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Abstract 15 

ZC3H11A is a stress-induced mRNA binding protein required for efficient growth of nuclear-16 

replicating viruses, while being dispensable for the viability of cultured human cells. The cellular 17 

functions of ZC3H11A during embryo development are unknown. Here we report the generation 18 

and phenotypic characterization of Zc3h11a knock-out mice. Heterozygous null Zc3h11a mice 19 

were born at the expected frequency without distinguishable phenotypic differences compared 20 

with wild-type. In contrast, homozygous null Zc3h11a mice were missing, indicating that Zc3h11a 21 

is crucial for embryonic viability and survival. Zc3h11a–/– embryos were detected at the expected 22 

Mendelian ratios up to late preimplantation stage (E4.5). However, phenotypic characterization at 23 

E6.5 revealed degeneration of Zc3h11a–/– embryos, indicating developmental defects around the 24 

time of implantation. Transcriptomic analyses documented a dysregulation of glycolysis and fatty 25 

acid metabolic pathways in Zc3h11a–/– embryos at E4.5. Proteomic analysis indicated a tight 26 

interaction between ZC3H11A and mRNA-export proteins in embryonic stem cells. Furthermore, 27 

CLIP-seq analysis demonstrated that ZC3H11A binds a subset of mRNA transcripts that are 28 

critical for metabolic regulation of embryonic cells. Altogether, the results show that ZC3H11A is 29 

participating in export and post-transcriptional regulation of selected mRNA transcripts required 30 

to maintain metabolic processes in embryonic cells. While ZC3H11A is essential for the viability 31 

of the early mouse embryo, inactivation of Zc3h11a expression in adult tissues using a conditional 32 

knock-out did not lead to obvious phenotypic defects.  33 
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Introduction 34 

The zinc finger CCCH domain-containing protein 11A (ZC3H11A) is a stress-induced mRNA-35 

binding protein that is required for the efficient growth of several human nuclear replicating 36 

viruses, including human immunodeficiency virus (HIV-1), influenza A virus (IAV), human 37 

adenovirus (HAdV) and herpes simplex virus 1 (HSV-1) [1]. Proteomic studies on human cells 38 

have indicated that ZC3H11A is a component of the transcription-export (TREX) complex [2]. 39 

Functional studies indicated that  ZC3H11A selectively export newly transcribed viral mRNAs to 40 

the cytoplasm during virus infection [1, 3]. Thereby, inactivation of ZC3H11A in human cells 41 

impaired the export of a subset of viral mRNA transcripts and resulted in a dramatic reduction in 42 

virus growth [1]. These important functions of ZC3H11A in the growth cycle of several human 43 

viruses makes ZC3H11A a potential target for development of an anti-viral therapy. The aim of 44 

the present study was to develop an animal model to study the molecular functions of ZC3H11A 45 

in prenatal and postnatal development.  46 

The TREX complex serves a key function in nuclear mRNA export and consists of multiple 47 

conserved core subunits including ALYREF (RNA binding adaptor of TREX), UAP56 (DEAD-48 

box type RNA helicase) and a stable subcomplex called THO, which in turn consists of at least six 49 

subunits [4, 5]. Proteomic studies using human cells have indicated that ZC3H11A is an auxiliary 50 

component of the TREX complex, but did not consider it as a core subunit of the TREX complex 51 

[6, 7]. THO proteins are conserved from yeast to human and play pivotal roles during embryo 52 

development, cell differentiation and cellular response to stimuli [8, 9]. It has been reported that 53 

the disruption of THO proteins, such as THOC1, THOC2 or THOC5, leads to early embryonic 54 

lethality [9–11]. The TREX complex controls the mRNA export in a selective manner, where 55 

individual TREX components appear to be required for export of distinct subsets of mRNAs [12]. 56 
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For instance, THOC2 or THOC5 are required for the export of mRNAs essential for pluripotency 57 

such as Nanog, Sox2 and Klf4 in mouse embryonic stem cells [9]. Despite several reports 58 

characterizing the role of THO proteins during embryogenesis, the cellular function of ZC3H11A 59 

during embryo development is unknown.  60 

In the current study, we established Zc3h11a knock-out (KO) mouse models to study the 61 

effect of Zc3h11a loss of function on embryo development. Our results identify ZC3H11A as a 62 

fundamental protein required for early embryo growth. Disruption of ZC3H11A is homozygous 63 

lethal and leads to complete failure of embryo development and survival. Using proteomic and 64 

RNA-seq analyses, we show that the ZC3H11A protein interacts with TREX complex core 65 

proteins in mouse embryonic stem cells. ZC3H11A is apparently an auxiliary factor participating 66 

in export and post-transcription coordination of selected mRNA transcripts required to maintain 67 

the metabolic processes in embryonic cells. Interestingly, Zc3h11a inactivation in adult mouse 68 

tissues using an inducible mouse model showed that the ZC3H11A protein is dispensable for 69 

postnatal tissue growth. 70 

 71 
Results 72 
 73 
Zc3h11a inactivation in mice is lethal in the homozygous condition 74 

Zc3h11a is located on chromosome 1 in both human and mouse genomes and harbors the coding 75 

sequence of another gene encoding the DNA-binding zinc-finger protein ZBED6 [13–18] (Figure 76 

1A). We used two strategies to target the Zc3h11a coding exons without affecting Zbed6. The first 77 

Zc3h11a mouse model was developed by targeting exon 3 using the CRISPR/cas9 system with 78 

two guide RNAs flanking the targeted sequences. This resulted in both a deletion of 567 bp 79 

including the entire exon 3 and a frameshift (Figure 1B). The second mouse model was developed 80 

by inserting loxP sites flanking the coding sequence of exon 2 using homologous recombination 81 
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(Figure 1C). These loxP mice were crossed with mice expressing Cre recombinase in germ-line 82 

(PGK-Cre), which resulted in a deletion of 1.5 kb containing exon 2 and removal of the zinc finger 83 

domains of the encoded ZC3H11A protein (Figure 1C). For each model, heterozygous mice were 84 

crossed and the offspring were genotyped. No Zc3h11a–/– mice were obtained from heterozygous 85 

matings (Figure 1D and E), with the exception of one single homozygous Zc3h11a–/– female from 86 

the loxP mouse model (1 out of 204 mice). When we crossed this KO female with Zc3h11a+/– 87 

males, 10 out of 10 progeny were heterozygous Zc3h11a+/–. The probability to get this outcome if 88 

both parents are heterozygous is P=0.510=0.001. The result confirms our interpretation that one 89 

single homozygous KO survived and were fertile.  90 

 91 

Zc3h11a deletion results in embryonic degeneration 92 
 93 
In order to explore at what point ZC3H11A is essential for embryo survival, we collected and 94 

genotyped embryos at different time points post Zc3h11a+/– X Zc3h11a+/– mating (Figure 2A). 95 

