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Abstract: Currently, emerging alimentary alternatives are growing, leading to the consumption
of natural products including bio, fermented, and traditional foods. The studies over functional
properties of food matrices and their derived compounds have resulted in the development of
new functional alimentary items. However, most of the population still has limited access to, and
information about, suitable foods. Analyzing traditional fermented products, we found fermented
food matrices containing beneficial bacteria, with the possibility of exerting effects on different
substrates enhancing the bioavailability of short-chain fatty acids (SFCAs), antioxidants, among other
food-derived products. Maize (Zea mays L.), agave varieties, nopal (Opuntia ficus-indica), and beans
(Phaseolus vulgaris L.) were key foods for the agricultural and nutritional development of Mesoamerica.
We believe that the traditional Mexican diet has relevant ingredients with these functionalities and
their association will allow us to develop functional food suitable for each population and their
current needs. In this review, the functional properties of maize, agave, nopal, and frijol are detailed,
and the functional food innovation and development opportunities for these food matrices are
analyzed, which may be an important precedent for future basic and applied research.

Keywords: functional foods; probiotics; prebiotics; synbiotics

1. Introduction

A breakthrough in functional food research has been made in the last decades. The
identification and characterization of the fibers, antioxidants, vitamins, and microflora of
these food matrices is the brick in the wall that will allow the understanding and developing
of novel functional foods. In this context, there are two food components that stand
out. In first place are the prebiotics, such as non-digestible fibers or other food-derived
compounds (i.e., antioxidants), substrates selectively utilized by host microorganisms,
which also confer a health benefit [1]. These substrates may stimulate the growth of
beneficial microorganisms in several ways and promote some changes in the metabolites
produced by these bacteria, namely, reduction in the colonic pH, changes in the stool
mass, and improvements in intestinal and systemic health [2]. In second place are the
probiotics, “microorganisms which, when administered at appropriate concentrations
confer a positive effect to host health”; these health effects generally include the inhibition
of harmful bacteria or the production of particular metabolites with other specific strain-
dependent effects, and they have positive impacts on the host immune system [3]. The
association of both probiotics and prebiotics leads to synbiotics. A panel of experts updated
the definition of a synbiotic as “a mixture comprising live microorganisms and substrate(s)
selectively utilized by host microorganisms that confers a health benefit on the host” [4].
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The supplementation of non-fermentable carbohydrates, such as inulin and resistant starch
(RS, mainly type R2), reduces the risk of chronic diseases, which can be partially attributed
to the modulation of the intestinal microbiota via the prebiotic effect, with beneficial
effects in vitro, in vivo, and in several clinical trials [5]. Short-chain fatty acids (SCFAs),
particularly butyrate produced from the fermentation of complex carbohydrates as a part of
its synbiotic activity, are essential nutrients for colonic epithelial cells and anti-inflammatory
regulatory T lymphocytes [6,7]. Meanwhile, depletion of the gut SCFA-producing microbial
species and/or their substrates can contribute to the disruption of the colonic epithelial
barrier and subsequent inflammation [8] (Figure 1).
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Figure 1. The general mechanisms by which Mexican traditional food can have a health effect are
diverse and have been lately described: (A) Some of the components of Mexican traditional food,
called prebiotics (non-digestible carbohydrates and antioxidants compounds) can exert positive
effects on intestinal and systemic health: (1) enhancing the increase in numerous short-chain fatty
acids (SCFAs) producing bacteria, butyrate, acetate, propionate, and gut microbiota modulation;
(2) displaying antioxidant properties; and (3) improving metabolic syndrome markers such as a
decrease in cholesterol. (B) The different fermented food containing a proportion of probiotic bacteria
that are known to interact with the indigenous host microbiota also have health benefits. Isolated
strains from maize and agave-based beverages are capable to survive gastrointestinal conditions, and
(5) produce SCFAs and antimicrobial compounds against pathogen bacteria, (6) immune-modulate
anti-inflammatory cytokines, (7) reinforce the colon barrier integrity, and (8) improve some metabolic
syndrome markers. SCFAs: Short-chain fatty acids. RS: Resistant starch. AX: Arabinoxylans. XOS:
Xylooligosaccharides. F-AXOS: Feruloylated arabinoxylan mono- and oligosaccharides. Created by
BioRender.com (2022) (accessed on 6 March 2022).

The provision of healthy solutions for the population has not been accessible for
everyone. This review proposes the identification and description of the properties of
feasible alternatives in the traditional fermented or not, food matrices of regional Mexi-
can food. Furthermore, promoting commerce via local markets and producing suitable
ecological post-harvest methods that avoid the exploitation of the cultivation soils will
be strategies to achieve successful food availability. Although several functional foods
around the world are known to have important health effects [9–11], we decided to focus
on Mexican food: corn (Zea mays L.), agave varieties, nopal (Opuntia ficus-indica), and beans
(Phaseolus vulgaris L.) since their effects have not been summarized from this viewpoint and
they have been crucial from the development of the ancient Mesoamerican civilization [12].
Important information from other countries that also produce and consume these four
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products are included in some sections, and this remarks on the importance of their high
availability around the world.

To identify the information for its creation, the authors selected original research
articles by using the keywords of the review in combination with the scientific name of
the food (Zea mays L., Agave varieties, Opuntia ficus-indica, and Phaseolus vulgaris L.). Two
important criteria for this selection were considered; that the information was up to date
(2000–2022) and recovered from English language animal trials and in vitro studies.

The vast research findings in these food matrices have demonstrated functional and
nutritional attributes due to their fiber-like type 2 RS, agavins [13]; fiber mucilage [14],
water extractable polysaccharides [15], and antioxidants [16,17]. Furthermore, their mi-
croorganism content improves the shelf-life of the product, its sensorial characteristics, and
probiotic properties [18,19]. The isolation, characterization and association of the prebiotics
and probiotics from the food matrices has become a suitable alternative for the develop-
ment of new products [19]. This review addresses the probiotic and prebiotic insights in
corn, agave, nopal and beans, emphasizing the synbiotic capacities of each food and their
opportunities for functional food development.

2. Maize

Corn (Zea mays L.) is an important source of carbohydrates, proteins, fiber, vitamins,
and minerals such as calcium, magnesium, potassium, and sodium [20]; moreover, it is
the main cereal produced worldwide followed by wheat and rice [21]. First domesticated
in Mesoamerica, it is highly consumed in Mexico and on the American continent [22].
The anatomical corn kernel parts [23] and its tonalities, comprising bioactivities with
compounds such as anthocyanins and flavonoids, make it a valuable food [22].

