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Abstract: The deployment of novel technologies in the field of precision farming has risen to the
top of global agendas in response to the impact of climate change and the possible shortage of
resources such as water and fertilizers. The present research addresses the performance of water
and nitrogen-sensitive narrow-band vegetation indices to evaluate the response of sweet maize
(Zea mays var. saccharata L.) to different irrigation and nitrogen regimes. The experiment was carried
out in Valenzano, Bari (Southern Italy), during the 2020 growing season. Three irrigation regimes
(full irrigation, deficit irrigation, and rainfed) and two nitrogen levels (300 and 50 kg ha−1) were
tested. During the growing season, a Field Spec Handheld 2 spectroradiometer operating in the
range of 325–1075 nm was utilized to capture spectral data regularly. In addition, soil water content,
biometric parameters, and physiological parameters were measured. The DATT index, based on near-
infrared and red-edge wavelengths, performed better than other indices in explaining the variation
in chlorophyll content, whereas the double difference index (DD) showed the greatest correlation
with the leaf–gas exchange. The modified normalized difference vegetation index (NNDVI) and
the ratio of water band index to normalized difference vegetation index (WBI/NDVI) showed the
highest capacity to distinguish the interaction of irrigation x nitrogen, while the best discriminating
capability of these indices was under a low nitrogen level. Moreover, red-edge-based indices had
higher sensitivity to nitrogen levels compared to the structural and water band indices. Our study
highlighted that it is critical to choose proper narrow-band vegetation indices to monitor the plant
eco-physiological response to water and nitrogen stresses.

Keywords: vegetation reflectance; bio-physiological crop parameters; red-edge; water band indices;
narrow-bands spectral indices; water and nitrogen stress

1. Introduction

Water and nitrogen (N) have long been known as two primary restricting inputs for
crop production. Water stress directly affects crop growth and productivity [1–4]. Accord-
ing to several studies, crops in many regions, especially in the Mediterranean and other
arid and semi-arid areas, experience severe effects of drought [5], which causes yield loss.
Therefore, various studies have aimed to identify and assess the performance of water stress
indicators and strategies for water use optimization [6,7]. Additionally, the application
of essential nutrients in the optimal quantity is necessary to improve the crop growth
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and development; nitrogen is considered the most vital nutrient by having a fundamental
role in the biochemical and physiological functions of plants [8–10]. Normally, N deficit
causes a decrease in biomass and leaf chlorophyll concentration, and an increment in leaf
reflectance in the chlorophyll absorption bands of the visible part of the electromagnetic
spectrum [11].

The interaction of water and nitrogen affects the biochemical and biophysical pro-
cesses from the environmental to the molecular level. Some findings have shown that
water–nitrogen interactions mainly affect the crop yield, grain size, protein content, root
depth, and root-to-shoot translocation [12,13]. Hence, matching N supply to water avail-
ability, both spatially and temporally, is essential to accomplish an optimal crop response,
maximizing the efficiency of N application [14]. Consequently, the development of sustain-
able and efficient strategies is a priority for producers facing water shortages and nutrient
deficiency [15]. As proximal and remote sensing methods enable rapid, non-destructive
water and nutrient deficiency determination, they have been widely used in precision
agriculture [16].

Hyperspectral remote sensing, which records the radiation in hundreds of narrow
contiguous spectral channels reflected from any feature, is an accurate technique to re-
gain valuable information for applications in precision agriculture [17]. Such information
provides significant progress in understanding the subtle changes in the biochemical and
biophysical attributes of the crop and their different physiological processes, which other-
wise are indistinct in multispectral remote sensing [18]. Many studies have shown the high
effectivity of narrow-band vegetation indices (VIs) to evaluate the crop biophysical param-
eters [19,20], especially if the spectral and canopy structure information are integrated [21].
However, little is known about which VI can distinguish between the stress of different
origins such as water and N, when combined.

Narrow-band vegetation indices have been favorably included in studies aiming to
estimate the crop nitrogen concentration [22–25], leaf chlorophyll content [26–28], light-use
efficiency [29,30] as well as detect water stress [31–33] and diseases [34–36]. The narrow-
band VIs use reflectance in red and infrared bands to collect the red-edge section of the
spectrum. These indices provide information on numerous vegetation and environmental
variations such as the leaf area index, leaf chlorophyll content, and background soil re-
flectance [37]. For instance, the normalized difference red-edge index (NDRE) is considered
susceptible to chlorophyll content changes in the leaves, variability in leaf area, and soil
background effects [38–40]; the red-edge normalized difference vegetation index (RENDVI)
has been shown to be superior to the normalized difference vegetation index (NDVI) for
the late-season nitrogen determination [41]; and the modified chlorophyll absorption ratio
index (MCARI) has been recommended as a valuable index that may afford upgraded
sensitivity to nitrogen availability and soil moisture over NDVI [42,43]. Additionally, con-
cerning the water absorption properties, many reports have highlighted the great potential
of water indices to estimate the crop water content and detect crop water stress [44–47].

Previous studies have shown that near-infrared and red-edge reflectance might lower
the background influence and have excellent possibilities to predict the chlorophyll content,
which helps to precisely determine the nitrogen quantity [48,49]. Numerous studies have
been conducted to relate the vegetation indices to the crop physiological and biometric
parameters and a large number of relationships between them have been found [50–57].
Some findings have confirmed that spectral reflectance could be suitable for monitoring the
photosynthetic parameters of crops [58,59]. Additionally, Weber et al. (2012) [60] proved
the high relevance of hyperspectral indices in predicting the maize grain yield. As maize
has high water and nitrogen requirements, this crop needs proper water and nutrient
management during all growth stages [3]. Nevertheless, the problem of saturation in
predicting the crop biophysical parameters has been found for many spectral indices [61].
It is not clear whether the current water and nitrogen indices can indicate the high water
and nitrogen requirements in maize.
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In this study, the canopy spectral reflectance data from the field spectrometry and
bio-physiological measurements were simultaneously collected. The overall objective was
to assess the performance of various narrow-band vegetation indices and sensitivity to
different irrigation and nitrogen levels and their interaction. The specific objective was
to find the best correlation in determining which vegetation index is the most efficient
predictor of the crop eco-physiological parameters. The findings of this study will provide
essential information for the non-destructive, real-time monitoring and assessment of sweet
maize water stress and nitrogen deficiency using hyperspectral VIs.

2. Materials and Methods
2.1. Study Area and Experimental Design

The study was carried out in the 2020 growing season in Valenzano, Bari (41◦03′ N,
16◦53′ E, 77 m above sea level), Southern Italy, at the Mediterranean Agronomic Institute
(IAMB) experimental field.

