microbial diversity and differences in
the relative abundances of specific bacterial taxa in IBD patients compared with healthy
subjects [3]. The composition of the gut microbiota is known to vary between individu-
als, reflecting the impact of environmental factors as well as disease states. As a result
of IBD-related dysbiosis, the production of bacterial enzymes—and thus, bile acid (BA)
metabolism—can be impaired [4]. BAs are the end products of cholesterol metabolism that
are synthesized in the liver and secreted into the duodenum through the bile flow [5]. Fol-
lowing synthesis, cholic acid (CA) and chenodeoxycholic acid (CDCA), two major primary
BAs, are conjugated to either taurine or glycine and then secreted into the bile. As the BAs
reach the terminal ileum, they are reabsorbed by enterocytes and reach the liver via the
portal vein, where they are taken up and recycled. BAs are well-known for promoting
dietary lipid absorption due to their micelle-forming properties and are believed to play a
role in antibacterial defense, influencing both host metabolism and immune responses [6].
They have also emerged as signaling ligands for multiple receptors, including the nuclear
hormone farnesoid X receptor (FXR), Takeda G protein receptor 5 (TGR5) and vitamin
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D receptor (VDR) [7]. These receptors play essential roles in shaping host immune re-
sponses. Primary bile acids, including CA and CDCA, as well as their potent secondary
BAs have been shown to modulate RORγ+ Treg cells, which are critical in regulating
intestinal inflammation through the VDR [8,9]. Lately, the interaction between BAs and gut
microbiota in digestive inflammation has drawn considerable attention. Several studies
have detected increased levels of primary conjugated BAs in the stool of IBD patients
in both remission and an active disease state whereas those of microbially transformed
ones decreased dramatically compared with healthy subjects [10]. Similar differences in
the composition of BAs have been reported in other studies exploring fecal metabolite
pools in IBD patients [11,12]. As the digestive tract and its microbiota are perceived to
be a key organ at the crossroads of immune and metabolic processes, we focus herein on
investigating the role of BAs in IBDs. In this review, we explore the potential contribution
of BAs at the interface between the host immune system and gut microbiota and discuss
the mechanistic relevance of BA dysregulation in IBDs.

2. Methods

Studies that aimed to understand the relevance of bile acids in digestive inflammation
are portrayed in this review. Specifically, to obtain an overview of the research in this area
and results achieved so far, we carefully reviewed the literature available on PubMed. The
main keywords used for this analysis included microbiome, bile acids, IBD and signaling.
After a detailed analysis by at least two co-authors, 74 papers were found to focus on gut
microbiome–bile acid interactions in IBDs, which is the main emphasis of this review.

3. Bile Acid Metabolism

Bile acids are exclusively synthesized by hepatocytes through cytochrome P450-
mediated cholesterol oxidation, a process that follows two pathways—the classic and the
alternative pathways [13,14]. The classic pathway is initiated by cholesterol 7α-hydroxylase
(CYP7A1), the rate-limiting step that generates the primary CA and CDCA [5,15,16]. The
alternative pathway is initiated by mitochondrial sterol 27-hydroxylase (CYP27A1) and
produces CDCA [17]. In the liver, most BAs are conjugated to either glycine or taurine via
bile acid:CoA synthetase (BACS) and bile acid-CoA:amino acid N-acyltransferase (BAAT)
prior to their secretion into the bile (Figure 1). Sulfated or glucuronidated BAs, catalyzed
by sulfotransferase family 2A member 1 (SULT2A1) and uridine 5′-diphospho (UDP)-
glucuronosyltransferase (UGT) enzymes, respectively, are also amidated with taurine or
glycine and finally released into the bile by an efflux transporter called multidrug resistance-
associated protein 2 (MRP2). Following their secretion, the conjugated BAs are stored in the
gallbladder, thus forming bile with phospholipids, cholesterol and other components [18].
After each meal, the physiological contraction of the gallbladder releases BAs into the
duodenum, where they form micelles with cholesterol and dietary fats to facilitate their
solubilization and absorption [19,20]. In the ileum, BAs are actively reabsorbed and trans-
ported back to the liver, a process termed enterohepatic circulation [13,15,21]. Unabsorbed
BAs (5%) that escape the enterohepatic circulation are further metabolized by the gut
microbiota [18,21,22] (Figure 1). One important function of the human gut microbiota is
the deconjugation of primary BAs and their subsequent biotransformation into secondary
BAs. The major bacterial genera involved in such reactions include Bacteroides, Clostridium,
Bifidobacterium and Lactobacillus for the deconjugation of taurine- and glycine-conjugated
BAs into their respective unconjugated forms by bile salt hydrolase (BSH) enzymes [5]. All
members of the Lachnospiraceae and Ruminococcaceae families execute the subsequent
7α-dehydroxylation of the deconjugated BAs to generate deoxycholic acid (DCA) and
lithocholic acid (LCA), the two most prevalent secondary BAs. Additionally, Bacteroides,
Clostridium, Escherichia and Eubacerium perform the C7β epimerization of CDCA to generate
the 7β epimer, i.e., the 3α-, 7β-dihydroxy-5β-cholanoic acid, also known as ursodeoxycholic
acid (UDCA).
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Figure 1. Bile acid synthesis. In the liver, bile acid metabolism mainly produces two primary bile
acids, cholic acid and chenodeoxycholic acid. In the intestine, primary bile acids serve as substrates for
microbial metabolism by the gut microbiota to generate secondary bile acids, including deoxycholic
acid, lithocholic acid and ursodeoxycholic acid.