The genotyping of embryos at embryonic day E4.5 prior to implantation revealed expected 96 

Mendelian proportions (Figure 2A). However, a clear deviation from expected Mendelian 97 

proportions was observed after implantation (Figure 2A, bottom panel). Remarkably, phenotyping 98 

at E6.5 showed dramatic changes in the morphology of the Zc3h11a–/– embryos with a large degree 99 

of tissue degeneration, whereas Zc3h11a+/– heterozygotes appeared morphologically 100 

indistinguishable from the WT embryos (Figure 2B). 101 

 102 

ZC3H11A is highly expressed at early stages of embryonic development 103 

The lethal effect of Zc3h11a inactivation in mouse embryos encouraged us to explore the cellular 104 

localization of ZC3H11A at early embryonic stages. We used immunofluorescence (IF) staining 105 
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to visualize the ZC3H11A protein and the nuclear speckles marker SRSF2 (SC35) for expression 106 

profiling in mouse 2-cell and blastocyst stages. The IF analysis indicated that ZC3H11A was 107 

expressed at a detectable level as early as the 2-cell stage, with clear nuclear localization (Figure 108 

3A, top panel). The z-stack imaging of the blastocysts showed that ZC3H11A was expressed in 109 

trophectoderm (Figure 3A, middle panel) as well as in inner cell mass (ICM) (Figure 3A, bottom 110 

panel). The localization pattern of ZC3H11A in ICM was overlapping with the nuclear speckles 111 

as indicated using the anti-SC35 antibody (Figure 3A and B). This subcellular localization of 112 

ZC3H11A in mouse embryonic cells is similar to the ZC3H11A localization in human cell lines 113 

[1]. Re-analyzing single cell RNA-seq data from Deng et. al. [19] revealed that Zc3h11a mRNA 114 

is highly expressed in mouse embryos as early as the zygotic stage, indicating maternal 115 

contribution (Figure 3C). 116 

 117 

Disrupted metabolic pathways in the Zc3h11a–/– embryos 118 

The degeneration of Zc3h11a –/– embryos during early embryo development (E6.5) encouraged us 119 

to perform whole transcriptome analysis of stage E4.5 embryos to reveal the dysregulated 120 

pathways that led to the degeneration of Zc3h11a –/– embryos at E6.5. We collected embryos from 121 

Zc3h11a+/– X Zc3h11a+/– matings and extracted the RNA from the embryonic part for sequencing 122 

(Figure 4A, left). Principle component analysis (PCA) of RNA-seq data showed that Het 123 

(Zc3h11a+/–) and WT (Zc3h11a+/+) embryos clustered together and apart from the KO (Zc3h11a–124 

/–) embryos (Figure 4A). This result is in agreement with the observed morphological similarity 125 

between WT and Het embryos (Figure 2B). Furthermore, the differential expression (DE) analysis 126 

between WT and Het did not detect any significant DE genes with FDR <0.05. Therefore, we 127 

performed the DE analysis between KO embryos vs. WT and Het embryos that revealed 660 DE 128 
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genes (FDR <0.05) out of ~11,000 expressed genes (Table S1). Among these DE genes, 419 were 129 

up-regulated and 241 were down-regulated in KO embryos (FDR <0.05). Next, we performed a 130 

gene set enrichment analysis (GSEA) using the DE genes in KO embryos in order to further 131 

explore the function of ZC3H11A. The GSEA of ranked DE genes in KO embryos using the 132 

hallmark gene sets revealed a significant negative enrichment (FDR <0.05) of genes involved in 133 

glycolysis, fatty acid metabolism pathways and epithelial-mesenchymal transition (EMT) 134 

processes (Figures 4B-4D). The heatmaps present the expression of the subset of genes that 135 

contributed the most to the indicated pathway enrichment among significantly down-regulated 136 

genes in KO embryos (Figures 4B-4D). Among the key down-regulated genes, contributing to the 137 

significant GSEA result, are lactate dehydrogenase A (Ldha), which has an essential role in 138 

glycolysis, and disruption of Ldha causes congenital disorders of carbohydrate metabolism [20, 139 

21]; enoyl-CoA hydratase and 3-hydroxyacyl CoA dehydrogenase (Ehhadh), which is involved in 140 

fatty acid beta-oxidation using acyl-CoA oxidase [22, 23]; and dickkopf WNT signaling pathway 141 

inhibitor 1 (Dkk1), which is involved in several processes including cell fate determination and 142 

cell differentiation processes during embryogenesis [24]. On the other hand, the positively 143 

enriched gene sets among up-regulated genes in the KO mice included genes in the P53 pathway 144 

and autophagy process-related genes (Figures 5A, 5B and S1). This includes the up-regulation of 145 

autophagy related 12 (Atg12) and microtubule-associated proteins 1A/1B light chain 3A 146 

(Map1lc3a) genes (Figure 5E). MAP1LC3A is known as LC3A protein and is required for 147 

autophagosome formation [25]. 148 

To get further insight on which cell type in blastocysts was most affected by Zc3h11a 149 

inactivation, we explored the expression profile of the DE genes in Zc3h11a–/– embryos in 150 

embryonic lineages (ICM and epiblast) and trophectoderm (TE). Using previously published 151 
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datasets of mouse gene expression (GSE76505 [26]), the ICM/TE ratio of expression was 152 

computed for genes down-regulated and up-regulated in the KO embryos (FDR ≤0.05, fold change 153 

≥2). We also explored the expression of DE genes at earlier stages using gene expression dataset 154 

(E-MTAB-2950) [27]. This showed that down-regulated genes in Zc3h11a–/– embryos are 155 

primarily expressed in the ICM/early epiblast rather than trophectoderm (Figure 5C), while the 156 

expression of the up-regulated genes is nearly equally present in ICM/early epiblast and TE (Figure 157 

S2). The down-regulated genes in Zc3h11a–/– embryos with high expression in the ICM include: 158 

Ldha, teratocarcinoma-derived growth factor (Tdgf1, Cripto), growth differentiation factor 3 159 