The climate of the location is typical of the Mediterranean, with moderate winters and
dry summers. The average yearly precipitation is around 550 mm (30 years average), with
most precipitation falling during the autumn and winter months. The average monthly air
temperature varies from 8 ◦C in January to 24 ◦C in July and August. The research area’s
soil is silty-clay-loam [62].

The average values of the main physical and chemical soil properties are: sand
170 g kg−1, clay 234 g kg−1, silt 596 g kg−1, USDA Textural Class: silty-loam; pH (H2O
1:2.5) 8.1, electrical conductivity (1:2) 0.24 dS m−1, total carbonate 55 g kg−1, organic C
11.6 g kg−1, total N 0.9 g kg−1, C/N ratio 12.9, available P 17 mg kg−1, K exchangeable
465 mg kg−1 [4].

Sweet maize (Zea mays var. saccharata L.) was grown on 18 plots (sized 10 × 10 m)
from June to September 2020, in rows-oriented north–south, 0.5 m apart and with a spacing
between plants in the row of 0.2 m, with a plant density of 10 plants m−2.

Three irrigation regimes (WR) were used in combination with two N levels. The
irrigation regimes included: (i) full irrigation (I100); (ii) deficit irrigation (I50), which applied
half of the crops’ water needs; and (iii) rainfed treatment (I0). The amounts of nitrogen
were: (i) 50 kg ha−1, which is a low level (LN) and (ii) 300 kg ha−1, which is a high level
(HN). The rainfed treatment received only one watering after sowing. Treatments were
allocated in a split-plot experimental design with three replicates, considering the irrigation
regime (WR) as the main-plot factor and the N level (N) as the sub-plot factor.

Before sowing, the fertilizers were applied to the whole experimental area as follows:
nitrogen (N) 50 kg ha−1 as urea (46% of N), phosphorus (P2O5)—100 kg ha−1 as super-
phosphate (20% P2O5), and potassium (K2O)—200 kg ha−1 as potassium sulfate (51% K2O).
On 22 June, 250 kg ha−1 of additional nitrogen as urea was supplied to HN treatment. The
weeding control was conducted by milling before sowing and manually during the first
growth stage.

During the experiment, a standard set of daily meteorological data (air temperature,
relative humidity, solar radiation, wind speed and precipitation) was obtained from the
weather station located next to the experimental field (Figure 1). The average daily temper-
ature (T_avg) ranged between 19 and 29 ◦C, while the reference evapotranspiration (ETo)
was between 1- and 5.6-mm d−1. The total amount of precipitation was 56 mm, with the
highest value of 23.6 mm recorded on 17 days after sowing (DAS). The crop evapotranspi-
ration increased with the biomass growth until the flowering and initial maturity stages,
and then it reduced approaching the harvesting (data not shown). Hence, the overall water
deficit between crop evapotranspiration and precipitation increased during the growing
season, which provoked strong water stress under rainfed cultivation.

Irrigation was performed by the surface drip method system using a drip line for
each row and drippers (2.2 L h−1) 0.50 m spaced apart. Crop water balance and irrigation
scheduling were managed using an Excel-based model [63] that estimates day-by-day crop
evapotranspiration and irrigation water requirements through the standard procedure
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proposed by Allen et al. (1998) [64]. Irrigation amounts of 291.2 mm were supplied
in 12 waterings in the I100 treatment, while half of these amounts were applied in the
I50 treatment.

Figure 1. The daily precipitation, reference evapotranspiration (ETo), and average temperature
(T_avg) during the crop growing cycle of sweet maize.

2.2. Measurements

All of the physiological measurements listed below were simultaneously taken five
times from mid-July to the end of August.

2.2.1. Leaf Gas Exchange

A portable open system photosynthesis system (Li-6400XT, LiCor, Lincoln, NE, USA)
was used to measure the net photosynthetic CO2 assimilation, (An, µmol m−2 s−1) and
stomatal conductance to water vapor (gs, mol m−2 s−1) over a clipped leaf surface of
6.0 cm2 on the intact, healthy green, and well-exposed up-leaves at solar noon (between
10:30 and 12:30 solar time). A saturating photosynthetic photon flux density (PPFD)
of 2000 µmol m−2 s−1 was used as the light source. To keep the CO2 content in the
leaf chamber at 400 µmol mol−1, an external bottled CO2 source was employed. The
von Caemmerer and Farquhar (1981) [65] model was used to determine the different
gas-exchange parameters (e.g., leaf transpiration (Tr, mmol m−2 s−1)) in the instrument
software. The measurement was repeated three times per plot.

2.2.2. Leaf Chlorophyll Content

An optical meter (SPAD-502, Konica Minolta, Osaka, Japan) was used to measure the
leaf chlorophyll content index (CC, r.u.) on 15 leaves per plot.

2.2.3. Relative Water Content

The relative water content (RWC) was measured in up-leaves blades similar to those
used for the gas exchange measurements. At midday, nine leaf segments were gathered
from three plants in each plot. Leaf-blade segments were weighed to obtain the fresh
weight (FW, g), kept in distilled water overnight at 4 ◦C to obtain the saturated weight
(SW, g), and then weighed again. Afterward, they were dried at 80 ◦C for 48 h and the dry
weight (DW, g) was measured. Finally, the RWC was calculated as follows:

RWC =
FW−DW
SW−DW

× 100 (1)
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2.2.4. Crop Reflectance

The crop reflectance was measured using a FieldSpec Handheld 2 spectroradiometer
(Analytical Spectral Devices, Inc., Boulder, CO, USA). This spectroradiometer is designed
to collect spectra with a resolution of <3 nm at 700 nm, accuracy of 1 nm, and a wavelength
range of 325–1075 nm.

The field of view (FOV) of the bare fiber-optic probe was 25◦. The spectrum of a white
(BaSO4) reference panel with known reflectance properties was acquired to derive the
reflectance of the target. Ten spectra readings were averaged to obtain a single reflectance
measurement. The measurements were acquired on three plants for each plot, at midday,
under clear sky conditions. The crop spectrum was taken from a distance of 10 cm of height,
with a spot size of about 14 cm2, and as the canopy cover grew and expanded, the distance
from the vegetation increased to 60 cm.

The VIs were computed for each plot to analyze the relationships with the physio-
logical crop parameters and evaluate their performance in distinguishing the water and
nitrogen levels. These VIs were chosen on the basis of their sensitivity to (i) canopy struc-
ture; (ii) chlorophyll and other photosynthetic pigments; (iii) crop nitrogen status; and
(iv) water status. However, in our study, the criteria for index selection were conducted on
the previously successful use of them in numerous studies, as presented in Table 1.

Table 1. The indices derived from the hyperspectral visible and near-infrared bands.