In addition to secondary BAs, the gut microbiota produces oxo or keto BAs by the
oxidation of the hydroxyl groups at ring positions 3, 7 or 12 that are catalyzed by bacteria
with hydroxysteroid dehydrogenases (HSDHs). Known bacterial genera involved in such
reactions include Clostridium groups XIVa, Eubacterium, Bacteroides and Ruminococcus [23].
Other genera such as Bacteroides, Eubacterium and Lactobacillus are known to carry out
esterification whereas Clostridium, Fusobacterium, Peptococcus and Pseudomonas execute
desulfation [24].

A new group of recently uncovered BAs were conjugated to the C24 acyl site, similar
to the host conjugation mechanism [25]. As opposed to the conventional amino acids of
taurine and glycine, these compounds were conjugated with phenylalanine, leucine and
tyrosine on a cholic acid backbone by Clostridium bolteae. The precise mechanism of this
microbial reconjugation has not yet been resolved. It may rely on a similar mechanism
involving a Cys–Asp–His triad with the cysteine acting as the catalytic residue for the
nucleophilic attack [26]. Regardless of the mechanism, one could simply suggest that
the reconjugation of these residues to the acyl site of BAs would probably influence their
chemical properties and thus their signaling functions. Phenylalanine and leucine, two
large hydrophobic amino acids, would significantly increase the BA hydrophobicity, which
may infer a steric hindrance to any binding mechanism with BA receptors/transporters.
The additional hydroxyl group on the aromatic ring of tyrosine may give rise to a few
unique properties as it increases the hydrophilicity of the compound and creates a more
polar hydrophilic BA, similar to that provided by the host conjugation of taurine to CA. A
further investigation is needed to understand how microbes deploy these compounds to
impact on the host or competing members of the microbiota.

4. Bile Acids and Gut Homeostasis

In addition to their role as emulsifiers that promote fat absorption, BAs may directly
target bacterial membranes and cause bacterial damage ranging from envelope and mem-
brane disruption to the complete leakage of intracellular material [27–30]. Evidence of the
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direct antimicrobial effects of BAs can be gleaned from mouse models of biliary obstruction
that exhibit a significant proliferation of gut microbial communities and increased bacterial
translocation [31,32]. These effects can be mitigated by the administration of BAs, which
results in the inhibition of bacterial overgrowth. BAs also have indirect antimicrobial effects
via FXR-induced antimicrobial peptide production and the FXR-induced regulation of the
host immune response [31,33].

Significant changes in the gut microbiota composition were reported in rats fed with
a primary BA [34]. A CA-supplemented diet resulted in the expansion of Firmicutes,
primarily in Clostridium spp., whose relative abundance increased from 39% in the controls
to 70% in the treated groups [34]. CA and DCA have been also shown to exhibit direct
antibacterial effects on Bifidobacterium breve and Lactobacillus salivarius [35]. Such BAs are
likely to contribute to bowel inflammatory injuries [36,37]. On the other hand, secondary
BAs, DCA and LCA have been shown to impair Clostridium difficile growth in vitro and
promote resistance to infection in vivo [38].

BAs are likely to influence the gut microbial communities and vice versa, thus high-
lighting the inter-relationship of the gut microbiota–BA–host axis. Note that the effects
of such BAs on the gut microbiota and intestinal epithelium may be inflected by several
factors, including: (i) the concentration of BAs (physiological or higher) and the exposure
time; (ii) the receptors involved; (iii) the site of inflammation (ileum or colon) and BA
transport/absorption processes; and (iv) the host species (whether it is mouse or human).
Accordingly, BAs can act in different ways and show either pro-inflammatory effects or
anti-inflammatory properties instead.