In Mexico, maize is traditionally consumed as tortilla, using an alkaline-thermic
process called “nixtamalization” [24] that favors the release and absorption of bioactive
compounds during the GIT passage [25]. However, some phytochemical bioactive com-
pounds could be altered or degraded in this process [26]. Fermentation by lactic acid
bacteria (LAB) improves the bioavailability of active compounds, which enhances its con-
servation and improves some sensorial attributes [27]. Chemical and thermal modifications
of corn lead to the release and conformation of different polymer structures, such as type 2
resistant starch (RS2), arabinoxylans (AX), xylooligosaccharides (XOS), feruloylated ara-
binoxylan mono- and oligosaccharides (F-AXOS), high-amylose maize type 2 resistant
starch (HAM-RS2), among other prebiotic fibers [28–30], which may provide several health
benefits to the host.

2.1. Prebiotics in Maize

As prebiotic, corn-derived products have been tested in vitro, in vivo, and in clinical
trials. Table 1 summarizes important information from these prebiotics. The by-products
of nixtamalized corn may be a source of prebiotic compounds such as ferulated arabi-
noxylans [31], which can promote the growth of probiotic bacteria of the genus Bifidobac-
terium [32]. Moreover, XOS derived from corn cobs exhibits prebiotic properties and
promotes the growth of L. plantarum S2, increasing the SCFAs and the anti-microbial effects
of L. plantarum against S. flexneri, E. coli, S. aureus, and S. typhimuriu, maintaining the gut
homeostasis [33].
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Table 1. Prebiotics, probiotics and synbiotics in Maize.

Prebiotic, Probiotic or Synbiotic General Effect Reference

Pr
eb

io
ti

cs

Arabinoxylans (AX) Promote the growth of probiotic bacteria of the
genus Bifidobacterium. [31]

Xylooligosaccharides (XOS)
Promote the growth of L. plantarum S2, increasing short-chain fatty
acids (SCFA) and the anti-microbial effect of L. plantarum against
S. flexneri, E. coli, S. aureus, and S. typhimurium.

[32]

High-amylose maize type 2 resistant
starch (HAM-RS2)

Reduction in the concentrations of blood urea nitrogen, IL-6, TNFα,
and malondialdehyde, and increase in the relative abundance of
Faecalibacterium genus.

[33]

Dietary fibers K1 and K2 Increase in SCFA content and stimulate the growth of
Bifidobacterium genus and Bacteroidetes and Actinobacteria phyla. [29]

Feruloylated arabinoxylan mono- and
oligosaccharides (F-AXOS) Selectively stimulate Bifidobacterium and Lactobacillus. [30,34]

Pr
ob

io
ti

cs

Streptococcus genera, Weissella
paramesenteroides, Lactococcus lactis and
L. paramesenteroides

Functional probiotic properties: resistance to low pH and bile salts
conditions, ability to adhere to HEp2 cell line [35]

Pediococcus pentosaceus, Weissella confusa,
Weissella paramesenteroides,
Lactiplantibacillus plantarum,
Lactobacillus acidophilus, Levilactobacillus
brevis, Lactobacillus coryniformis,
Leuconostoc pseudomesenteroides and
Lactococcus lactis

Antimicrobial properties against Enterobacteriaceae, and yeasts [36,37]

Weissella cibaria and Leuconostoc citreum Antagonistic activity towards foodborne pathogens, short-chain fatty
acids production and adhesion to HT-29 cell line [38,39]

Sy
nb

io
ti

cs

Hi-maize 958 or Hi-maize 260 resistant
starch (RS), in combination with
Bifidobacterium lactis

Modulation over the microbiota composition, re-inforced the innate
immune system, and decreased blood lipids levels in
hypercholesterolemic patients

[40]

XOS and Lacticaseibacillus paracasei
HII01

Reduction in gut inflammation and restoration of dybiosis in
obese rats. [41]

Promitor™ Soluble Corn Fiber and
L. rhamnosus LGG

Increase in NK cell activity and decreased serum total cholesterol and
LDL cholesterol in patients with dyslipidemia, and also increases in
Ruminococcaceae and Parabacteroides.

[42]

Supplementation with the prebiotic HAM-RS2 led to a significant serum reduction in
the concentrations of blood urea nitrogen, IL-6, TNFα, and malondialdehyde. Moreover, the
Faecalibacterium genus was significantly increased in relative abundance following HAM-
RS2 supplementation in patients with chronic kidney disease (CKD), but not Bifidobacteria,
Prevotella, Parabacteroides, or Ruminococcus [29]. The thermolysis of starch modification and
chemical modification of dietary fibers K1 and K2 increased the SCFA content in obese
children feces, which proves that these preparations provide a beneficial fermentation
substrate for the enteric microbiota [30]. Consumption of prebiotic substances stimulate the
growth not only at the Bifidobacterium genus, but also of strains belonging to the Bacteroidetes
and Actinobacteria phyla, while inhibiting Firmicutes strains, particularly, Clostridium species,
consistent with the presented results of dietary preparations with K1 and K2 fibers [30].

Fiber-like carbohydrates are not the only substrates considered prebiotics, it has also
been reported that antioxidant compounds can modulate the growth and metabolism of
microorganisms from the gut microbiota [43]. Broekaert, Courtin, Verbeke, Van de Wiele,
Verstraete, and Delcour [34] reported that cereal derived feruloylated arabinoxylan mono-
and oligosaccharides (F-AXOS) isolated and identified in cereal samples, including maize,
exerted antioxidant properties, also displaying prebiotic colonic effects in animals and
humans through selective stimulation of Bifidobacterium spp. and Lactobacillus spp.
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2.2. Probiotic Candidates in Maize-Based Fermented Foods

Many maize-based beverages that are found in Mexico: pozol, tejuino, and atole
agrio (a corn-based beverage), harbor particular microorganisms such as yeast and bacteria
(i.e., Lactobacillus spp., Enterococcus spp., Leuconostoc spp., and Lactococcus spp.) [19], as well
as derived products from fermentation with beneficial effect to gastrointestinal tract (GIT),
and enzymes with industrial applications. Table 1 gather important information from
these probiotics.