Description Abbreviation Formulation Reference

Narrow-Band Water and Nitrogen Sensitive Indices

Red-edge inflection point REIP 700 + 40 × [(((R670 + R780)/2) − R700)/(R740 − R700)] [66]

Normalized difference red-edge NDRE (R790 − R720)/(R790 + R720) [67]

Narrow-band Normalized Difference
Vegetation Index NNDVI (R775 − R670)/(R775 + R670) [68]

Modified chlorophyll absorption
reflectance index MCARI [(R700 − R670) − 0.2 × (R700 − R550)] × (R700/R670) [48]

DATT index DATT * (R760 − R720)/(R760 − R670) [69]

MERIS terrestrial chlorophyll index MTCI * (R760 − R720)/(R720 − R670) [69]

Chlorophyll indices
CI

CIgreen
CIred-edge

CI = (R880/R590) − 1
CIgreen = (R730/R530) − 1

CIred-edge = (R850/R730) − 1
[69]

Double difference index DD (R749 − R720) − (R701 − R672) [70]

Structure intensive pigment index SIPI (R800 − R445)/(R800 − R680) [44]

Water band index WBI R900/R970 [71]

Ratio water band index and normalized
difference vegetation index (WBI/NDVI) (R900/R970)/[(R800 − R680)/(R800 + R680)] [71]

* DATT and MTCI indices were computed according to the equations reported in [69].

2.2.5. Canopy Temperature

The canopy temperature (Tc) was measured by a thermal imaging camera (FLIR B335,
Wilsonville, OR, USA) with a 640 by 480-pixel resolution and 2% accuracy reading, the
emissivity of 0.95, and the distance to the focal plane of 0.4 m. Thermal images were
collected on three plants for each plot, between 11:00 and 13:00 (solar time) at 0.10 m
from the crop, focusing as much as possible on the plant without soil disturbance in
the background. Images were elaborated using FLIR Tools software for leaf temperature
extraction. Canopy temperature was determined as the average temperature for each image.
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2.2.6. Leaf Area Index and Dry-Above Ground Biomass

The leaf area index (LAI) was measured by using an optical leaf area meter (Li-COR,
3100, Lincoln NE, USA) on three plants for each plot. Dry-above ground biomass (DAGB)
was measured on the same plants used for the LAI measurements. Samples were weighed
after placing them in an oven at 70 ◦C for 48 h.

2.2.7. Fresh Grain Yield and Irrigation Yield Water Use Efficiency

The harvesting was conducted on 3 September 2020, when the grain reached about
30% in dry matter, sampling 2 m2 in the middle of each plot.

The irrigation yield water use efficiency (IWUEY) was calculated as the ratio of mar-
ketable yield and seasonal irrigation volume.

2.3. Statistical Analysis

The variables under study (vegetation indices VIs) were evaluated for normal distribu-
tion according to the Shapiro–Wilk W test and for homogeneity of variance using Bartlett’s
test. Multiple data taken over time on different plots were analyzed using a repeated-
measures ANOVA approach to identify the effect of between-subject and within-subject
factors on the measured variables. The general linear model (GLM) procedure was used.
The vegetation indices (Table 1) were considered as dependent variables and the fixed
factors (water treatment, nitrogen treatment and time) as categorical independent vari-
ables. The sphericity within all possible pairs was evaluated using Mauchly’s test. The
Greenhouse–Geisser adjustment was used to test the within-subject effects if Mauchly’s
test revealed that the assumption of sphericity was untenable since it was the case for
a few variables.

The Student–Newman–Keuls (SNK) post hoc (α = 0.05) test was used to make pairwise
comparisons among the sample means group when significant differences were observed
with ANOVA.

Moreover, simple linear regression analysis was applied to assess the relationship
between the crop physiological and biometric data and vegetation indices, while the
coefficient of determination (R2) evaluated the strength of the relationships. All statistical
analyses were performed using the R programming language [72].

3. Results
3.1. Crop Water Status, Yield, and Irrigation Yield Water Use Efficiency

In the beginning, all treatments had similar values, ranging from 64 to 73% (Figure 2).
However, after flowering, sweet maize under rainfed conditions experienced severe
drought stress, which caused a remarkable reduction in the RWC. The peak RWC value of
82% was reached on 66 DAS in I100 HN.

Plots under full irrigation treatment and high level of nitrogen (I100 HN) showed the
greatest fresh yield (18.09 t ha−1), while the yield of the same irrigation treatment (I100)
with a low nitrogen level (LN) was reduced by 26%. The water deficit treatments provided
a yield of 9.74 and 7.56 t ha−1 under high and low nitrogen supply, respectively; these
values were lower compared to the corresponding fully irrigated treatments. The yield
reduction under deficit irrigation conditions was due to the decrement in the mean grain
weight, the lessening in the number of ears, the weight of the ears, and grains per row
(data not shown). Moreover, crops under rainfed conditions were strongly affected by
the absence of water (irrigation or precipitation), particularly at the flowering stage; such
severe water stress did not allow for the formation of grains. Irrigation yield water use
efficiency (IWUEY) summarized these results: the greatest values were recorded for I50
HN (6.7 kg m−3) and for I100 HN (6.2 kg m−3), while under the corresponding treatments
without N, reductions of 22 and 26% were observed. The lowest value of IWUEY was
detected in I100 LN.
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Figure 2. Variation in the relative water content (RWC) during the growing season of sweet maize for
different water and nitrogen treatments.

3.2. Crop Reflectance and Vegetation Indices

A noteworthy difference in reflectance was observed between treatments experiencing
stress and those well-watered. The crop spectral reflectance increased more rapidly in the
infrared region and the slope of the red-edge became steeper, especially in the treatments
under full irrigation and high nitrogen level, where a shift to longer wavelengths and
an increase in the amplitude of the red-edge peak (Figure 3) were observed. The values of
spectral reflectance for non-stressed plants were higher in the range from 710 nm to 950 nm
compared to the plants under stress.

Figure 3. The average values of the spectral reflectance of sweet maize for different treatments, during
the tasseling stage (73 DAS): (a) and (b) are the irrigation regimes under high nitrogen (HN) and low
nitrogen (LN), respectively; (c) is the interaction among both full irrigation and rainfed treatments
with nitrogen levels; (d) is the interaction among all the six treatments.
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ANOVA allowed us to compare the sensitivity of the vegetation indices to different
treatments and their interactions (Table 2).

Table 2. The analysis of variance of 13 vegetation indices (VIs) for different irrigation regimes,
nitrogen levels, and the day after sowing (DAS) of sweet maize.