5. Altered Metabolism of Bile Acids and Bile Acid Signaling in IBDs

Earlier studies noted increased levels of unconjugated BAs in both CD and UC patients
compared with healthy subjects [39]. Similar results were reported by Rutgeerts et al., where
the kinetic of primary BAs showed an increased turnover in patients with ileal dysfunction
and the amount of CA fecal loss correlated with the extent of the ileal disease [40]. Higher
levels of 7α-hydroxycholest-4-en-3 one (C4), a BA intermediate, were also highlighted in
the serum from IBD patients exhibiting a BA malabsorption (BAM) [41]. The severity of
BAM in the context of IBDs was increased in the presence of inflammation and after the
resection of the distal ileum. In addition, the presence of diarrhea in IBD patients was
suggested to be associated with an alteration of specific transport mechanisms within the
gut, including those of BAs. A decreased excretion of secondary BAs was detected in UC
patients and attributed to a reduced transit time (diarrhea) and fecal pH as well as an
impaired 7-alpha-dehydroxylase activity [42–44]. Although the fecal BA content was the
same in non-relapsing IBDs and healthy subjects, Duboc et al. noted increased levels of
conjugated BAs during a disease flare whereas secondary BAs were reduced [10]. Recent
metabolomic and metagenomic analyses of stool samples from IBD patients and healthy
controls showed a significant increase in primary BAs in patients associated with a lower
fecal DCA and LCA [4].

Bile acid malabsorption was reported in both CD and UC patients, which may repre-
sent a common feature that can be correlated with the severity of the disease [45]. These
findings might permit a speculation that a change in the BA pool size is associated with an
impaired function of BAs. FXR expression was upregulated by BAs present on the luminal
side of epithelial cells but was found to be decreased in the context of inflammation [46]. It
is well-known that FXR exerts a role in regulating BA absorption and synthesis by modu-
lating the expression and activation of BA transporters in intestinal epithelial cells such
as apical sodium-dependent bile acid transporter (ASBT) [44,47]. A rat model of colitis
revealed an increased excretion of BAs in feces and a decreased expression of ASBT in
the ileum during the acute phase of colitis [48]. These results indicated the alteration of
the expression of ASBT, which plays a key role in maintaining BA homeostasis. Murine
studies have demonstrated that BA-regulated FXR modulates intestinal immunity [49,50].
Higher levels of taurine-conjugated BAs were associated with a greater abundance of
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sulfite-reducing bacterial taxa and colitis in genetically susceptible models [51]. In humans,
several studies have described the associations between IBDs, dysbiosis and altered fecal
BA profiles [4,10,52]. A reduced expression of FXR was identified in colonic endoscopic
biopsies from patients with CD when compared with samples from individuals exhibiting
irritable bowel syndrome [50].

In addition to FXR, BAs are ligands of TGR5, which is known to mediate ileal and
colonic motility [53]. A dysregulated TGR5 expression in mouse models showed an altered
intestinal morphology leading to an alteration of the immune response and intestinal
permeability [54,55]. Moreover, it was demonstrated that IBD patients presented a decrease
in the secondary BA pool that was associated with the alteration of the gut microbiota
composition [4,44]. This finding was supported by the fact that germ-free mice presented a
significant decrease in secondary BA content [47,56,57].

Different BAs are known to have a different potency towards FXR and TGR5 [18].
Accordingly, it is difficult to predict how changes in the gut bacterial composition and,
hence, fecal BA composition affect BA signaling and subsequently influence inflammatory
processes. LCA and DCA have been shown to suppress pro-inflammatory cytokine produc-
tion in vitro from human peripheral blood-derived macrophages through the activation
of the TGR5 receptor [58]. LCA has recently also been shown to impair Th1 activation,
as evidenced by reduced TNFα and IFNγ. This was shown to be mediated through the
VDR, a known bile acid receptor, at physiologic concentrations [59]. Recently, DCA was
shown to elicit gut dysbiosis, downregulate the FXR-FGF15 axis and promote intestinal
inflammation [37].