The traditional beverage pozol contains some strains such as Enterococcus, Exiguobac-
terium, Pediococcus, Lactococcus, Leuconostoc, Lactotreptococcus, and Weisella [44–46]; and also
Streptococcus genera, Weissella paramesenteroides, Lactococcus lactis, and L. paramesenteroides
with functional probiotic properties such as resistance to low pH and bile salts conditions
and ability to adhere to HEp2 cell line [35]. Atole agrio beverage also harbors a diverse
microflora: Pediococcus pentosaceus, Weissella confusa, Weissella paramesenteroides, Lactiplan-
tibacillus plantarum, Lactobacillus acidophilus, Levilactobacillus brevis, Lactobacillus coryniformis,
Leuconostoc pseudomesenteroides, and Lactococcus lactis, which have antimicrobial properties
against Enterobacteriaceae, and yeasts [36,37].

Recently, bacterial strains Limosilactobacillus fermentum, Lactiplantibacillus plantarum,
Enterococcus faecium, Enterococcus durans, and Enterococcus hirae were identified in commer-
cial and artisanal tejuino, a beverage elaborated with germinated maize [38]. According
to Silva, Ramos et al. 2017, when analyzing the survival of bacterial strains isolated from
this food matrix on a human gastrointestinal model, only Weissella cibaria and Leuconostoc
citreum displayed antagonistic activity towards foodborne pathogens, short-chain fatty
acids production, and adhesion to HT-29 human colon cell line [38,39]. In other world
regions such as Africa, “koko and ogi” also maize-based preparations, have been observed
for their bacterial contents (Lactiplantibacillus plantarum, Limosilactobacillus fermentum,
Limosilactobacillus reuteri, Enterococcus faecium, Pediococcus acidilactici, Pediococcus pentosaceus,
Enterococcus faecalis, and Levilactobacillus brevis), which are able to survive the GIT condi-
tions, inhibiting pathogenic bacteria and reducing diarrhea [47]. Another example is chicha
from Argentina, a corn-based product containing LAB (Lactiplantibacillus plantarum, Lacto-
bacillus rossiae, Leuconostoc lactis, Weissella viridescens, Enterococcus hirae, Enterococcus faecium,
Leuconostoc mesenteroides, and Weissella confusa), which are known to improve the produc-
tion of riboflavin and folate. Hence, the microflora signature from maize-based beverages
is a positive indicator that promising pre- and probiotics are involved in fermentation.

2.3. Synbiotic Effects of Maize

A few, but promising, studies on supplementation with both corn-derived prebiotics
and probiotics have been performed and resumed in Table 1. The Hi-maize 958 or Hi-maize
260 resistant starch (RS), in combination with Bifidobacterium lactis showed encouraging re-
sults in a colorectal cancer rat model. The synbiotic modulated the microbiota composition,
reinforced the innate immune system and decreased blood lipids levels in hypercholes-
terolemic patients [40]. In this same line, a synbiotic combination of Lacticaseibacillus
paracasei HII01 and XOS reduced gut dysbiosis and gut inflammation in obese rats [41]. A
randomized, double-blind, placebo-controlled, crossover study performed by Costabile,
Bergillos-Meca, Rasinkangas, Korpela, de Vos, and Gibson [42] using L. rhamnosus LGG
combined with Promitor™ Soluble Corn Fiber, increased natural killer (NK) cell activity
and decreased serum total cholesterol and LDL cholesterol in patients with dyslipidemia.
In addition, the synbiotic combined with corn soluble fiber increased Ruminococcaceae and
Parabacteroides suggesting that the treatment may positively affect the microbiota in elderly
persons experiencing microbiota diversity decreases [42].

3. Agave

Mexico is reported to be the place of origin of Agave, mainly used for the production of
distilled and non-distilled alcoholic beverages, including tequila, mezcal, bacanora, raicilla,
and pulque, all of which have special connections to Mexican history and culture, and
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economy [48]. Dietary fiber obtained from Agave tequilana, is rich in fructans and insoluble
fiber (IDF); however, during their extraction process, an IDF-rich by-product (about 30%) is
generated and usually discarded [49]. Agave cell wall composition is structured mainly by
cellulose and hemicelluloses, and this plant is a carrier of the fructan-type carbohydrates,
with multiple ascribable health benefits [50]. Since this plant is an excellent source of
sugars, minerals, and phenolic compounds, biotechnology research has been focusing on
development of several agave-based sub-products [51].

Agavins (from Agave) are structured by linear fructans linked by fructosyl chains with
β (1–2) linkages, whereas branched fructans are linked by both β (1–2) and β (2–6) [13]. All
these fiber components favor the growth of LAB [52], Bifidobacterium and yeast communities,
which are able to ferment fructans by the expression β-fructofuranosidase enzyme that
catalyze fructo-oligosaccharides (FOS) hydrolysis [53]. Saponins obtained from Agave
americana were also studied as an additive in animal feeding [54]. Several studies reported
that these LAB strains participated during agave fermentation [17,18,55,56]. For this reason,
agave is both a prebiotic and probiotic promising source for the development of novel
functional food products.

3.1. Derived Prebiotics from Agave

Agave should be considered a valuable alternative for the addition of nutritionally
relevant dietary fiber in healthier food. Particularly, plants of the Agave genus are rich
in fructans [57], considered prebiotics because they are not digestible by intestinal tract
enzymes, and their structure and type of link by common β (2-1)-like inulins plus β (2-6)
linkages of whole molecules allows them to pass into the colon without degradation by
endogenous GIT enzymes, where they can be fermented by beneficial bacteria [58]. Some
important aspects of Agave prebiotics are condensed in Table 2. Inulin-type fructans are
the most studied prebiotic compounds because of their broad range of health benefits
related to hormonal modulation involved in food intake [58]. Agavins are known to
reverse metabolic disorders in several ways that include the gut microbiota changes and
or other systemic health effects like the increase in SCFA concentrations in the gut and
the endocrine modulation [58–60]. Agave was recognized as a new and potential source
of sapogenins and saponins, which are glycosides of triterpenes or steroids with a high
number of bioactivities [61]. Branched agave fructans are also known as prebiotics that
enhance barrier function and reduce epithelial barrier permeability [62].