Source of
Variation Irrigation Nitrogen DAS

Irrigation
×

Nitrogen

Irrigation
×

DAS

Nitrogen
×

DAS

Irrigation
×

Nitrogen
X DAS

Vegetation
Indices

(VIs)

REIP <0.0001 *** 0.0016 ** 0.0064 ** 0.5635 ns <0.0001 *** 0.8752 ns 0.2969 ns

NDRE <0.0001 *** <0.0001 *** 0.0024 ** 0.6831 ns <0.0001 *** 0.6765 ns 0.1399 ns

NNDVI 0.0123 * 0.9880 ns <0.0001 *** 0.0475 * <0.0001 *** 0.0799 ns 0.4282 ns

MCARI 0.5690 ns 0.0031 ** 0.0033 ** 0.5833 ns 0.0509 ns 0.3546 ns 0.4752 ns

CI 0.0020 ** 0.0094 ** <0.0001 *** 0.1668 ns 0.0153 * 0.6765 ns 0.1394 ns

CIgreen 0.0173 * 0.0709 ns <0.0001 *** 0.0503 ns 0.06499 ns 0.1100 ns 0.1260 ns

CIrededge <0.0001 *** <0.0001 *** 0.0670 ns 0.8384 ns <0.0001 *** 0.8025 ns 0.0422 *
DD <0.0001 *** 0.0025 ** <0.0001 *** 0.2713 ns <0.0001 *** 0.7092 ns 0.5311 ns

DATT <0.0001 *** <0.0001 *** <0.0001 *** 0.65108 ns <0.0001 *** 0.00524 ** 0.39118 ns

MTCI <0.0001 *** <0.0001 *** <0.0001 *** 0.3292 ns <0.0001 *** 0.8102 ns 0.1174 ns

SIPI 0.0219 * 0.1610 ns <0.0001 *** 0.4588 ns 0.0050 ** 0.2390 ns 0.5465 ns

WBI <0.0001 *** 0.3500 ns 0.0095 ** 0.2520 ns <0.0001 *** 0.0934 ns 0.2770 ns

WBI/NDVI <0.0001 *** 0.8780 ns <0.0001 *** 0.0381 * <0.0001 *** 0.217 ns 0.2158 ns

Not significant (ns); significant at p ≤ 0.05 (*), p ≤ 0.01 (**), and p ≤ 0.001 (***).

All indices, except for MCARI and CIgreen, were significantly affected by irrigation
and the effect varied over time (interaction irrigation × DAS).

The nitrogen levels significantly affected the red-edge based indices (REIP, NDRE,
MCARI, CIred-edge, DD, DATT, MTCI, together with CI), whereas the structural (NNDVI,
CIgreen) and water band indices (WBI, WBI/NDVI) did not vary significantly. The highest
discriminating capability was shown by NDRE, CIred-edge, DATT, and MTCI.

Among all of the indices tested (Table 3), the NNDVI and WBI/NDVI indices had
the best ability to differentiate the interaction of irrigation x nitrogen, showing a greater
discriminating capability under low nitrogen. CIred-edge was the only index affected by the
interaction between irrigation, nitrogen, and DAS.

Table 3. The effect of the interaction of irrigation x nitrogen on the vegetation indices.

Index Nitrogen Irrigation

I0 I50 I100

NNDVI
LN 0.71c 0.76ab 0.79a
HN 0.75b 0.75ab 0.76ab

WBI/NDVI
LN 1.47a 1.3bc 1.24c
HN 1.36b 1.31bc 1.29bc

Means followed by different letters were significantly different at p = 0.05.

Figure 4 shows the trend in the vegetation indices during the growing season as a func-
tion of the irrigation regime (interaction irrigation×DAS). Red-edge indices (Figure 4a,c–g)
showed a similar behavior: since V12–V14, the values of I0 treatment started to gradu-
ally decrease, while those of the two irrigated treatments started to differentiate after the
tasseling stage with a more evident decrease for I50 compared to I100. This behavior was
more marked at 66 DAS for both CIred-edge (Figure 4a) and MTCI (Figure 4e). The CI index
(Figure 4b) decreased for I0 during the crop cycle with significant differences at 58 DAS,
while lower values were observed only at 79 DAS for I50; I100 treatment maintained almost
constant values along the growing cycle. The trend of the NDVI index (Figure 4i) was
smoothed for both irrigated treatments, while the values of the rainfed treatments signif-
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icantly decreased from 0.80 to 0.61. The SIPI index (Figure 4h) displayed similar values
for all irrigation treatments throughout the growing season. The WBI index (Figure 4j)
showed a similar, but specular trend to the red-edge indices, in particular, to REIP and
DATT (Figure 4c,d), with values slightly increasing under water stress progressing and
during the growing season.

Figure 4. Variation in the CIred-edge (a), CI (b), REIP (c), DATT (d), MTCI (e), and DD (f). NDRE (g),
SIPI (h), NNDVI (i), and WBI (j) during the growing season of sweet maize for different water and
nitrogen treatments.

3.3. Correlation between Variables

Correlations among VIs (Table 1) and both biometric and physiological parameters
were checked using a Pearson correlation matrix (Figure 5). Among all of the analyzed
indices, MTCI, DATT, and DD showed the strongest positive correlation with the chloro-
phyll content (CC). Similarly, LAI, as well as the gas-exchange parameters, showed the
highest correlation with indices such as REIP, DD, NDRE, DATT, and MTCI. The WBI and
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WBI/NDVI displayed a negative correlation with all of the analyzed parameters, except
for canopy temperature (Tc). However, canopy temperature had a moderately negative
correlation with CIgreen.

Figure 5. The correlation matrix for the bio-physiological parameters and vegetation indices for
sweet maize.

The simple linear regression model was applied to link the measured eco-physiological
variables and VIs. Among the parameters, the greatest coefficient of determination was
found between the DATT index and chlorophyll content (R2 = 0.51) as well as between the
DD index and net assimilation rate (R2 = 0.4) (Figure 6a,b).

Figure 6. The linear regression parameters between the (a) DATT index and leaf chlorophyll content
(Chl content); (b) DD index, and net assimilation rate (An).

4. Discussion
4.1. Differentiation between Drought and Nitrogen Deficiency

The experiment was carried out to evaluate the performance of the narrow-band vege-
tation indices to different water and nitrogen regimes and their interactions. The NNDVI
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and WBI/NDVI indices were highly affected by the interaction of water and nitrogen,
showing the highest capability to distinguish low nitrogen treatment. On the other hand,
in the interaction of irrigation and DAS, all indices were significantly affected, except
for MCARI and CIgreen. The red-edge-based indices (REIP, NDRE, MCARI, CIred-edge,
DD, DATT, MTCI, combined with CI) were significantly impacted by the nitrogen levels,
while the structural (NNDVI, CIgreen) and water band indices (WBI, WBI/NDVI) were not.
Even though in our study the NNDVI separated the low nitrogen treatments, Shiratsuchi
et al. (2011) [69] showed a larger variation of this index due to the water supply and
low ability to distinguish nitrogen treatments. It was previously confirmed that NNDVI
performed better over many structural and narrow-band indices in detecting crop water
stress [73] and monitoring crop health [74]. However, due to the relatively lower sensi-
tivity to biomass and greater sensitivity to the crop chlorophyll content, Raper and Varco
(2015) [75] suggested that the red-edge-based indices be used as a more appropriate tool to
determine the crop deficiency or demand for nitrogen fertilizer. Nitrogen deficiency causes
red-edge reflectance and the peak of the first derivative of reflectance in the red-edge to
shift toward shorter wavelengths.