(Gfd3), phosphofructokinase (Pfkp) (Figure 5D). GDF3 is an analog of NODAL and uses TDGF1 160 

as co-factor [28]. Both Ldha, Pfkp, Pfkm and Pdk2 are down-regulated in Zc3h11a–/– embryos and 161 

are involved in glycolysis and lactate production, as indicated in the GSEA (Figure 4). At peri-162 

implantation stages, there is a major metabolic switch from oxidative phosphorylation to anaerobic 163 

glycolysis, with increased lactate production [29, 30]. Cripto/Tdgf1 has been reported as an 164 

essential factor regulating this metabolic switch [31]. That explains the GSEA results that show 165 

that the down-regulated pathways mostly concern metabolic regulation processes. Altogether, this 166 

strongly suggests that the primary consequence of ZC3H11A deficiency is in the ICM, due to 167 

perturbed metabolic regulation. The enrichment of genes associated with autophagy and apoptosis-168 

related pathways (Figure 5A-5B) among the up-regulated genes in Zc3h11a–/– embryos could be 169 

secondary effect caused by the metabolic stress encountered by the ICM cells [32, 33]. 170 

 171 

ZC3H11A is associated with the RNA export machinery in embryonic stem cells  172 

In human somatic cells, ZC3H11A has been recently characterized as an RNA-export protein that 173 

functions through its interaction with TREX complex proteins [1]. In order to identify its 174 
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interacting partners in embryonic cells and to investigate if ZC3H11A maintains its association 175 

with the TREX complex in mouse embryonic stem cells (mESCs), we performed co-176 

immunoprecipitations (co-IPs) using anti-ZC3H11A, anti-THOC2 and anti-IgG antibodies 177 

followed by mass spectrometry (MS) analyses (Figure 6A). Statistical analyses of detected MS 178 

intensities from the biological replicates (n=4) revealed a number of proteins with statistically 179 

significant interaction with ZC3H11A and THOC2 (Figure 6B). Proteins belonging to the TREX 180 

complex and RNA export machinery are highlighted in bold. The log-fold change in protein 181 

intensities in the ZC3H11A co-IP relative to the IgG co-IP is presented along with the adjusted P-182 

values (Figure 6C). The interaction between ZC3H11A and THOC2 was validated by a reciprocal 183 

co-IP and western blot using mESCs (Figure 6D). The majority of the significant partners 184 

interacting with ZC3H11A are part of the TREX complex and also showed significant enrichment 185 

in the THOC2 co-IP, including THOC5, THOC7 (Figure 6E), THOC1 and THOC6 (Figure 6C). 186 

ZC3H11A also interacts with other RNA-binding proteins that are required for RNA maturation, 187 

such as polyadenylate-binding nuclear protein 1 (PABPN1)  [34]; FYTTD1, which acts as an 188 

adaptor for RNA helicase UAP56 [35]; and the RNA export adaptor ALYREF/THOC4 [36] 189 

(Figure 6D and F). Notably, almost half of the ZC3H11A partners detected by co-IP were also 190 

found in the THOC2 co-IP (Figure S3). These data indicate that ZC3H11A is an essential 191 

component of the TREX complex that is known to play pivotal roles during embryogenesis and 192 

for maintaining pluripotency of ESCs [9, 10]. Furthermore, the proteomic analysis identified 193 

additional interacting partners, independent of the TREX complex, such as the RNA-binding 194 

protein DDX18; the PRC2 components SUZ12 and JARID2; and the two zinc finger proteins 195 

ZNF638 and ZFP57 (Figure 6G and S3B). DDX18 is an RNA binding protein that  plays a crucial 196 

role in pluripotency and self-renewal of embryonic stem cells [37].  197 
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 198 

ZC3H11A selectively binds mRNA transcripts in mESCs  199 

Previous studies using human somatic cells indicated that ZC3H11A is an RNA-binding protein 200 

that selectively binds subsets of mRNA upon stress or viral infection [1]. To study the RNA-201 

binding properties of ZC3H11A in embryonic cells, we performed UV-crosslinking of mESCs 202 

followed by ZC3H11A immunoprecipitation (CLIP) and RNaseI treatment to isolate the RNA 203 

protected by ZC3H11A. We used two anti-ZC3H11A antibodies to minimize any artifact caused 204 

by antibodies, and anti-ALYREF and anti-IgG as positive and negative controls, respectively. 205 

High-throughput sequencing of the RNA isolated by CLIP (CLIP-seq) revealed an almost 206 

exclusive interaction between ZC3H11A and protein-coding mRNAs in mESCs (Figure S4A), 207 

with a preference to bind 3’UTRs over the 5’UTRs (Figure 7A). The analysis of ZC3H11A CLIP-208 

seq peaks from the two ZC3H11A antibodies revealed a significant enrichment of short purine-209 

rich motifs (Figure 7B, top panel). Moreover, ZC3H11A exhibited strong binding to the 210 

paraspeckle Neat1 transcript (Figure S4B), similar to what has been observed in human somatic 211 

cells [1]. Comparing the CLIP-seq ZC3H11A mRNA targets with genes that were significantly 212 

down-regulated in RNA-seq data, we identified subsets of genes as putative direct targets of 213 

ZC3H11A in mESCs (Figure 7B, bottom panel). The gene ontology analysis of these genes 214 

suggested that they are involved in germ cell development and metabolic processes (Figure 7C). 215 

These 29 genes were dramatically down-regulated in Zc3h11a–/– embryos (Figure 7D) and are 216 

involved in cellular processes vital for embryonic development [38–41]. Putative direct targets 217 

included the Tdgf1, nucleoporin 85 (Nup85), proliferation-associated protein 2G4 (Pa2g4) and gap 218 

junction protein beta 3 (Gjb3) genes. The CLIP-seq analysis detected ZC3H11A binding sites at 219 

the 3’UTR of these genes that were either overlapped with ALYREF binding sites (for Tdgf1 and 220 
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Pa2g4) or distinct from them in Nup85 (Figure 7E). These results suggest a crucial role of 221 

ZC3H11A in post-transcriptional processing and mRNA export of key genes in embryonic cells.  222 