The potential of ashen and green Agave bagasse as functional ingredients in sup-
plemented cookies has been studied for the application of the chemical and functional
properties of this plant noticing that it possesses mainly FOS and simple sugars [50]. Agave
boles are rich in sugars and contains inulin with a similar degree of polymerization to
those extracted from other sources such as Agave tequilana or Agave atrovirens [63]. The
powder of A. sisalana bole extract, recently identified as a rich source of inulin, exhibited
higher potential of fermentation compared with crude polysaccharides when it was used
for several LAB fermentations [63]. Morán-Velázquez, Monribot-Villanueva, Bourdon,
Tang, López-Rosas, Maceda-López, Villalpando-Aguilar, Rodríguez-López, Gauthier, Trejo,
Azadi, Vilaplana, Guerrero-Analco and Alatorre-Cobos [64] evaluated the composition of
A. fourcroydes spines includes hemicellulose, pectins, and monolignol subunits, flavonoids,
and condensed tannins. The phenylpropanoid-derived compounds, specifically from lig-
nocellulosic matrix, identified flavonoids (quercetin, kaempferol) and condensed tannins
((+)-catechin and (−)-epicatechin) as the predominant metabolites in spines. Agave four-
croydes has shown high concentrations of fructans in their stems; however, there is no
information on new products derived from this plant that might enhance its benefit.
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Table 2. Prebiotics, probiotics, and synbiotics in Agave.

Probiotic, Prebiotic, or Synbiotic General Effect Reference

Pr
eb

io
ti

cs

Agavins Reverse the metabolic disorders including microbiota changes [46]

Powder of A. sisalana bole extract
(rich in inulin)

Important source of substrate for the higher fermentation
potential with LAB [63]

Agave fourcroydes
Phenolic compounds including quercetin, kaempferol,
(+)-catechin, and (−)-epicatechin exhibit possible
prebiotic potentional.

[64]

Pr
ob

io
ti

cs

L. mesenteroides P45
Antibacterial activity against the pathogens Listeria
monocytogenes, enteropathogenic Escherichia coli, Salmonella
enterica serovar Typhi and S. enterica serovar Typhimurium

[56]

Leuconostoc mesenteroides subsp.
mesenteroides

Survival on the in vitro GIT simulated conditions and
exhibited antimicrobial activity against some pathogens [65]

Leuconostoc SD23
Reduction in serum glucose, the homeostasis model
assessment of insulin resistance, and triglycerides in maternal
obesity rats

[66]

L. sanfrancensis LBH1068 Anti-inflammatory properties on an HT-29 cells TNF-α model
and improvement of symptoms in the DNBS-colitis model [17]

L. plantarum LM17 Significant reduction in weight loss and improvement in the
intestinal permeability using the DNBS-colitis model [18]

Sy
nb

io
ti

cs

Agave fructans (Agave salmiana) and
probiotic bacteria, Lacticaseibacillus casei
SACCO BGP93 and Bifidobacterium lactis
SACCO BLC1

Stimulation of the intestinal host defense.
Antagonic activity to pathogens. [67]

Agave inulin and L. reuteri DSM 17,938 Improved stool characteristics in children with cerebral palsy
and chronic constipation [58]

3.2. Probiotics from Agave Sources

Previous studies characterized and described the microflora present in agave-based
fermented beverages. Agave bagasse (fibrous-like material) is in contact with the indigenous
microbiota of the plant, as abovementioned agave sugars and fibers promoting bacterial
growth. In Table 2, some summarized information is available. In fact, studies performed
by Escalante, et al. [55] reported that aguamiel (Agave sap) contains more than 32 microor-
ganism species, including LAB. The inherent microbiota fermentation process of Agave
sap produced pulque, a Mexican traditional fermented beverage. One of the characteris-
tics of this beverage is the viscosity, conferred by bacterial exopolysaccharides produced
by Leuconostoc spp. Different Leuconostoc strains have been isolated from aguamiel, and
have probiotic properties. L. mesenteroides P45 displayed antibacterial activity against
the pathogens Listeria monocytogenes, enteropathogenic Escherichia coli, Salmonella enterica
serovar Typhi, and S. enterica serovar Typhimurium in in vitro and murine models. Leuconos-
toc mesenteroides subsp. mesenteroides, isolated from aguamiel (sap, from Agave salmiana)
survived the in vitro GIT simulation conditions and exhibited antimicrobial activity against
some pathogens [65]. The genome analysis showed that P45 encoded a pre-bacteriocin
coding gene and six peptidoglycan hydrolase enzymes [56]. Oral administration of Leu-
conostoc SD23 (strain isolated from aguamiel) was tested in a maternal obesity (MO) model
in Wistar rats. Although it did not affect the weight, percentage of body fat was lower than
in control obesity groups. Moreover, serum glucose, the homeostasis model assessment
of insulin resistance, and triglycerides were higher in MO than in groups treated with
probiotic strain [66]. Torres-Maravilla, et al. [17] isolated L. sanfrancensis LBH1068 from
pulque (Agave salmiana) with anti-inflammatory properties on an HT-29 cells TNF-α model
and improved symptoms in the DNBS-colitis model. In the other hand, in Agave bagasse
(Agave atrovirens) for mezcal production, Lactiplantibacillus plantarum strains with antioxi-
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dant properties were isolated, particularity L. plantarum LM17 that improved the health
of the mice, as observed by reduced weight loss, and significantly decreased intestinal
permeability on a colitis mice model [18].

3.3. Synbiotic Effects of Agave

The general synbiotic effects of Agave have been incorporated in Table 2. Moreno-Vilet, et al. [67]
evaluated the synbiotic effect of Agave fructans (Agave salmiana) and probiotic bacteria, Lac-
ticaseibacillus casei SACCO BGP93 and Bifidobacterium lactis SACCO BLC1. This combination
produced an early activation of the lymphocyte population CD69+ cells, cell proliferation,
and nitric oxide (NO) production in peripheral blood mononuclear cells (PMBC) in vitro.
Moreover, fructans from Agave increased the expression of Tbet and FOXP3 transcription
factors, suggesting that this prebiotic stimulate indirectly the intestinal host defense by T
helper cell regulation. The synbiotic effect of Agave and probiotics has been also tested in an-
imal health generating beneficial effects against pathogens, such as Salmonella typhimurium
and Clostridium perfringens, particularly in those cases where the use of antibiotics during
poultry production was excluded. Either through the generation of short-chain fatty acids
(SCFA) that contribute to mucosal cells proliferation or growth-promotion of beneficial
gut bacteria, synbiotics could favor a microenvironment that improves the activity of the
poultry immune system [68]. Finally, in a clinical model, the synbiotic effect of L. reuteri
DSM 17,938 and/or agave inulin significantly improved stool characteristics in children
with cerebral palsy and chronic constipation [59].