Furthermore, spectral reflectance is less impacted by chlorophyll absorption char-
acteristics beyond 730 nm in the NIR, and would only vary if the leaf morphology or
water content changed in response to the stress [76]. The effect of water absorption is
better detected near 970 nm if the stress is well-developed and in short-wave-infrared
(1400–2500 nm) wavelengths [77]. Water indices (WBI and WBI/NDVI) were found to be
the most sensitive for distinguishing the water stress levels in crops [78]. In comparison
with WBI, the WBI/NDVI ratio has a stronger relationship with the crop water status
because the NDVI is affected by structural and color changes (loss of pigments) in the
irrigated plants, and is therefore indirectly related to the crop water content [79].

Many studies have reported the trends of VIs under different water levels. For example,
Ma et al. (2022) found a correlation between the crop water status parameters and the
CIred-edge and REIP indices, highlighting that the red-edge position has a high potential
value for studying the canopy indices of drip irrigated cotton [80]. Likewise, Zhang and
Zhou (2019) demonstrated that the NNDVI, CIgreen, and CIred-edge, out of the 10 tested VIs,
were the most sensitive to changes in water conditions between water treatments in a study
on summer maize [2]. Moreover, similar to our study, in the early stages, these VIs started
to distinguish between the water and rainfed treatments, while the impacts of various
water treatments on VIs were strongest during the peak of the growing season. In the case
of our study, as observed in Figure 4, the difference between the irrigated treatments (I100
and I0) was chiefly noticed for the MTCI and CIred-edge indices. Nevertheless, according to
Shiratsuchi et al. (2011), the DATT and MTCI indices were the least affected by the irrigation
levels, while the CI and CIred-edge indices were highly influenced, particularly at the V11
and R4 stages [69]. In the present study, different water levels did not affect the SIPI
(Figure 4), however, some studies showed a strong effect of water stress on the reduction in
this index [81,82].

4.2. Leaf Chlorophyll and Reflectance

Many structural indices use only two spectral bands in their formulation, the red
and near-infrared regions, where light is scattered by leaf mesophyll, whereas chlorophyll
indices use wavelengths in the red-edge region due to the linkage with chlorophyll content,
allowing for the vegetation status to be monitored throughout the growing season. The
red-edge identifies the steep transition between the reflectance absorption characteristic
in red wavelengths and high NIR reflectance, with the red-edge position being defined as
the point of maximum slope (inflection point). During the growth season, when there is
a relatively large concentration of chlorophyll in the leaves, the red-edge spectrum is partic-
ularly sensitive to medium and high chlorophyll levels and it is considered as an excellent
indicator of crop health [83]. Similarly, it was recently verified that the electromagnetic
spectrum’s red-edge area appeared to be the most responsive to the chlorophyll concentra-
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tion [84]. This explains the positive correlation seen in our study between VIs, which were
calculated using red-edge wavelengths (particularly CIred-edge, REIP, DD, NDRE, DATT,
MTCI), and the leaf–gas exchange parameters. The peak at 705 nm is generally evident
in leaves with low chlorophyll content, whereas the peak at 725 nm dominated in leaves
with greater chlorophyll levels, as reported in Lamb et al. (2002) [85]; a similar trend was
observed in our study for the REIP index.

These indicators aid researchers in a better understanding of the biophysical and
biochemical processes of crop leaves as well as in the crop yield prediction [86]. Nitrogen
deficit affects the leaf chlorophyll concentration, as is widely recognized [87,88]. In our
study, before flowering, all treatments had close values of leaf chlorophyll content, but
after the full developing stage, a separation occurred. As expected, the spectral reflectance
values, starting from the NIR wavelengths, were greater in treatments of higher N levels.

In terms of VIs, DATT has already demonstrated the capacity to estimate the chloro-
phyll concentration with reasonable accuracy, as also observed in our work (Figure 6a).
Similarly, the DD was shown to be indicative of the gas exchange parameters (Figure 6b)
and by assessing the leaf chlorophyll concentration [70,89].

However, the MCARI index, which has been considered as one of the most sensitive
indices for chlorophyll variability, showed a slightly negative correlation with the physio-
logical variables. A similar outcome was reported in the study of Zhang et al. (2019) [90],
where a negative correlation between the MCARI index and leaf chlorophyll content was
found. Furthermore, the SIPI and CI indices were unable to accurately reflect the crop
status, with minimal correlation with other variables. A lack of sensitivity of these indices
to nutrient variation has been already described by [91,92].

4.3. Leaf Water and Reflectance

As expected, the water regime had a significant impact on RWC, which decreased
gradually at the beginning and then rapidly as the drought progressed. The RWC increased
following irrigation events in both the full and deficit irrigation treatments, with full
irrigation showing greater values (Figure 3).

All of the calculated VIs showed a slightly negative or positive correlation with plant
water content (expressed as RWC). Even though water loss from plant tissue is a result of
drought altering vegetation reflectance, in our study, a slightly negative correlation between
water indices and RWC was found. However, it is currently being debated whether changes
in plant reflectance can capture a minor decline in canopy water content during the early
occurrence of water stress [93]. Fernandes et al. (2020) [94] found a negative relationship
between the RWC and water indices. Furthermore, some studies have demonstrated that
variations in leaf reflectance during dryness are difficult to predict, as an increase in [95],
a decrease in [96], and non-significant [97] changes were observed.