 223 

ZC3H11A is required for in vitro derivation of ESCs. 224 

To further understand the role of ZC3H11A in the peri-implantation development and especially 225 

its role in the pluripotent epiblast, twenty-five E3.5 blastocysts were recovered from matings 226 

between heterozygous mice, and cultured in vitro. From these, 14 ESC lines were obtained but 227 

none were homozygous KO (C2=4.7, d.f.=1; P<0.05). This suggests that ZC3H11A is required for 228 

establishing ESC in vitro.  229 

 230 

Mice with postnatal Zc3h11a-ablation are healthy and viable  231 

We developed an inducible Zc3h11a-KO model to assess the effect of Zc3h11a ablation 232 

postnatally. Loxp-Zc3h11a mice were crossed with mice containing fusion of a mutated estrogen 233 

receptor T2 and Cre recombinase (Cre-ER), allowing temporal control of floxed gene deletion 234 

upon tamoxifen induction in vivo [42]. We generated a strain that is homozygous Zc3h11a-loxp 235 

(Zc3loxP/loxP) with one copy of Cre-ER (CRE.ER+ Zc3loxP/loxP) and crossed it with the original strain 236 

(Zc3loxP/loxP) lacking Cre-ER. The offspring were injected with tamoxifen at week 3-4 after birth 237 

(Figure 8A). Genotyping of the tamoxifen-injected mice at week 6 using genomic DNA from tail 238 

biopsies revealed a balanced ratio between WT and induced KO (iKO) due to the presence/absence 239 

of Cre-ER (Figure 8B). By injecting CRE.ER+ Zc3loxP/loxP mice with tamoxifen postnatally we 240 

succeeded in achieving >90% reduction of Zc3h11a expression in multiple adult tissues including 241 

bone marrow, liver and spleen (Figure 8C and D). The examination of tamoxifen-injected mice 242 

were carried out at week 12 and involved histology staining of multiple organs including stomach, 243 
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pancreas, small and large intestine tissues. The histology phenotyping did not exhibit obvious 244 

defects between the floxed (WT) and iKO adult mice (Figure 8E and S5). Furthermore, the 245 

measurement of body weight, dissected kidney and spleen tissues from WT and inducible ZC3-246 

KO adult mice did not show significant differences (Figure 8F). 247 

 248 

Discussion 249 

ZC3H11A is important for the growth of nuclear replicating viruses, where viruses take advantage 250 

of the ZC3H11A protein to facilitate the export of their mRNA transcripts into cytoplasm. 251 

Thereby, ZC3H11A is considered a possible target for development of anti-viral therapy. Hence, 252 

we developed ZC3H11A mouse models to study its physiological functions across developmental 253 

stages. The current study reports that ZC3H11A is an essential protein required for the viability of 254 

mouse embryos. Loss of function of ZC3H11A leads to developmental defects and embryo 255 

degeneration at peri-implantation stages associated with dysregulation of metabolic pathways such 256 

as glycolysis and fatty acid metabolic processes. Interestingly, the defects mainly originate from 257 

the epiblast, as most of the down-regulated genes are expressed predominantly in this lineage. 258 

Moreover, even though ZC3H11A is expressed in all cells of the blastocyst, Tdgf1, one of its key 259 

down-regulated target genes is expressed specifically in the epiblast cells [31]. TDGF1 (also called 260 

Cripto) is a membrane-bound protein, co-receptor for NODAL/GDF3 [43]. TDGF1 and NODAL 261 

signaling play important roles during specification of the early lineages and maintenance of the 262 

pluripotent epiblast at early post-implantation stages [43]. Interestingly it also controls the 263 

metabolic switch occurring at the time of implantation in the mouse, when cells transit from a 264 

OXPHOS based metabolism to a glycolytic one [29, 31, 44]. Our CLIP-seq analysis detected two 265 

strong peaks for ZC3H11A binding at the 3’ end of the Tdgf1 mRNA in mESCs (Figure 7E). 266 
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Furthermore, ZC3H11A binds the 3’ end of Nup85 and Pa2g4 mRNA transcripts (Figure 7E). 267 

Both Nup85 and Pa2g4 were down-regulated in the KO embryos and play crucial roles in 268 

embryonic development [38–41]. For instance, NUP85 is a core component of the nuclear pore 269 

complex (NPC) proteins and is required for mRNA export and maintenance and assembly of the 270 

NPC [40, 41, 45]. Loss of function studies showed that inactivation of the NPC proteins in mouse 271 

models resulted in early embryonic lethality [46–48]. Recent phenotypic characterization of the 272 

Nup85 knock-out mouse model from the International Mouse Phenotyping Consortium 273 

(www.mousephenotype.org, accessed 22 August 2022) [49] has indicated complete preweaning 274 

lethality of Nup85–/– mice. Furthermore, the ErbB3 binding protein-1 gene (Ebp1/Pa2g4) is 275 

implicated in regulating the proliferation and differentiation during developmental stages. The 276 

Pa2g4 knock-out mice exhibited growth retardation and were 30% smaller than wild-type mice 277 

[50]. A recent study has reported more severe phenotypes in Pa2g4-deficient mice with death 278 

between E13.5 and 15.5, massive apoptosis, and cessation of cell proliferation [38]. These putative 279 

ZC3H11A targets identified by CLIP-seq are known to be critical for embryonic viability and 280 

implicated in diverse cellular functions, disruption of their expression leads to embryonic 281 

degeneration. 282 

Another key down-regulated gene in KO embryos is Ldha, the enzyme that controls the 283 

level of anaerobic glycolysis by catalyzing the transformation of pyruvate into lactate. Hence, in 284 

KO embryos, the establishment of a more anaerobic glycolysis is impaired, which compromises 285 

survival when the environment becomes more hypoxic as embryos implant. Upregulation of 286 

autophagy as observed in KO embryos can be viewed as reaction to a suboptimal metabolic 287 

environment [33]. Although KO embryos can survive up to E6.5, they have already undergone a 288 

process of degeneration, as suggested by the upregulation of P53 mediated apoptotic pathway 289 
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already at E4.5. The transcriptomic analysis also indicated a significant dysregulation in the EMT 290 

process (Figure 4C). The EMT process is fundamental for embryo development and takes place 291 

during implantation of the embryo into the uterus and during early gastrulation, where embryo is 292 

transformed from a single layer to three germ layers. Defects in EMT and subsequently in 293 

gastrulation usually lead to a failure in embryonic development [51, 52].  294 

The ZC3H11A protein exhibited strong interactions with members of the RNA-export 295 

machinery in ESCs and the top interacting partners with ZC3H11A are members of the TREX 296 

complex, including THO proteins (Figure 6). The enrichment analysis of interacting partners with 297 