4. Nopal

Opuntia ficus-indica, also known by its common name, nopal, is a cactus plant from
the family Cactaceae. This is a widely distributed [69] and nutritious plant, high in amino
acids and vitamins such as carotenoids and other antioxidant bioactive compounds [70,71],
and an excellent source of minerals [72,73]. Its cladodes are regularly consumed in Mexico
and the surrounding area since ancient times, being the symbol of the foundation of
Tenochtitlan, and used by the Aztecs for the treatment of some colon cancer forms [74].
The fruit of nopal, also called the pear, is also valued because of its flavor, and frequently
consumed. One of the most valuable characteristics of this plant, is its carbohydrate
content; fibers and mucilages have already been analyzed as bioactive components with
important health roles [14]. Several aspects have been yet described, like the mucilage
viscosity and elasticity [75] as long as its highly branched formation and a backbone with
rhamnosyl-, galactosyl- and galacturonic acid residues and branching side chains of xylosyl-
and arabinosyl- residues [76,77]. Mucilage has been pointed as an anti-inflammatory
component on topical, and mucosal injuries [78,79]. On the other hand, pectins are another
important component of nopal. These fibers are commonly composed by a backbone chain
structure of α (1-4)-linked D-galacturonic acid units and (1-2) linked L-rhamnopyranosyl
residues with linear segments of homogalacturonans [80].

Although fibers can differ in their chemical composition and physical structure, they
can exert different biological functions and impact the host gut microbiome [81]. Nopal
has known to have multiple benefits studied in experimental models [82–84]. From all the
positive health benefits, the prebiotic effect has been highly described in previous years.

4.1. Prebiotic Effect in Nopal

The general information of nopal prebiotics, potential synbiotics, and synbiotics can
be found in Table 3.
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Table 3. Prebiotics and Synbiotics in Nopal.

Prebiotic, Probiotic, or Synbiotic General Effect Reference

Pr
eb

io
ti

cs

Opuntia pear peel Specific bacterial growth and higher organic acid
production than glucose in in vitro assays [85,86]

Opuntia pear peel Higher counts of lactic acid bacteria and
Bifidobacteria species [87]

Opuntia ficus indica fruit juice
Specific bacterial growth (Limosilactobacillus fermentum
ATCC 9338), decreased sugar components and
decreased risky volatile components

[88]

Opuntia ficus indica fruit juice Changes in the growth speed and density of
microorganisms of the intestinal microbiota [89]

Nopal
Modification on the gut microbiota profile, metabolic
changes, and an important reduction in circulating
lipopolysacharide levels

[90,91]

Nopal fiber

Higher intestinal bacterial diversity in specific phyla
and cecal fermentation.
Modulation of inflammatory intestinal markers and
oxidative stress

[92]

Sy
nb

io
ti

cs

Cactus pear peel flour and LAB (Lactiplantibacillus
plantarum UAM17, Enterococcus faecium UAM18,
Aerococcus viridans UAM21b and Pediococcus
pentosaceus UAM22a) (potential synbiotic)

Increased bacterial viability and resistance to acidic
conditions by co-encapsulation with pear peel flour [93]

Cactus pear peel flour with wheat flour and
Pediococcus pentosaceus UAM22a (potential synbiotic)

More water retention, increased yield and reduction
on the oxidative rancidity on a formulated sausage. [94]

Cactus pear peel flour as co-encapsulant of probiotic
Enterococcus faecium UAM1 or Pediococcus pentosaceus
UAM2 (potential synbiotic)

Prevention of food spoilage from coliforms and
decreased oxidative rancidity [95]

Cactus fruit juice and Lactiplantibacillus
plantarum S-811, L. plantarum S-TF2,
Fructobacillus fructosus S-22, and
F. fructosus S-TF7

Organoleptic characteristics guaranteed, inocuity
preservation, and protection from pathogens [96]

Cactus fruit juice and Lactiplantibacillus
plantarum S-811

Improvement of stress tolerance in
Sacharomyces cerevisiae
Decrease in adipose index, weight, and intestinal
inflammatory parameters in C57-BL6 obese mice

[97]

Cactus cladodes pulp and LAB (L. brevis POM2
and POM4)

Increased synthesis of GABA
Preservative effects on vitamin C and carotenoids
Increased radical scavenging activity

[98]

Cactus fruit puree
Leuconostoc mesenteroides

Anti-inflammatory effects and tight junctions integrity
Decreased oxidative stress [99]

The prebiotic effect has been analyzed for Opuntia pear peel, with a similar com-
position to nopal. As a carbon source, the peel was tested on two LAB (Pediococcus pen-
tosaceus and Aerococcus viridans). Diaz-Vela, Totosaus, Cruz-Guerrero, and de Lourdes
Pérez-Chabela [85] showed prebiotic potential through the increases in specific bacterial
growth and higher organic acid production than with glucose in in vitro assays. In a
similar way, in 2015, the combinatory effect of this two thermotolerant strains and nopal
was also tested [86]. Both strains were reproductively fermentable as carbon sources and
showed good growth kinetics, and Pediococcus acetic acid production was significantly
higher than in control groups when compared with other agro-industrial by-products.
Perez-Chabela, et al. [87] used cactus pear peel flour as an alternative fiber alternative
for intestinal bacteria of Wistar rats for analyzing the prebiotic and systemic metabolic
effects on the host. They assessed an increase in cecal lactic acid bacteria and Bifidobacteria,



Fermentation 2022, 8, 123 10 of 22

also allowing the growth of Bacteroides and Enterobacteria and on the systemic level, they
noticed the same hypocholesterolemic effect than in the control diet containing inulin as a
non-digestible carbohydrate.

The juice of the pear (the nopal fruit) has already been assessed to determine its
qualities after fermenting with Limosilactobacillus fermentum ATCC 9338. Panda, et al. [88],
reported that the lacto-juice was biochemically and microbiologically analyzed, and later
analyzed by spectroscopy and gas chromatography mass spectrometry, noticing how the
fermentation decreased the sugars in the beverage by action of the bacteria but after
fermentation, the total phenolic content did not change. In addition, the chromatograms
of the lacto-juice showed how fermentation modified or eliminated several risky volatile
components associated with the fresh juice.

Other studies, trying the juice of the fruit of Opuntia ficus-indica from the Meknes in
Morocco showed significant stimulatory effect on the intestinal bacterial growth, including
E. coli, Sacharomyces cerevisiae, Sacharomyces boulardii, and Bifidibacterium spp. [89]. Both
mucilage and pectic-derived oligosacharides from Opuntia prickly pear cactus stems
have already been reported as prebiotics when tried in vitro in human colonic microbial
communities. As reported by Guevara-Arauza, et al. [90], the mucilage effects were
higher than the ones from the oligosaccharides, and induced an increase in lactobacilli and
bifidobacteria, and a minor pathogen inhibitory effect.