The hypothesis behind water indices (WIs) is that NIR wavelengths (970 nm) pen-
etrate deeper into the canopy and may thus accurately evaluate the water content [74].
Consequently, water indices have the potential to detect early water stress in the absence of
other types of stress. Water absorption bands occur in the NIR range, beyond the photo-
synthetically active radiation (PAR); it reduces the overlap with other abiotic stresses [98].
In contrast to 900 nm, the degree of absorption at 970 nm increased as the water content of
the plant canopies increased [99]. Therefore, when plants are water-stressed, the 970 nm
trough of the reflectance spectrum tends to disappear and shift toward lower wavelengths.
The reflectance at 900 nm is utilized as a reference because it is affected by changes in the
canopy structure as the measurement at 970 nm [100], although water has no absorption
at this wavelength. Nevertheless, some studies [101,102] have shown that some water-
sensitive vegetation indices only give information about the water conditions, but not on
the plant growth status. In the study of Zhang and Zhou (2019) [2] on summer maize,
the chlorophyll indices had a higher sensitivity to crop growth indicators (such as the
canopy water content and leaf equivalent water thickness) than any of the water-sensitive
indices tested.
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In addition, in our study, the water indices were positively correlated to the vegetation
temperature (Tc), which specifies the importance of the vegetation temperature for water
stress detection. Since canopy temperature is an indicator of crop energy balance, a canopy
under water stress appears to have a greater temperature than a well-watered one under the
same environmental conditions. Moreover, previous research [88,103] has demonstrated
the positive correlation between canopy temperature and water indices (particularly WBI
and WBI/NDVI).

5. Conclusions

The sweet maize response was affected by both the nitrogen and water supply. The
effects of water stress were particularly evident at the flowering stage, not allowing for
grain formation in the rainfed treatments. Both the water and nitrogen deficiencies reflected
on the irrigation water use efficiency, which demonstrated the highest performance under
deficit irrigation and nitrogen fertilization.

The analysis of the whole spectrum and the calculation of the vegetation indices
demonstrated the importance of the red-edge vegetation indices in assessing the status
of sweet maize. Thus, it is shown that remotely sensed reflectance indices are promising
predictive tools for the impact of drought and nutritional deficiency on the photosynthetic
activity and water status. The findings of this study confirmed that, among all of the studied
indices, NNDVI and WBI/NDVI were the only two indices affected by the interaction of
water and nitrogen. Moreover, the red-edge indices had a high sensitivity to nitrogen levels,
in particular, NDRE, CIred-edge, DATT, and MTCI showed a great discrimination capability.
Therefore, the detection of crop stress may become simpler by the appropriate selection
of VIs. Since several indices did not show high sensitivity to the studied crop parameters,
it is important to bear in mind that the link between the canopy-level spectral signal and
the target property might be influenced by canopy structure factors including the plant
size, age, and leaf angle. Moreover, it must be considered that under field conditions, water
or/and nutrient deficits may be accompanied by changes in any other leaf and canopy
properties that would affect the reflectance characteristics. Thus, in future steps, more
complex experiments and comparative studies should be conducted to fully understand and
differentiate the effects of stresses on the crop parameters. Multivariate techniques, such as
partial least squares regression, and machine learning methods (random forest, multiple
adaptive regression splines) may overcome certain limitations in assessing the vegetation
parameters under different stresses, which should be investigated in future works.
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57. Sellami, M.H.; Albrizio, R.; Čolović, M.; Hamze, M.; Cantore, V.; Todorovic, M.; Piscitelli, L.; Stellacci, A.M. Selection of

Hyperspectral Vegetation Indices for Monitoring Yield and Physiological Response in Sweet Maize under Different Water and
Nitrogen Availability. Agronomy 2022, 12, 489. [CrossRef]

http://doi.org/10.1111/j.1466-8238.2009.00504.x
http://doi.org/10.1016/S0034-4257(02)00037-8
http://doi.org/10.1016/j.rse.2013.07.024
http://doi.org/10.1080/01431160310001618031
http://doi.org/10.1007/s12524-011-0094-2
http://doi.org/10.1016/j.rse.2013.07.031
http://doi.org/10.3390/app8091435
http://doi.org/10.1007/s11119-006-9011-z
http://doi.org/10.26782/jmcms.spl.4/2019.11.00003
http://doi.org/10.2135/cropsci2019.04.0227
http://doi.org/10.1080/01904167.2017.1346681
http://doi.org/10.1016/j.compag.2007.05.002
http://doi.org/10.1029/2010JD015229
http://doi.org/10.1109/JSTARS.2014.2387196
http://doi.org/10.2135/cropsci2016.06.0471
http://doi.org/10.1016/S0034-4257(00)00113-9
http://doi.org/10.2134/agronj2003.2120
http://doi.org/10.1016/S0378-4290(97)00064-6
http://doi.org/10.2134/agronj2000.92183x
http://doi.org/10.1080/00103620500250650
http://doi.org/10.1080/01431160512331337754
http://doi.org/10.1093/jxb/erx421
http://www.ncbi.nlm.nih.gov/pubmed/29309611
http://doi.org/10.33440/j.ijpaa.20200303.104
http://doi.org/10.3390/agronomy12020489


Agronomy 2022, 12, 2181 16 of 17

58. Heckmann, D.; Schlüter, U.; Weber, A.P.M. Machine learning techniques for predicting crop photosynthetic capacity from leaf
reflectance spectra. Mol. Plant 2017, 10, 878–890. [CrossRef]

59. Yendrek, C.R.; Tomaz, T.; Montes, C.M.; Cao, Y.; Morse, A.M.; Brown, P.J.; McIntyre, L.M.; Leakey, A.D.B.; Ainsworth, E.A.
High-throughput phenotyping of maize leaf physiological and biochemical traits using hyperspectral reflectance. Plant Physiol.
2017, 173, 614–626. [CrossRef]

60. Weber, V.S.; Araus, J.L.; Cairns, J.E.; Sanchez, C.; Melchinger, A.E.; Orsini, E. Prediction of grain yield using reflectance spectra of
canopy and leaves in maize plants grown under different water regimes. Field Crop Res. 2012, 128, 82–90. [CrossRef]

61. Haboudane, D.; Miller, J.R.; Pattey, E.; Zarco-Tejada, P.J.; Strachan, I.B. Hyperspectral vegetation indices and novel algorithms for
predicting green LAI of crop canopies: Modeling and validation in the context of precision agriculture. Remote Sens. Environ.
2004, 90, 337–352. [CrossRef]

62. Staff, S.S. Keys to Soil Taxonomy; United States Department of Agriculture: Washington, DC, USA, 2014.
63. Todorovic, M. An Excel-based tool for real time irrigation management at field scale. In Proceedings of the International

Symposium on Water and Land Management for Sustainable Irrigated Agriculture, Adana, Turkey, 4–8 April 2006; pp. 4–8.
64. Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration. In Guidelines for Computing Crop Water Requirements—FAO

Irrigation and Drainage Paper 56; Food and Agriculture Organization: Rome, Italy, 1998.
65. Von Caemmerer, S.; Farquhar, G. Some relationships between the biochemistry of photosynthesis and the gas exchange of leaves.

Planta 1981, 153, 376–387. [CrossRef]
66. Guyot, G.; Baret, F. Utilisation de la haute resolution spectrale pour suivre l’etat des couverts vegetaux. Spectr. Signat. Objects

Remote Sens. 1988, 287, 279.
67. Barnes, E.M.; Clarke, T.R.; Richards, S.E.; Colaizzi, P.D.; Haberland, J.; Kostrzewski, M.; Waller, P.; Choi, C.; Riley, E.; Thompson, T.