ZC3H11A showed significant enrichment of proteins involved in metabolism of RNA, mRNA 3'-298 

end processing and transport of mature transcript to cytoplasm (Figure S3A). These proteomics 299 

results are in agreement with the analysis of the CLIP-seq of ZC3H1A in mESCs that revealed 300 

preferential binding at 3’UTRs over the 5’UTRs of target transcripts (Figure 7A). It also supports 301 

the model of action that ZC3H11A interacts with TREX-complex proteins and contribute to 302 

efficient mRNA maturation and export of the target transcripts. In agreement with this model, 303 

several studies have described the pivotal roles of the TREX-complex in the embryonic 304 

development [9–11].  THO proteins such as THOC1, THOC2 and THOC5 play essential roles 305 

during early development but in a different way than ZC3H11A, as their depletion affects 306 

pluripotency establishment and maintenance [9, 10]. In contrast, ZC3H11A depletion does not 307 

directly affect pluripotency maintenance. The fact that Zc3h11a–/– blastocysts did not give rise to 308 

ESC lines in the present study may be due to the metabolic impairment rather than a defect in 309 

pluripotency maintenance, as they all form outgrowth, in contrast to Thoc1–/– embryos [10]. 310 

 Our results provide evidence that ZC3H11A is required for the post-transcriptional 311 

regulation of genes that are crucial for the embryonic cell. In contrast to the severe phenotypes in 312 
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Zc3h11a germline KO embryos, Zc3h11a inactivation in the adult tissues did not cause obvious 313 

defects. The phenotypic characterization of the inducible ZC3-KO adult mice indicated a 314 

dispensable role for ZC3H11A in adult tissues and a single surviving Zc3h11a-/- female showed 315 

no pathological conditions, were fertile and gave birth to 10 progeny from three litters. 316 

Furthermore, complete inactivation of Zc3h11a in human and mouse cell lines did not lead to 317 

significant effects on cell growth or viability [1, 3].  318 

 319 

 320 

Methods 321 

Animal models 322 

All mice were group-housed with free access to food and water in the pathogen-free facilities of 323 

Uppsala University and INRAE. All procedures described in this study were approved by the 324 

Uppsala Ethical Committee on Animal Research (#17346/2017), following the rules and 325 

regulations of the Swedish Animal Welfare Agency, and were in compliance with the European 326 

Communities Council Directive of 22 September 2010 (2010/63/EU). All efforts were made to 327 

minimize animal suffering and to reduce the number of animals used. The loxP Zc3h11a mouse 328 

model was generated by homologous recombination in mouse C57BL/6 ES cells (Cyagen, USA). 329 

The PGK-Cre mice expressing the Cre recombinase in the germ line [53] was obtained as gift from 330 

Klas Kullander's lab (Uppsala University). The CRISPR/cas9 Zc3h11a mouse model was 331 

purchased from the Mutant Mouse Resource & Research Centers (MMRRC, USA, Strain No: 332 

043457-UCD). For inducible knock-out model, the mice containing fusion of a mutated estrogen 333 

receptor T2 and Cre recombinase (Cre-ER) was ordered from The Jackson Laboratory (USA, 334 

Strain No: 008463). Mice were genotyped (Tables S2) based on tail biopsies.  335 
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 336 

Collection of mouse embryos  337 

The Zc3h11a heterozygous males and females were mated and the following day, the presence of 338 

a vaginal plug was recorded. To determine the time of developmental lethality, females were 339 

sacrificed at E6.5 and embryos dissected out from the decidual swellings. Their morphology was 340 

recorded and each of them was then processed for genotyping. Samples for RNA-sequencing were 341 

collected at peri-implantation stage (E4). These embryos were bisected using glass needles and 342 

both parts were individually snap-frozen. The abembryonic part (mural TE) was used for 343 

genotyping and the embryonic part (ICM and polar TE) for subsequent RNA extraction.  344 

 345 

RNA sequencing 346 

The collected embryonic ICM and polar TE (as described above) were used for RNA-seq library 347 

preparation using the SMART-Seq HT Kit (Takara Bio USA, Inc.) following the manufacturer's 348 

instructions.  Briefly, cDNA was generated using the oligo-dT primer to enrich for mRNA, 349 

followed by the tagmentation of the cDNA (Illumina Nextera XT) to generate Illumina-compatible 350 

RNA-seq libraries. The libraries were amplified by 12 PCR cycles and size-selected for an average 351 

insert size of 150 bp and sequenced as 100 bp paired-end reads using Illumina Nova-Seq. Sequence 352 

reads were mapped to the reference mouse genome (mm10) using STAR 2.5.1b [54] with 353 

parameter --quantMode GeneCounts to generate read counts. The edgeR (Bioconductor package) 354 

[55] was used to identify differentially expressed (DE) genes using gene models for mm10 355 

downloaded from UCSC (www.genome.ucsc.edu). The abundance of gene expression was 356 

calculated as count-per-million (CPM) reads. Genes with less than one CPM in at least three 357 

samples were filtered out. The filtered libraries were normalized using the trimmed mean of M-358 
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values (TMM) normalization method  [56]. P-values were corrected for multiple testing using the 359 

False Discovery Rate (FDR) approach. Gene set enrichment analyses (GSEA) were performed 360 

using the fgsea R package [57]. Genes were ranked based on the fold-change and the datasets were 361 

downloaded from the GSEA website (https://www.gsea-msigdb.org/gsea/). 362 

 363 

Immunoprecipitation 364 

Mouse embryonic stem cell line (mESC) was cultured on gelatin-coated plates and maintained in 365 

Dulbecco's Modified Eagle Medium (DMEM) complemented with 10% heat-inactivated fetal 366 

bovine serum, penicillin (0.2 U/mL), streptomycin (0.2 µg/mL) and L-glutamine (0.2 µg/mL) 367 

(Gibco, Waltham, Massachusetts, United States) and supplemented with recombinant mouse 368 

Leukemia Inhibitory Factor (LIF, 20 U/ml, Millipore). Cultured mESCs at 60% confluency were 369 

washed with PBS twice before the preparation of total lysate. Total protein lysates were prepared 370 

using Pierce IP lysis buffer (Thermo Fisher Scientific) supplemented with protease inhibitors 371 

(Complete Ultra Tablets, Roche) and Pierce Universal Nuclease (Thermo Fisher Scientific). Lysate 372 

was cleared by centrifugation at 20 x g for 10 min at 4°C, and incubated rotating end-over-end at 373 

4°C with anti-IgG, anti-ZC3H11A or anti-THOC2 antibodies in Protein LoBind 2-ml tubes 374 

(Eppendorf). Thereafter, 30 µg of Dynabeads Protein G (Thermo Fisher Scientific) was added to 375 

each tube and incubated for 30 min at room temperature, followed by washing three times with 376 