When analyzing its prebiotic effect on an obesity rat model [91], several interesting
parameters were assessed. The animals had a high fat diet added with sucrose for 7
months and then the researchers tried a 5% nopal treatment. An important increase in
Ruminococcus bromii, Rumminococcus flavefaciens, Limosilactobacillus reuteri, Bacteroides fragilis,
and Akkermansia muciniphila was assessed by gut microbiota sequencing. Some others
such as Bacteroides acidifaciens, Blautia producta, Faecalibacterium prausnitzii, Butyricicoccus
pullicaecorum, and Clostridium citroniae were decreased after nopal consumption. Some
metabolic changes and an important reduction in circulating lipopolysaccharide levels and
consequently the endotoxemia were consequently assessed. In a similar way, Moran-Ramos,
et al. [92] tested the effect of 4% dietary fiber from nopal for 6 weeks on an experimental rat
model, after a high fat diet. This treatment avoided the induced adiposity and adipocyte
hypertrophy. The consumption of this substance increased the intestinal bacterial diversity
in specific phyla such as Deferibacteres, Bacteroidetes, and Firmicutes, and the increased
fermentation in the cecum, led to the modulation of inflammatory intestinal markers and
oxidative stress related to the positive changes over hepatic steatosis.

4.2. Synbiotic Effects in Nopal

All these major findings point to the positive effects of Opuntia ficus indica over the
growth, nutrition, and metabolism of several species. However, synbiotic formulations
with nopal have not yet been fully explored. To our knowledge, there are just few papers
exploring the prebiotic effects in specific bacterial species. This could eventually constitute
synbiotic effects when identifying the specific health benefits from in vivo models or clinical
trials and their application for nutritional or alimentary products. In this section we outlined
the potential synbiotic and synbiotic effects of nopal (Table 3), which have been analyzed in
several countries around the world, particularly in America where it is highly consumed.

In the case of potential synbiotic formulations, Serrano-Casas, Pérez-Chabela, Cortés-
Barberena, and Totosaus [93] studied the combinatory effect between cactus pear peel flour
and LAB (Lactiplantibacillus plantarum UAM17, Enterococcus faecium UAM18, Aerococcus
viridans UAM21b, and Pediococcus pentosaceus UAM22a) on an alginate co-encapsulation.
The bacterial viability was improved with the technique, as well as their resistance to acidic
conditions. However, since 2015, cactus pear peel flour (3% w/w) was used with wheat
flour (2% w/w) added to lean pork and lard, with P. pentosaceus UAM22, to formulate a
sausage. The cactus flour made the product retain more water, increased yield and reduced
the oxidative rancidity on cooked product. Although the mixture changed the texture of
the sausage, this was considered a viable alternative for the creation of synbiotic meat
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products [94]. In 2020, Barragán-Martínez explored the addition of cactus pear peel flour as
co-encapsulant of probiotic Enterococcus faecium UAM1 or Pediococcus pentosaceus UAM2 in
cooked lean pork and lard meat sausages. This increased total moisture and enhanced the
bacterial populations protecting them from coliforms after storage, and decreased oxidative
rancidity, finding it to be a great alternative as nondairy food matrixes [95].

In 2017, Verón, Di Risio, Isla, and Torres [96] isolated seventeen autochtonous strains
from Opuntia ficus-indica fruits from the arid regions of Argentina for the preparation of
a fermented cactus fruit juice. They selected four of them with good qualities as starters;
Lactiplantibacillus plantarum S-811, L. plantarum S-TF2, Fructobacillus fructosus S-22, and
F. fructosus S-TF7. These strains guaranteed the expected organoleptic characteristics, as the
acidity preserved the safety and healthy features of the juice and protected it from pathogen
contamination. L. plantarum S-811 was later used [97] to test the functional features of a
nopal fruit juice. The nutritional parameters of the juice were analyzed, along with its ability
to improve oxidative stress tolerance in Sacharomyces cerevisiae on exposure to 4 mM H2O2.
Furthermore, the effect of the fermented juice was also evaluated in obese C57-BL6 mice,
showing a decrease in adipose index, weight, and intestinal inflammatory parameters.

In another study performed by Filannino, Cavoski, Thligene, Vincentini, De Angelis,
Silano, Gobbetti, and Di Cagno [98], thirteen strains of LAB (isolated from fruits and
vegetables) were singly used as starter cultures of Opuntia ficus L. cladodes pulp. The
fermentation increased the functionality of the vegetable compounds and the synthesis
of several metabolites; after the fermentation with L. brevis POM2 and POM4, a greater
concentration of γ-amino butyric acid (GABA) was identified. In addition, preservative
effects on vitamin C and carotenoid levels were caused by the lactic acid fermentation and
by the flavonoid aglycone derivatives, kaempferol and isorhamnetin, which generated
an increase in radical scavenging activity. The effects on inflammatory biomarkers were
assessed in Caco-2/TC7 cells treated with TNFα (whose level was particularly affected by
L. brevis POM4 and L. rossiae 2LC8) and with IL-1β and IFN-γ. Another intestinal effect
was the contribution to the maintenance of tight junctions’ integrity.

In a similar way, another study evaluated different Leuconostoc mesenteroides strains
from the same fruit and selected according to their growth and metabolism so they could
efficiently ferment Opuntia ficus-indica L. fruit puree. The mixture decreased Caco-2/TC7
inflammation, protecting the tight junctions and limiting the cellular oxidative stress caused
by the reactive oxygen species [99].

5. Beans

Phaseolus vulgaris L., commonly called bean, is the most known plant from the family
Leguminosae. Across the world, specifically Eastern Africa and Latin America, it is highly
consumed in a wide range of varieties produced throughout the year and considered a
major protein dietarian source [100] appreciated for its price and versatility. Numerous
health benefits have been attributed to beans [101–105] and different varieties have been
studied because of their phenolic and antioxidant content [106–109]. Beans are high in
micronutrients such as minerals like iron, magnesium, zinc, potassium and vitamins [110].
They also have variable amounts of carbohydrates as starches and fibers, depending on the
varieties and even the cooking method, which may change the nutritional quality of the
products that contain them [111,112].

Prebiotic Effect in Beans

Several authors have explored the prebiotic potential of this bean components. Some
of the general effects are condensed in Table 4.
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Table 4. Prebiotics in Beans.