Coincident detection of crop water stress, nitrogen status and canopy density using ground based multispectral data. In Proceed-
ings of the Fifth International Conference on Precision Agriculture, Bloomington, MN, USA, 16–19 July 2000; Volume 1619.

68. Perry, E.M.; Roberts, D.A. Sensitivity of Narrow-Band and Broad-Band Indices for Assessing Nitrogen Availability and Water
Stress in an Annual Crop. Agron. J. 2008, 100, 1211–1219. [CrossRef]

69. Shiratsuchi, L.; Ferguson, R.; Shanahan, J.; Adamchuk, V.; Rundquist, D.; Marx, D.; Slater, G. Water and nitrogen effects on active
canopy sensor vegetation indices. Agron. J. 2011, 103, 1815–1826. [CrossRef]

70. Le Maire, G.; Francois, C.; Dufrêne, E. Towards universal broad leaf chlorophyll indices using PROSPECT simulated database
and hyperspectral reflectance measurements. Remote Sens. Environ. 2004, 89, 1–28. [CrossRef]

71. Peñuelas, J.; Pinol, J.; Ogaya, R.; Filella, I. Estimation of plant water concentration by the reflectance water index WI (R900/R970).
Int. J. Remote Sens. 1997, 18, 2869–2875. [CrossRef]

72. R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Aus-
tria, 2018.

73. Kim, Y.; Glenn, D.M.; Park, J.; Ngugi, H.K.; Lehman, B.L. Hyperspectral image analysis for water stress detection of apple trees.
Comput. Electron. Agric. 2011, 77, 155–160. [CrossRef]

74. Sims, D.; Gamon, J. Estimation of vegetation water content and photosynthetic tissue area from spectral reflectance: A comparison
of indices based on liquid water and chlorophyll absorption features. Remote Sens. Environ. 2003, 84, 526–537. [CrossRef]

75. Raper, T.B.; Varco, J.J. Canopy-scale wavelength and vegetative index sensitivities to cotton growth parameters and nitrogen
status. Precis. Agric. 2015, 16, 62–76. [CrossRef]

76. Carter, G.A.; Knapp, A.K. Leaf optical properties in higher plants: Linking spectral characteristics to stress and chlorophyll
concentration. Am. J. Bot. 2001, 88, 677–684. [CrossRef]

77. Garriga, M.; Retamales, J.B.; Romero-Bravo, S.; Caligari, P.D.S.; Lobos, G.A. Chlorophyll, anthocyanin, and gas exchange changes
assessed by spectroradiometry in Fragaria chiloensis under salt stress. J. Integr. Plant Biol. 2014, 56, 505–515. [CrossRef]

78. Ihuoma, S.O.; Madramootoo, C.A. Sensitivity of spectral vegetation indices for monitoring water stress in tomato plants. Comput.
Electron. Agric. 2019, 163, 104860. [CrossRef]

79. Trunda, P.; Holub, P.; Klem, K. The effect of drought and nitrogen fertilization on the production, morphometry, and spectral
characteristics of winter wheat. Glob. Chang. Complex Chall. 2015, 2015, 110.

80. Ma, L.; Chen, X.; Zhang, Q.; Lin, J.; Yin, C.; Ma, Y.; Yao, Q.; Feng, L.; Zhang, Z.; Lv, X. Estimation of Nitrogen Content Based on
the Hyperspectral Vegetation Indexes of Interannual and Multi-Temporal in Cotton. Agronomy 2022, 12, 1319. [CrossRef]

81. Vicente, R.; Vergara-Díaz, O.; Medina, S.; Chairi, F.; Kefauver, S.C.; Bort, J.; Serret, M.D.; Aparicio, N.; Araus, J.L. Durum wheat
ears perform better than the flag leaves under water stress: Gene expression and physiological evidence. Environ. Exp. Bot. 2018,
153, 271–285. [CrossRef]

82. Zhang, Y.J.; Hou, M.Y.; Xue, H.Y.; Liu, L.T.; Sun, H.C.; Li, C.D.; Dong, X.J. Photochemical reflectance index and solar-induced
fluorescence for assessing cotton photosynthesis under water-deficit stress. Biol. Plant. 2018, 62, 817–825. [CrossRef]

83. Kurbanov, R.K.; Zakharova, N.I. Application of vegetation indexes to assess the condition of crops. Agric. Mach. Technol. 2020,
14, 4. [CrossRef]

84. El-Metwalli, A.; Tyler, A. Estimation of maize properties and differentiating moisture and nitrogen deficiency stress via ground—
Based remotely sensed data. Agric. Water Manag. 2020, 242, 106413. [CrossRef]

http://doi.org/10.1016/j.molp.2017.04.009
http://doi.org/10.1104/pp.16.01447
http://doi.org/10.1016/j.fcr.2011.12.016
http://doi.org/10.1016/j.rse.2003.12.013
http://doi.org/10.1007/BF00384257
http://doi.org/10.2134/agronj2007.0306
http://doi.org/10.2134/agronj2011.0199
http://doi.org/10.1016/j.rse.2003.09.004
http://doi.org/10.1080/014311697217396
http://doi.org/10.1016/j.compag.2011.04.008
http://doi.org/10.1016/S0034-4257(02)00151-7
http://doi.org/10.1007/s11119-014-9383-4
http://doi.org/10.2307/2657068
http://doi.org/10.1111/jipb.12193
http://doi.org/10.1016/j.compag.2019.104860
http://doi.org/10.3390/agronomy12061319
http://doi.org/10.1016/j.envexpbot.2018.06.004
http://doi.org/10.1007/s10535-018-0821-4
http://doi.org/10.22314/2073-7599-2020-14-4-4-11
http://doi.org/10.1016/j.agwat.2020.106413


Agronomy 2022, 12, 2181 17 of 17

85. Lamb, D.; Steyn-Ross, M.; Schaare, P.; Hanna, M.; Silvester, W.; Steyn-Ross, A. Estimating leaf nitrogen concentration in ryegrass
(Lolium spp.) pasture using the chlorophyll red-edge: Theoretical modelling and experimental observations. Int. J. Remote Sens.
2002, 23, 3619–3648. [CrossRef]

86. Alordzinu, K.; Li, J.; Lan, Y.; Appiah, S.; Al Aasmi, A.; Wang, H.; Liao, J.; Sam-Amoah, L.; Qiao, S. Ground-Based Hyperspectral
Remote Sensing for Estimating Water Stress in Tomato Growth in Sandy Loam and Silty Loam Soils. Sensors 2021, 21, 5705.
[CrossRef]