Pierce IP lysis buffer. The co-IP proteins were eluted from the magnetic beads by adding 50 µg of 377 

elution buffer (5% SDS, 50mM TEAB, pH 7.55) and heat denaturation for 5 min at 90 °C. The 378 

eluted co-IP proteins were used for western blot and Mass spectrometric analysis. co-IP 379 

experiments were performed in four replicates. 380 

 381 
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Immunoblot analysis 382 

Equal volumes (5 µg) of the prepared co-IPs were separated by SDS-PAGE (4–15%, Bio-Rad) 383 

and transferred to PVDF membranes (Millipore). StartingBlock buffer (Thermo Fisher Scientific) 384 

was used to block the membrane before the primary anti-ZC3H11A, anti-THOC2 or anti-ALYREF 385 

antibodies (1:1000) were added. Proteins were visualized and detected by the Odyssey system (LI-386 

COR).  387 

 388 

Protein clean-up and digestion  389 

The co-IPs were cleaned up and prepared for mass spectrometry quantification using the S-Trap 390 

column method [58]. First, the eluted co-IPs were treated by TCEP (5 mM) to reduce disulfide 391 

bonds, followed by adding methyl methanethiosulfonate (MMTS) to a final concentration of 15 392 

mM to alkylate cysteines. Thereafter, the lysate was acidified by adding phosphoric acid to a final 393 

concentration of 1.2%. The acidified lysate was added to an S-Trap microcolumn (Protifi, 394 

Huntington, NY) containing 300 µl of S-Trap buffer (90% MeOH, 100 mM TEAB, pH 7.5) and 395 

centrifuged at 4000 × g for 2 min. The S-Trap microcolumn was washed twice with S-Trap buffer. 396 

The columns were transferred to new tubes and incubated with 10 ng/μL sequencing-grade trypsin 397 

(Promega) overnight at 37°C. The digested proteins were eluted by centrifugation at 4000 × g for 398 

1 min with 50 mM TEAB, 0.2% formic acid (FA), followed by 50% acetonitrile (ACN)/0.2% FA, 399 

and finally 80% ACN/0.1% FA. The eluted peptides were dried down in a vacuum centrifuge 400 

(ThermoSavant SPD SpeedVac, Thermo Fisher Scientific), and finally dissolved in 1% FA. 401 

Digested peptides were thereafter desalted by StageTips (Thermo Fisher Scientific) according to 402 

the manufacturer's instructions, and subsequently dissolved in 0.1% FA.  403 

Liquid chromatography and mass spectrometry 404 
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The dissolved peptides were quantified by mass spectrometry as previously described  [17]. 405 

Briefly, a Thermo Scientific EASY-nLC 1000 liquid chromatography system coupled with an 406 

Acclaim PepMap 100 (2 cm x 75 μm, 3 μm particles, Thermo Fisher Scientific) pre-column in line 407 

with an EASY-Spray PepMap RSLC C18 reversed phase column (50 cm x 75 μm, 2 μm particles, 408 

Thermo Fisher Scientific) was utilized to fractionate the peptide samples. The eluted peptides were 409 

analyzed on a Thermo Scientific Orbitrap Fusion Tribrid mass spectrometer, operated at a Top 410 

Speed data-dependent acquisition scan mode, ion-transfer tube temperature of 275°C, and a spray 411 

voltage of 2.0 kV. 412 

 413 

Mass spectrometric data analysis 414 

Data analysis of raw files was performed using MaxQuant software (version 1.6.4) and the 415 

Andromeda search engine [59, 60], with the following parameters: cysteine methyl 416 

methanethiosulfonate (MMTS) as a static modification and methionine oxidation and protein N-417 

terminal acetylation as variable modifications. First search peptide MS1 Orbitrap tolerance was 418 

set to 20 ppm, and iontrap MS/MS tolerance was set to 0.5 Da. Peak lists were searched against 419 

the UniProtKB/Swiss-Prot Mus musculus proteome database (UP000000589, version 2019-04-01) 420 

with a maximum of two trypsin miscleavages per peptide. The MaxQuant contaminants database 421 

was also utilized. A decoy search was made against the reversed database, with the peptide and 422 

protein false discovery rates both set to 1%. Only proteins identified with at least two peptides of 423 

at least 7 amino acids in length were considered reliable. The peptide output from MaxQuant was 424 

filtered by removing reverse database hits, potential contaminants, and proteins only identified by 425 

site (PTMs).  426 
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 Intensity values were used to determine the protein abundance. First, proteins with missing 427 

values in more than one replicate in at least one group were filtered out. Thereafter, the filtered 428 

intensities were normalized using the variance stabilizing normalization (vsn) method [61] and 429 

followed by the imputation of missing values with the deterministic minimal value approach 430 

(MinDet) [62] to replace the missing values in the normalized intensities. The normalized 431 

intensities were fitted to a linear model and the empirical Bayes moderated t-statistics and their 432 

associated P-values were used to calculate the significance of differential enriched proteins  [63, 433 

64]. The P-values were adjusted for multiple testing using the Benjamini–Hochberg procedure 434 

[65]. Proteomics data was visualized using the ggplot R-package and Cytoscape v3.8.2.  435 

 436 

Crosslinking immunoprecipitation sequencing (CLIP-seq) 437 

Cultured mESCs were cross-linked using a 254 nM UV crosslinker with an energy setting of 400 438 

mJ/cm2. The cross-linked cells were collected in ice-cold PBS with a cell scraper and aliquoted in 439 

1.5 ml tubes (25 million cells/ml). The CLIP-seq library preparation was performed as indicated 440 

[66]. Briefly, the total lysate was digested with RNase-I and immunoprecipitated with 10 µg of the 441 

following antibodies: anti-ZC3H11A (HPA028526 and HPA028490, Atlas Antibodies), anti-442 

ALYREF (ab202894, Abcam) or anti-IgG (ab37415, Abcam). The IP-RNA complexes were 443 

loaded on a 4–12% Bis-Tris (Bio-Rad) gel, transferred to a nitrocellulose membrane, and the bands 444 

above 75 kDa for each lane were cut. Extracted RNA molecules from the membrane were used for 445 