Prebiotic General Effect Reference

Pr
eb

io
ti

cs

Bean flours containing of
indigestible carbohydrates

Increase SCFA’s production in Wistar rats feeding with
bean flours fractions [113]

Non-digestible fraction from cooked bean
(Negro and Bayo Madero beans varieties)

In vitro increase in SCFA’s production by fermentation
with an inoculum of human gut microbiota [114]

Non-digestible fractions of Phaseolus vulgaris SCFAs production on intestinal cell lines [15,115]

Crude water extractable polysaccharides
from Phaseolus vulgaris

Increase in the growth of in vitro L. plantarum
and L. fermentum [116]

Soluble extract of carioca beans (Phaseolus
vulgaris L.)

Increase in Lactobacillus and Bifidobacterium and decrease
in pathogenic bacteria. Increase zinc and iron
bioavailability (in vivo model)

[117]

Pinto bean variety
Changes in gut microbiota, increase in butyrate content,
and improvement in anti-inflammatory and lipid profiles
(C57BL/6J mice model and clinical trial)

[118]

In 2001, Henningsson, and collaborators, Henningsson, Nyman, and Björck [113],
worked with Wistar rats analyzing different diets from various bean flours containing two
levels of indigestible carbohydrates (90 and 120 g/kg). Then, the fermentation of the rat
hindgut was assessed, along with the distribution of SCFA’s and cecal pH. In the distal
colon, there was a significant increase in the diet with 120 g/kg (this diet also having
the highest RS proportion). In another study, four raw and cooked Phaseolus vulgaris L.
cultivars were analyzed by polysaccharide in vitro fermentation, incubating with a fecal
inoculum of human gut microbiota under anaerobic conditions and then evaluating with
gas chromatography the SCFA’s production. Fermentation changed the pH by means of
SCFA’s production at 6 and 24 h, the Negro and Bayo Madero varieties being the ones with
highest SCFA’s production [114]. In a similar way, this fermentation of the indigestible
fraction of Phaseolus vulgaris has been tested on intestinal cell cultures, detecting the SCFAs
production as important players in cancer cells apoptosis [115,119]. Jayamanohar, Devi,
Kavitake, Priyadarisini, and Shetty [15] studied the prebiotic capacity of the crude water
extractable polysaccharides from Phaseolus vulgaris. They assessed an increase in the growth
of L. plantarum and L. fermentum, which were seen to use the polysaccharides as a carbon
source, producing organic acids in exchange. Furthermore, through the analysis of in vitro
fecal fermentation, they also assessed a significant promotion of bifidobacterial counts.
The activity of Lactobacillus and Bifidobacterium was also increased after the intra-amniotic
administration of soluble extract of carioca beans (Phaseolus vulgaris L.) in an in vivo Gallus
gallus model, and it limited the relative abundance of Clostridium and E. coli on the treated
groups. Furthermore, the soluble bean extracts increased the expression of brush border
membrane iron related proteins Znt1, AP, FPN, and DcytB, implying that it can also increase
zinc and iron bioavailability [116]. Specifically, the pinto bean variety supplementation
was analyzed on gut variables of C57BL/6J mice with metabolic changes after following
a Western-style diet. This treatment reduced Bilophilia and increased Lachnospiraceae and
Bacteroidales, also increasing fecal concentrations of butyrate and, consequently, induced
an anti-inflammatory gut microenvironment also assessed in the upregulation of the Il-10
gene. Finally, the supplementation also improved metabolic features such as fasting blood
glucose and tolerance, suppressing TNF-α, and, thus, impacting obesity-induced low-
grade inflammation [117]. This same variety and its effects were also analyzed in humans
in 2017 by Finley, Burrell, and Reeves [118]. Volunteers were stratified in two dietary
intervention groups including bean consumption in one of them. This 12-week intervention
was preceded by an equilibration phase. Although there were no clear trends in the
bacterial population shifts, in the analysis of the fermentation patterns, the propionate
production and total fatty acids did significantly change when they consumed the bean
soup. Furthermore, an important improvement in the lipid profile was also assessed on the
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bean consumption group. Although no synbiotic foods or products, including any variety
of Phaseolus vulgaris, have yet been examined to our knowledge, it remains a real area of
opportunity because of the beneficial functional characteristics of this food.

6. Discussion

Dietary changes have negatively affected the health-related parameters; unfortunately,
the adverse health outcomes may precede several pathologies, such as obesity, chronic
entities such as vascular diseases, or cancer [120]. This is the most important justification
for the recent interest in production and/or consumption of new alimentary products
providing nutritive and functional substances isolated or in functional foods [121]. For the
food industry, this has been considered a challenge that involves several areas related to
health and food technology and implies the development of foods with higher nutrient
content and functional properties that maintain strict safety standards. In addition, the
interest in, and demand for, functional foods around the world and in Latin America and
Mexico is still growing [122].

Mexican traditional food, such as the matrices we have described in this review, can
promote diverse health effects acting as prebiotics, exerting specific activities on microbiota
bacteria or probiotics, and being able to constitute synbiotic products as seen on Figure 2A.
Detailed reports have shown the development of alimentary biotechnological products for
alimentary purposes [122–124]. Several success stories can be highlighted here, where the
use of one or more traditional food matrices is applied and can solve a necessity. This is
the case in the development and innovation of maize products. We considered the specific
case of blue maize, whose high anthocyanin content confers it valuable antioxidant effects,
along with anti-inflammatory, anti-diabetogenic, and anti-carcinogenic properties [16,125].
As a result of modern alimentary necessities, the development of purple maize mayonnaise
with better antioxidant activity in comparison with typical chemical antioxidants such
as butylhydroxytoluene and ethylenediaminetetraacetic acid [126] can be mentioned. In
addition, in the microbiological field, the co-culture with endogenous single starter cultures
as Lactoccocus lactis and Pediococcus pentosaceus compared to spontaneously fermented
beverages such as atole agrio lead to a controlled and safer fermentation process (antimi-
crobial activity) and enhanced sensory properties, offering a safe product with steady
attributes [36]. On the other hand, blue corn is a cereal rich in phenolic compounds, used
to make blue tortillas [16]. In this line, the development of new products of fermented blue
corn displaying both prebiotic and probiotic effects could be an interesting opportunity,
since previous studies have demonstrated that the prebiotic antioxidant compounds can
effectively modulate the microbiota. As has already been shown, antioxidants increased
the population of Akkermansia spp. in the intestinal microbiota in mice [127]. Another
important combination could be maize with agavins, due to the potent immunomodulation
power of inulin-type fructans and its potential health benefits [128].