87. Elvanidi, A.; Katsoulas, N.; Ferentinos, K.; Bartzanas, T.; Kittas, C. Hyperspectral machine vision as a tool for water stress severity
assessment in soilless tomato crop. Biosyst. Eng. 2018, 165, 25–35. [CrossRef]

88. Ihuoma, S.O.; Madramootoo, C. Narrow-band reflectance indices for mapping the combined effects of water and nitrogen stress
in field grown tomato crops. Biosyst. Eng. 2020, 192, 133–143. [CrossRef]

89. Ju, C.H.; Tian, Y.C.; Yao, X.; Cao, W.X.; Zhu, Y.; Hannaway, D. Estimating Leaf Chlorophyll Content Using Red Edge Parameters.
Pedosphere 2010, 20, 633–644. [CrossRef]

90. Zhang, C.; Dai, X.; Qin, Q.; Li, J.; Zhang, T.; Sun, Y. Spectral characteristics of copper-stressed vegetation leaves and further
understanding of the copper stress vegetation index. Int. J. Remote Sens. 2019, 40, 4473–4488. [CrossRef]

91. Blackburn, G. Quantifying Chlorophylls and Caroteniods at Leaf and Canopy Scales: An Evaluation of Some Hyperspectral
Approaches. Remote Sens. Environ. 1998, 66, 273–285. [CrossRef]

92. Marino, G.; Pallozzi, E.; Cocozza, C.; Tognetti, R.; Giovannelli, A.; Cantini, C.; Centritto, M. Assessing gas exchange, sap flow and
water relations using tree canopy spectral reflectance indices in irrigated and rainfed Olea europaea L. Environ. Exp. Bot. 2014, 99,
43–52. [CrossRef]

93. Kovar, M.; Brestic, M.; Sytar, O.; Barek, V.; Hauptvogel, P.; Zivcak, M. Evaluation of Hyperspectral Reflectance Parameters to
Assess the Leaf Water Content in Soybean. Water 2019, 443, 443. [CrossRef]

94. Fernandes, A.; Fortini, E.; Areal de Carvalho Muller, L.; Batista, D.; Vieira, L.; Oliveira Silva, P.; Amaral, C.; Poethig, R.; Otoni, W.
Leaf development stages and ontogenetic changes in passionfruit (Passiflora edulis Sims.) are detected by narrowband spectral
signal. J. Photochem. Photobiol. B. 2020, 209, 111931. [CrossRef] [PubMed]

95. Seelig, H.; Hoehn, A.; Stodieck, L.; Klaus, D.; Adams, W.W., III; Emery, W. The assessment of leaf water content using leaf
reflectance ratios in the visible, near-, and short-wave-infrared. Int. J. Remote Sens. 2008, 29, 3701–3713. [CrossRef]

96. Jackson, R.; Ezra, C. Spectral response of cotton to suddenly induced water stress. Int. J. Remote Sens. 1985, 6, 177–185. [CrossRef]
97. Moore, J.; Vicré-Gibouin, M.; Farrant, J.; Driouich, A. Adaptations of higher plant cell walls to water loss: Drought vs. desiccation.

Physiol. Plant. 2008, 134, 237–245. [CrossRef]
98. Badzmierowski, M.J.; McCall, D.S.; Evanylo, G. Using Hyperspectral and Multispectral Indices to Detect Water Stress for an

Urban Turfgrass System. Agronomy 2019, 9, 439. [CrossRef]
99. Penuelas, J.; Filella, I.; Serrano, L.; Savé, R. Cell wall elasticity and Water Index (R970 nm/R900 nm) in wheat under different

nitrogen availabilities. Int. J. Remote Sens. 1996, 17, 373–382. [CrossRef]
100. Ihuoma, S.O.; Madramootoo, C. Recent advances in crop water stress detection. Comput. Electron. Agric. 2017, 141, 267–275.

[CrossRef]
101. Wang, L.; Hunt, E.R., Jr.; Qu, J.; Hao, X.; Daughtry, C. Remote sensing of fuel moisture content from ratios of narrow-band

vegetation water and dry-matter indices. Remote Sens. Environ. 2013, 129, 103–110. [CrossRef]
102. Katsoulas, N.; Elvanidi, A.; Ferentinos, K.; Kacira, M.; Bartzanas, T.; Kittas, C. Crop reflectance monitoring as a tool for water

stress detection in greenhouses: A review. Biosyst. Eng. 2016, 151, 374. [CrossRef]
103. Claudio, H.; Cheng, Y.; Fuentes, D.; Gamon, J.; Luo, H.; Oechel, W.; Qiu, H.-L.; Rahman, F.; Sims, D. Monitoring drought effects

on vegetation water content and fluxes in chaparral with the 970 nm water band index. Remote Sens. Environ. 2006, 103, 304–311.
[CrossRef]

http://doi.org/10.1080/01431160110114529
http://doi.org/10.3390/s21175705
http://doi.org/10.1016/j.biosystemseng.2017.11.002
http://doi.org/10.1016/j.biosystemseng.2020.01.017
http://doi.org/10.1016/S1002-0160(10)60053-7
http://doi.org/10.1080/01431161.2018.1563842
http://doi.org/10.1016/S0034-4257(98)00059-5
http://doi.org/10.1016/j.envexpbot.2013.10.008
http://doi.org/10.3390/w11030443
http://doi.org/10.1016/j.jphotobiol.2020.111931
http://www.ncbi.nlm.nih.gov/pubmed/32559646
http://doi.org/10.1080/01431160701772500
http://doi.org/10.1080/01431168508948433
http://doi.org/10.1111/j.1399-3054.2008.01134.x
http://doi.org/10.3390/agronomy9080439
http://doi.org/10.1080/01431169608949012
http://doi.org/10.1016/j.compag.2017.07.026
http://doi.org/10.1016/j.rse.2012.10.027
http://doi.org/10.1016/j.biosystemseng.2016.10.003
http://doi.org/10.1016/j.rse.2005.07.015

	Introduction 
	Materials and Methods 
	Study Area and Experimental Design 
	Measurements 
	Leaf Gas Exchange 
	Leaf Chlorophyll Content 
	Relative Water Content 
	Crop Reflectance 
	Canopy Temperature 
	Leaf Area Index and Dry-Above Ground Biomass 
	Fresh Grain Yield and Irrigation Yield Water Use Efficiency 

	Statistical Analysis 

	Results 
	Crop Water Status, Yield, and Irrigation Yield Water Use Efficiency 
	Crop Reflectance and Vegetation Indices 
	Correlation between Variables 

	Discussion 
	Differentiation between Drought and Nitrogen Deficiency 
	Leaf Chlorophyll and Reflectance 
	Leaf Water and Reflectance 

	Conclusions 
	References