6. Bile Acid Deconjugation in IBDs

Bile salt hydrolase enzymes catalyze the hydrolysis of the amide bond from tau-
rine/glycine residues in conjugated BAs, allowing a further microbial modification of
unconjugated BAs [5]. Due to their pivotal role, they are key elements in the balance of
BA metabolism [60]. BSH-producing microorganisms are distributed in all major bacterial
divisions, most notably in Firmicutes, Bacteroidetes and Actinobacteria [61]. Recently, a
significant association between an abundance of bsh genes and IBDs was established [62].
The abundance of bsh genes belonging to Proteobacteria increased in IBDs whereas Fir-
micutes decreased in CD. These data are consistent with previous studies that reported a
dysbiosis in IBDs characterized by increased levels of Proteobacteria and decreased levels
of Firmicutes [63–65]. The metabolomic profiling of stool samples from the PRISM cohort
(68 CD, 53 UC and 34 non-IBD patients), validated against an independent Netherlands
cohort (20 CD, 23 UC and 22 non-IBD subjects), identified BAs as one of the IBD-enriched
molecular classes as well as one with the strongest effects in a CD condition [4]. In their
study, Duboc et al. demonstrated a link between IBD-associated dysbiosis (including a
decrease in bacteria-bearing BSH activity, most notably Firmicutes) and decreased uncon-
jugated and secondary BAs [10] (Figure 2). The dysbiosis observed in IBD patients was
characterized by a decrease in the Firmicutes, one of the most potent phyla in terms of BA
deconjugation activity [66,67]. By comparing the BA profile of germ-free and conventional
mice, a higher proportion of conjugated BAs together with negligible secondary BA levels
were observed in germ-free mice compared with conventional mice, thus highlighting the
role of the microbiota in the biotransformation of BAs and the loss of function observed
in IBD patients [57]. Increased primary and conjugated BAs together with decreased sec-
ondary BAs in IBD fecal samples appeared to be consistent across the studies [10,12,68,69].
Despite changes to BAs being observed in other types of samples such as serum, plasma,
urine and fasting duodenal bile, a clear trend cannot be identified due to a limited number
of studies and their limited consistency [70].
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Figure 2. BA profiles in healthy large intestine and IBDs. Under physiological conditions, BAs are
metabolized by the gut microbiota through bile salt hydrolase deconjugation and 7α-dehydroxylation
into secondary BAs such as DCA and LCA. Abnormal BA biosynthesis and metabolic processes
were reported in IBDs with increased primary BA levels, which in turn altered the composition of
the gut microbiota and were associated with a lower production of deconjugated and secondary
BAs. IBDs: inflammatory bowel diseases; BAs: bile acids; CA: cholic acid; CDCA: chenodeoxy-
cholic acid; T/GCA: taurine/glycine-conjugated cholic acid; T/GCDCA: taurine/glycine-conjugated
chenodeoxycholic acid; DCA: deoxycholic acid; LCA: lithocholic acid; BSH: bile salt hydrolase.

7. Other Bile Acid Biotransformations in IBDs

Only a few known bacteria, including all in the Clostridium Cluster XIVa, are known to
perform the relatively rare 7α-dehydroxylation necessary to convert primary BAs to sec-
ondary BAs [71,72]. Of the several proteins involved in secondary BA biosynthesis, one key
enzyme is stereo-specific NAD(H)-dependent 3-dehydro-4-bile acid oxidoreductase [73].
A new metagenomics analysis performed by Sinha et al. demonstrated that bai genes
were expressed in significantly lower levels in UC pouches than in the controls [74]. A
deficiency in secondary BAs was also noted in these patients, suggesting their potential anti-
inflammatory role. This was mainly ascribed to the abundance of Clostridium leptum that
was significantly reduced in the IBD fecal samples compared with the healthy subjects [74].
Of particular interest, dysbiosis in IBD patients was also linked to a reduced desulfation
activity in the stool [10]. Conversely, higher levels of 3-sulfodeoxycholic acid and chen-
odeoxycholic acid sulfate were detected in the stools of patients with CD [11]. Likewise,
the levels of fecal sulfated BAs were also found to be increased in these patients [11].

8. Conclusions

As the prevalence of IBDs has been increasing worldwide, the social and economic
burdens related to the disease have been alarming. As such, a better understanding of the
underpinning drivers seems of prime importance, particularly because the etiology of IBDs
is still largely unexplored. Emerging evidence suggests a potential role of BAs in IBDs.
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Although BAs have been studied for centuries, recent findings show that we still have much
to learn. Bile acids play key roles in intestinal metabolism and cell signaling and are believed
to influence the gut microbial composition. In turn, the microbial metabolism of these BAs is
known to shape the host physiology. Alterations in BA metabolism and signaling have been
shown to influence intestinal homeostasis and drive gut dysbiosis in IBDs, thereby making
these molecules an attractive therapeutic target in these diseases. The mechanisms of
microbial modifications of BAs continue to be elucidated as do the roles that BA metabolism
plays in host health and disease. Bile acids are at the interface of complex molecular
interactions between the host and their gut microbiota. The precise impacts of increased
levels of BA subtypes associated with IBDs are not yet well-understood. Microbially
transformed BAs may be closely intertwined with those of the host and seem to exhibit
significant consequences for human physiology. The relevance of these microbial reactions
is still largely untapped. The emergence of functional metagenomic tools constitutes a hope
to better analyze the role of gut microbiota on BAs in health and disease.
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