Illumina library construction as indicated [66]. CLIP-seq reads were trimmed out using 446 

trim_galore with the criteria to remove reads with low quality and shorter than 15 bp. The trimmed 447 

reads were aligned to the mouse reference genome mm10 using STAR aligner with end-to-end 448 

options --alignEndsType EndToEnd. The CLAM workflow were used for peak calling and 449 
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counting the fold enrichment of IP vs IgG control  [67].  The identified peaks with adjusted P-450 

value <0.01 were annotated to the mouse mm10 genome using the peak_annotator function from 451 

CLAM. HOMER software was used for motif finding using the findMotifsGenome.pl script with 452 

default parameters for RNA motifs [68].  453 

 454 

Quantitative RT-PCR  455 

Total RNA was extracted using the RNeasy Mini kit (Qiagen) and the samples were treated with 456 

DNase I to eliminate genomic DNA. The High Capacity cDNA Reverse Transcription Kit 457 

(Applied Biosystems) was used to generate cDNA from RNA. Quantitative PCR analysis was 458 

performed in ABI MicroAmp Optical 384-well Reaction plates on an ABI 7900 real-time PCR 459 

instrument using SYBR gene expression reagents (Applied Biosystems). The amplification and 460 

detection of each gene was performed using forward and reverse primers for Zc3h11a, F: 461 

TGCCTAATCAGGGAGAAGACTG, R: AGCTTCACAGTGACGGAATG and Actb as a 462 

housekeeping gene F: CTAAGGCCAACCGTGAAAAG, R: ATCACAATGCCTGTGGTACG. 463 

 464 

Derivation of ESCs 465 

E3.5 blastocysts were collected from heterozygous matings. They were plated individually on a 466 

layer of Mitomycine C inactivated mouse embryonic fibroblasts (feeder layer) in 4-well plates, in 467 

naïve ESC medium. This medium was composed of Chemically Defined Medium (CDM) 468 

supplemented with LIF (700 U/ml), PD0332552 (1 µM) and CHIR99201 (final 3 µM) (2i/Lif 469 

CDM) [69]. After 4-5 days, the blastocysts have attached and outgrowths formed. Individual 470 

outgrowths were dislodged from the feeders, dissociated in Tryple Select (Invitrogen) and the 471 

single cell suspension was plated in 4-well plates on fresh feeders. ESC colonies appeared within 472 
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the following days and were individually picked, dissociated and replated on feeders in 2i/Lif 473 

CDM. The procedure was repeated a few times, until stable expansion of the ESCs that allows 474 

passaging using trypsin and removal of feeders, replaced by plate coating with gelatin 0.2% and 475 

serum. 476 

 477 

Immunostaining of ZC3H11A on pre-implantation embryos 478 

Mouse CD1 embryos were collected at 4-cell (E1.5) and blastocyst (E3.5) stage in M2 medium 479 

(Sigma) by oviduct and uterine flushing, respectively. They were fixed in 2% PFA for 20 min, 480 

followed by permeabilization by 1% Triton-X100, for 30 min. Permeabilized samples were 481 

blocked with 1% BSA in PBS for 40 min, followed by incubation with primary antibodies in 1% 482 

BSA overnight at 4°C. The day after, samples were washed by PBS and incubated with the 483 

fluorophore conjugated secondary antibodies (Jackson ImmunoResearch) for an hour at room 484 

temperature. Samples were then washed and stained by DAPI for nuclei staining. Samples were 485 

mounted in Vectashield mounting agent (Vectorlabs, H1000). Embryos were imaged by a Zeiss 486 

LSM710 confocal microscope. Antibodies used were anti-SC35 (ab11826, Abcam, 1:250) and 487 

anti-ZC3H11A (HPA028526, Atlas Antibodies, 1:300) 488 

 489 
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Figure legends 527 

Figure 1. Development of Zc3h11a–/– mouse models. (A) The Zc3h11a locus showing the 528 

targeted exons for generating Zc3h11a–/– mouse models. (B) Two CRISPR/cas9 guide RNAs were 529 

used to delete exon 3 of Zc3h11a. Scissors indicate the location of the gRNAs and the length of 530 

deleted sequences. (C) Two homology arms were used to insert loxP sites flanking exon 2. The 531 

conditional knock-out mice were crossed with mice expressing Cre in germ line to eliminate the 532 

sequences between the loxP sites resulting in the elimination of the entire exon 2 coding sequences. 533 

(D and E) Genotyping of the offspring of Zc3h11a heterozygous matings (Zc3+/– X Zc3+/–) using 534 

the CRISPR/cas9-based KO mouse model (D) and the loxP/Cre-based KO mouse model (E). The 535 

total numbers of genotyped mice at week 4 are indicated. 536 

 537 

Figure 2. Ablation of Zc3h11a leads to early embryo degeneration. (A, top) Schematic 538 

illustration showing embryo stages and time points of collecting embryos for genotyping of 539 

Zc3h11a. (A, low) PCR genotyping of collected embryos at the above time points. (B) Morphology 540 

of collected embryos at E6.5 from Zc3h11a heterozygous mating (Zc3+/– X Zc3+/–). 541 

 542 

Figure 3. Cellular localization of ZC3H11A in early embryonic cells. (A) Immunofluorescence 543 

staining of mouse embryos using anti-ZC3H11A and anti-SRSF2 (SC35) antibodies at 2-cell (top) 544 

and blastocyst stage (middle and bottom). Middle panel shows a z-projection of the whole 545 

blastocyst while the bottom panel is a mid-section through the ICM. (Scale bar: 20 μm). (B) 546 

Fluorescent intensity profile of the ZC3H11A signal and paraspeckle marker SRSF2 signal across 547 

paraspeckles in an ICM nucleus showing the co-localization of ZC3H11 to paraspeckles. (Scale 548 

bar: 5 μm.). (C) Expression of Zc3h11a and Srsf2 measured by smartseq2 single cell RNA-seq. 549 

Re-analysis of data from Deng et. al. [19]. 550 
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 551 

Figure 4. Transcriptome analysis reveals dysregulated pathways in Zc3h11a–/– embryos. (A, 552 

left) Dissected inner cell mass (ICM) cells were used for RNA-sequencing. (A, right) Principle 553 

component analysis (PCA) of RNAseq data from embryonic parts at E4.5. Dots represent 554 

individual embryos and colors represent different genotypes. (B-D) Gene set enrichment analysis 555 

(GSEA) of ranked DE genes in Zc3h11a–/– embryos using hallmark gene sets. (B-C, below) 556 