The incorporation of nopal mucilage to maize-based soups improves the utilization
of both food matrices properties to create a superior product. In this case, the thickening
mucilage property also implied a reduction in chemical origin thickeners [129]. This same
combination between different traditional food, has yet been tried for the formulation of
maize and nopal tortillas, a central food for several countries; this formulation benefits
from an increase in fibers and polyphenols. After its intake, an important decrease in
glucose, cholesterol, and triglycerides levels has been already assessed on control human
groups [130].
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products: (A) Prebiotic fibers in combination with probiotic strains could improve the release of
food-derived compounds (as short chain fatty acids (SCFAs), or γ-aminobutyric acid (GABA)) and
exert positive effects on intestinal and systemic health (i.e., immunomodulatory and antioxidant
properties). (B) The selection of appropriate prebiotic and probiotic pairs for developing novel func-
tional products. Traditional food supplements and the use of encapsulation and/or nanotechnology
for the preservation and performance of synbiotics. Created by BioRender.com (2022) (accessed on 6
March 2022).

Recent studies have shown that the addition of liquid and powdered cactus mucilage
in raw cow’s milk, led to a decrease in the development of pathogenic microorganisms
such as mesophilic aerobic bacteria and total coliforms that represent a sanitary risk in
the production of fresh cheese in different regions of the country [131]. Likewise, the use
of Opuntia spp. fruit has been proposed as an additive in the development of meat and
even bakery products, where the fruit powder represents a viable and low-cost source
of fiber, protein, and bioactive compounds that promote the development of beneficial
microorganisms in the product formulation [132]. When analyzing agave-derived products,
inulin and other fructans with prebiotic and anti-inflammatory function can be incorpo-
rated to food [133]. Martínez-Gutiérrez and collaborators, Martinez-Gutierrez, et al. [134],
reported the incorporation of FOS powders derived from Agave salmiana, as a prebiotic
agent promoting the development of probiotic bacteria, superior to the effect generated
by commercial products with the same alimentary functions. In the same way, recent
studies demonstrated that agave syrup obtained from A. salmiana and A. mapisaga mead
by evaporation processes has high antioxidant activity, phenolic compounds and can be
used as a possible substitute for honey as it also has a higher protein content than this
food [135]. On the other hand, it has been previously indicated that beans contain high
levels of phenols, RS, vitamins, and FOS, which are known to protect against conditions
such as oxidative stress and various degenerative diseases, positioning this legume as an
excellent functional food [136].
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The characteristics of both beans and corn together have been tested since 2017, analyz-
ing corn-bean chips made with non-digestible fraction of the beans. The anti-inflammatory
effect of both food matrices was examined in RAW 264.7 macrophages, assessing a decrease
in oxidative species at 24 h, where a significant increase in SCFAs levels and up-regulation
of anti-inflammatory cytokines such as TIMP-1 and I-TAC were assessed [137]. Sparvoli,
et al. [138] also evaluated the sensory characteristics, iron bioavailability, and glycemic
index of bio-fortified snacks and cream using bean flour as a base, finding that flour with
reduced phytic acid and active lectins represents an important source for the preparation
of food products for children and adults. The above has been previously evaluated in
rodent trials where an increase in protein and amino acid availability was observed when
consuming previously extruded and baked bean flour [139]. The use of bean meal has not
only been evaluated for the purpose of generating food for human consumption; some
authors have evaluated taking advantage of its functional properties by incorporating it
into the development of aquafeeds, where 15% bean meal extruded at 18% moisture and
120 ◦C has been recommended [140]. As is mentioned above, extremely oxygen-sensitive
bacteria are increased by supplementation of maize type 2 RS, this could be an interesting
strategy for novel development of functional foods, due to the special culture conditions
of Faecalibacterium and Akkermansia muciniphila. Therefore, approaches using the prebiotic
fiber to increase its growth are prudent, rather than a more direct probiotic approach [29].
Regarding the prebiotic effect, this could be increased in the maize-based foods. This
will be improved during food process, in fact, during making-elaboration and storage of
corn-tortilla, native starches suffer starch retrogradation, increasing RS levels [141], but
this also can be increased with an extrusion process [142]. Several studies have pointed
out the biotechnological uses of traditional food as a therapeutical advancement, and in
health promotion fields [143], and as a logical consequence, we have seen the increase in
food technology studies that may increase the functionality of several food bioactives and
interesting components. Microencapsulation, which refers to the introduction of certain
bioactive substances in a liquid or gaseous phase (enzymes, flavors, vitamins, or essential
oils) to a homogeneous or heterogeneous matrix [143]. A big number of techniques (such
as emulsification, spray-drying, extrusion, and freezing drying [144] and many substances
are used to encapsulate. From these, alginate, chitosan, polyvinyl alcohol, and several
polysaccharides are more frequently chosen [145]. For the importance of the method and
the feasibility of reproducing it and offering higher quality food items that remain active in
the digestive tract, in the next years, we hope to see several traditional foods being searched
and adapted to this technique (Figure 2B). For the importance of the method and the feasi-
bility of reproducing it and offering higher quality food items, in the next years, we hope to
see several traditional foods being searched and adapted to this technique (Figure 2B). On
the other side, nanotechnology is a brilliant area on the alimentary scene [146]. Several food
matrices remain under study in order to determine whether they can be used for a specific
purpose or not [147]. This same technology showed a few years ago how the preparation of
a lycopene nano emulsion added to tomato extract, increased the in vitro bio-accessibility
of the active, turning stable in an aqueous medium [147].

Other areas in the food technology, manufacture, and presentation of food items, even
at the level of the ecological footprint, are urgently needed to make the most of these
traditional food matrices and to exploit their properties to obtain better quality products
to accomplish both economic and nutritious goals. Finally, this new plant-based meal
era has just re-started but promises to grow and revolutionize the agro-industrial field.
Modern societies do not need modern food, just the elements to discover how to adapt
it so they can satisfy their necessities. The rapid global growth of the bioeconomy is
expected to accelerate and increase the demand of biotechnological products [148]. Within
this portfolio of novel products, functional foods can synergistically and/or additionally
confer overwhelming protection against degenerative diseases through the modulation of
several processes [149], or even facilitate the intake of some healthy molecules in order to
increase their consumption by a specific population that may benefit from them. These
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novel food matrices must be considered as an alternative to help in health promotion,
disease prevention, and individually designed nutrition therapies, giving a new approach
to nutrition and health science [150].
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