Heatmaps showing the expression of the genes contributing to the above pathways and found 557 

significantly down-regulated in Zc3h11a–/– embryos (FDR <0.05). (E) Heatmap showing the 558 

expression of the genes contributing to fatty acid metabolism pathway and significantly down-559 

regulated in Zc3h11a–/– embryos (FDR <0.05). FDR: false discovery rate, NES: normalized 560 

enrichment score. 561 

 562 

Figure 5. Down-regulated genes in Zc3h11a–/– embryos are ICM-related. (A-B) GSEA of 563 

ranked DE genes in Zc3h11a–/– embryos with positive enrichment for the P53 pathway (A) and 564 

autophagy-related genes (B) among the up-regulated genes in Zc3h11a–/–  embryos (FDR <0.05). 565 

(C) Heatmap of down-regulated genes in Zc3h11a–/– embryos (FDR <0.05) and their expression 566 

profile during embryonic stages as indicated. Re-analyzed data from GSE76505 and E-MTAB-567 

2950. (D) Expression level of the indicated genes as count per millions (CPM). *, ** and *** 568 

correspond to FDR< 0.05, 0.01 and 0.001, respectively. 569 

 570 

Figure 6. ZC3H11A binds RNA-export TREX complex proteins in mESC. (A) Schematic 571 

illustration of co-immunoprecipitation (co-IP) mass-spectrometry experiments using anti-572 

ZC3H11A, anti-THOC2 and anti-IgG antibodies and mouse embryonic stem cells (mESCs). (B) 573 

Heatmap of the interacting partners to ZC3H11A (adjusted P <0.05). Data presented as log 574 
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intensities of four replicates. Proteins associated with the TREX complex and mRNA export are 575 

in bold. (C) Volcano plot showing the enrichment of co-IP proteins from anti-ZC3H11A/anti-IgG. 576 

(D) Western blot of reciprocal co-IP using anti-ZC3H11A, anti-THOC2 and anti-IgG antibodies 577 

and probed with the indicated antibodies. Asterisk indicates a cut in the western blot membrane. 578 

(E) Log intensities of the ZC3H11A and THOC proteins. (F) Log intensities of FYTTD1 (UAP56) 579 

and the polyadenylation factor PABPN1. (G) Log intensities of proteins interacting with 580 

ZC3H11A independent of THOC2 and the TREX complex. *, **,*** and **** correspond to 581 

adjusted P <0.05, 0.01, 0.001 and 0.0001, respectively. ns: not significant. 582 

 583 

Figure 7. CLIP-seq analysis of ZC3H11A RNA targets in mESCs. (A) Distribution of the 584 

proportion of ZC3H11A CLIP-seq mapped reads over the various elements of a gene in mESC 585 

using two anti-ZC3H11A antibodies and an anti-IgG control antibody. (B, top) Predicted motifs 586 

for ZC3H11A binding. (B, bottom) The overlap between differential down-regulated genes in KO 587 

embryos and predicted ZC3H11A CLIP-seq targets. (C) Gene ontology analysis of the down-588 

regulated genes with ZC3H11A binding sites. (D) Heatmap of the down-regulated genes with 589 

ZC3H11A binding sites. (E) The visualization of CLIP-seq reads and their distribution over the 590 

indicated genes. Black arrows indicate the direction of transcription from 5’ UTR to 3’ UTR.  591 

 592 

Figure 8. Phenotype characterization of conditional Zc3h11a-KO mice. (A) The loxP-Zc3h11a 593 

mouse model was crossed with mice containing a fusion of a mutated estrogen receptor and Cre 594 

recombinase (Cre-ER). The mice were bred to obtain two genotypes of homozygous loxP-Zc3h11a 595 

mice (Zc3loxP/loxP), one with one copy of Cre-ER (CRE.ER+ Zc3loxP/loxP) and the other with null 596 

Cre-ER (CRE.ER– Zc3loxP/loxP). These mice were crossed and the offspring were injected with 597 

tamoxifen at week 3-4 after birth. The time line indicates the time points of injection and sample 598 
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collection for genotyping and phenotyping. (B) Genotyping of the Cre-ER Zc3loxP mice. (C) qPCR 599 

analysis of Zc3h11a mRNA expression in bone marrow, liver and spleen tissues from WT and 600 

induced Zc3-KO (iKO) mice both injected with tamoxifen.  ** and  *** correspond to t-test P 601 

<0.01 and 0.001, respectively. (D) Western blot analysis of spleen tissues dissected from WT and 602 

iKO adult mice. (E) Histology (H&E staining) of small intestine from WT and induced iKO adult 603 

mice. (F) Body weight in grams (g), weight of dissected kidney and spleen in milligrams (mg) 604 

from WT and induced iKO adult mice. Results are means ± SEM.  605 

 606 

 607 

Supplementary information 608 

 609 

Figure S1. Heatmaps of the normalized expression of genes involved in the P53 pathway (A) and 610 

in positive regulation of autophagy (B).  611 

 612 

Figure S2. (A) Heatmap of up-regulated genes (A, left) and down-regulated genes (A, right) in 613 

Zc3h11a–/– embryos (FDR <0.05) and their expression profile during embryonic stages as 614 

indicated. Re-analyzed data from GSE76505 and E-MTAB-2950. (B) Violin plot of the relative 615 

expression of inner cell mass (ICM)-related genes and trophectoderm (TE)-related genes 616 

(ICM/TE) as detected among the down-regulated and up-regulated genes in Zc3h11a–/– embryos 617 

(FDR <0.05). 618 

 619 

Figure S3. (A, top) Chord diagram illustrating the overlap between the interacting partners 620 

detected with ZC3H11A and THOC2 co-IPs. (A, bottom) GO analysis of the identified interacting 621 
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partners with ZC3H11A and THOC2 co-IPs in mESCs. (B) Network analysis of the identified 622 

interacting partners with ZC3H11A and THOC2 based on co-IPs in mESCs. Blue lines represent 623 

the interaction detected by our proteomics analysis, and gray lines represent the predicted 624 

interaction from the STRING database.  625 

 626 

Figure S4. (A) Genome-wide distribution of the ZC3H11A CLIP-seq peaks from mESCs across 627 

different types of transcripts. (B) Visualization of CLIP-seq reads and their distribution over the 628 

Neat1 gene. 629 

 630 

Figure S5. Histology staining of intestine, colon and stomach tissues from three WT and three 631 

induced ZC3-KO adult mice. 632 

 633 

Table S1. Differentially expressed genes in Zc3h11a knock-out (KO) E4.5 embryos. 634 

 635 

Table S2. Sequences of PCR primers used for mouse genotyping.  636 

 637 
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Figure S4 
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