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Non-reactive fraction successfully estimated past SPM inputs  

Geochemical (mixing) model results are consistent with documented past flood events 

 

1. Introduction ��

An excess of suspended particulate matter (SPM) in rivers can cause environmental and economic ��

damages (e.g., clogging spawning beds, degrading water quality or filling reservoirs; Navratil et al., ��

2012; Torres-Astorga et al., 2018). Since the 1970s, sediment fingerprinting approaches have been ��

widely used to identify the SPM sources. Most fingerprinting studies in the literature use geochemical ��

tracers, such as trace and major elements, to assess contemporary SPM inputs in rivers. However, few ��

studies have focused on historical sediment inputs over a larger time-scale using the fingerprinting ��

approach on sediment cores, which can provide retrospective information on past hydrological events 	�

(floods) or modifications of SPM fluxes, such as dam construction, bank stabilization or revegetation 
�



(Collins et al., 1997; Navratil et al., 2012). Manjoro et al. (2017) studied several methodological factors ���

related to the work on sediment cores, such as the spatial representativeness of a sediment core, the ���

number of tracers selected and the optimal number of model iterations, on model estimations of source ���

contributions. Other studies investigated the application of geochemical (Collins et al., 1997; Pulley et ���

al., 2015), colorimetric (Pulley et al., 2018), magnetic (Pulley et al., 2015) and radiometric (Pulley et ���

al., 2015) tracers for estimating source contributions of contemporary SPM in a sediment core; this was ���

done for periods ranging from a few decades to 250 yr. The main objectives of fingerprinting studies ���

applied on sediment cores are to investigate changes in SPM sources over time (Collins et al., 1997; ���

Manjoro et al., 2017). The results were interpreted by comparing estimates of the historical source �	�

contributions against information related to land-use changes (Huang et al., 2019), reservoir construction �
�

(Gateuille et al., 2019), implementation of actions to reduce soil erosion (Wang et al., 2018), or available ���

hydrological data (Navratil et al., 2012).  ���

The reconstruction of historical SPM inputs into a river generally implies measurements of tracers in ���

contemporary SPM used as source samples. However, Pulley et al. (2015) is one of the few studies that ���

reported the risk of using non-conservative tracers (e.g., changes in organic matter content, particle size ���

selectivity, geochemical and magnetic reactions along the sedimentary profile) to assess historical ���

source contributions in sediment cores. Begorre et al. (2021) recently showed that the main issue with ���

using fingerprinting approaches on sediment cores is the non-conservative behaviour of the geochemical ���

tracers (i.e., total trace and major elements) because (i) tracers undergo diagenetic processes that modify �	�

their partitioning and concentrations in sediment layers, and (ii) tracers have been largely modified since �
�

the mid-1970s, notably because of changes in anthropogenic inputs (Audry et al., 2004; Dhivert et al., ���

2016). The proposed alternative was to use the non-reactive fraction to limit the effects of non-���

conservative behaviour of the selected tracers. One advantage of this novel approach is that it increases ���

the number of conservative tracers available after passing the range test (Begorre et al., 2021).  ���

Focusing on the Rhône River, historical sediment contamination by polychlorobiphenyls and metals ���

(Mourier et al., 2014; Dendeviel et al., 2020) and contributions from contemporary sources of SPM ���

across the river catchment (Zebracki et al., 2015; Dabrin et al., 2021) have previously been documented. ���



At the scale of the Bléone River, which is a sub-catchment of the Durance River (a tributary of the ���

Rhône River), Navratil et al. (2012) reconstructed the geological sources of SPM over time via the �	�

analysis of a sediment core study using radionuclide and geochemical tracers. However, to date, no �
�

study has documented historical SPM contributions of the main Rhône River tributaries to the river ���

outlet. Zebracki et al. (2015) quantified the contributions of three main SPM sources, which included ���

tributaries grouped according to hydrological characteristics (Cévenol, Oceanic and Mediterranean ���

rivers), and used radionuclide data to show that the Durance River is the main relative contributor of ���

SPM at the outlet of the Rhône River. Interest in the study of the sources of sediments on the Rhône ���

River is based on the major sedimentary contributions of the Rhône River to the Mediterranean Sea ���

(Delile et al., 2020).�Given that fine sediments affect water quality and aquatic biodiversity (Koiter et ���

al., 2013), it is essential to identify sediment sources to reduce sediment inputs to the Mediterranean ���

Sea. Dendeviel et al. (2020) have worked on historical metal contamination along the Rhône River �	�

continuum; but, to the best of our knowledge, no studies have been published on historical sediment �
�

sources to the Mediterranean Sea. ���

In this context, the main objective of the present study was to highlight the relevance of using tracers in ���

the non-reactive fraction to retrace the historical SPM contributions of the main tributaries of the Rhône ���

River basin to its global SPM discharge to the Mediterranean Sea over the last 40 yr. This study is based ���

on the collection and analysis of a sediment core located close to the outlet of the Rhône River basin, ���

which is only connected to the main channel during major flood events, and on SPM samples collected ���

within the Rhône Sediment Observatory (OSR) monitoring network, which has been operational since ���

2012. To overcome the methodological biases resulting from changes in anthropogenic inputs and ���

diagenetic processes potentially affecting concentrations of trace and major elements in sediment cores, �	�

we applied an original fingerprinting method based on the analysis of the non-reactive fraction of �
�

elements. This fingerprinting approach was previously used by Begorre et al. (2021) on a sediment core ���

sampled on the Upper Rhône River, but the depth resolution of the sediment core was too limited to ���

investigate sediment inputs at the flood-event scale, in contrast to the sediment core collected ���

downstream of the Rhône River basin for the present study.  ���



 ���

2. Material and Methods ���

2.1. Study area: the Rhône River basin  ���

The Rhône River is one of Europe’s major rivers and the largest supplier of sediments to the ���

Mediterranean Sea, delivering an inter-annual mean of 5.5 Mt yr-1 over the 2008–2018 period (Delile et �	�

al., 2020). The basin covers an area of 95,600 km² spanning a broad diversity of geological and climatic �
�

conditions (Zebracki et al., 2015; Delile et al., 2020). Over the last 40 yr, eight major flooding events ���

were reported at the Beaucaire station close to the outlet of the Rhône River basin: in 1982 (maximum ���

water discharge, Qmax = 8025 m3 s-1), 1990 (Qmax�= 5300 m3 s-1), 1993 (Qmax�= 9800 m3 s-1), 1994 ���

(Qmax�= 11,006 m3 s-1), 1996 (Qmax�= 8981 m3 s-1), 1997 (Qmax�= 8020 m3 s-1), 2002 (Qmax�= 9700 m3 s-1) ���

and 2003 (Qmax�= 11,500 m3 s-1) (DREAL, 2011). Concentrations and fluxes of SPM and associated ���

contaminants are monitored in the Rhône River and its main tributaries under the Rhône Sediment ���

Observatory (“OSR”) program (Fig. 1). A monitoring network that has been set up and running since ���

2009 collects a large set of SPM samples and data via stations located across the entire basin (Thollet et ���

al., 2021). The study area includes eleven tributaries located upstream of the sediment core location near �	�

the Rhone River outlet (Fig. 1), i.e., the Arve, Fier, Guiers, Ain, Bourbre, Saône, Gier, Isère, Ardèche, �
�

Durance and Gardon rivers.  	��

 	��

2.2. Sampling strategy 	��

2.2.1. Suspended particulate matter source sampling 	��

The SPM samples were collected at five river stations representing the potential SPM sources to 	��

characterize geochemical signatures of sediment sources: the Middle Rhône River at the Andancette 	��

station (including inputs from seven tributaries, i.e., the Arve, Fier, Guiers, Ain, Bourbre, Saône and 	��

Gier rivers), the Isère, Ardèche, Durance and Gardon river stations (Fig. 1). The Andancette station is 	��

located on the Rhône River, upstream of its confluence with the Isère River. The other stations are 		�

located downstream of each tributary, at a few kilometres upstream from their confluence with the 	
�



Rhône River (Thollet et al., 2021). The SPM samples were collected using integrative particle traps 
��

deployed throughout the year and retrieved every month. In order to collect SPM samples during specific 
��

events, such as the Cévenol floods, event-based samplings were carried out using a continuous flow 
��

centrifuge (Westfalia KA 2-86-76) or by manually sampling large volumes of water. A more detailed 
��

description of the sampling methods can be found in Masson et al. (2018). Overall, 42 SPM samples 
��

were collected between 2011 and 2019 from five sources: the Middle Rhône River (n=11), the Isère 
��

River (n=14), the Ardèche River (n=6), the Gardon River (n=2) and the Durance River (n=9) (see Table 
��

1).  
��

2.2.2. Targeted sediment core sampling 
	�

To assess the historical SPM inputs from Rhône River tributaries, a 300-cm-long sediment master core 

�

was reconstructed by combining seven individual sediment cores collected from two holes (16 cm apart) ����

at different depths at the Mas des Tours site, which is located 54 km upstream of the Mediterranean Sea ����

(43.740000 N; 4.625194 E; Fig. 1), in May 2018 (Morereau et al., 2020). This sampling site was selected ����

because it is only connected to the Rhône River during major floods events. Core drilling was carried ����

out using a Cobra TT percussion driller equipped with a transparent 90-mm diameter PVC liner. Using ����

a XRF core scanner (ITRAX, Cox Analytical Systems, Sweden), 43 layers ranging in thickness from 2–����

15 cm were identified. Each layer was subsampled using a ceramic knife to collect several grams of ����

fresh sediment. A subsample was stored for particle size analysis. Other sediment subsamples were ����

freeze-dried, ground, and stored in plastic bags until further analysis. All information about core dating ��	�

are fully reported and discussed by Morereau et al. (2020). ���
�

 ����

2.3. Physicochemical analysis of SPM and sediment samples ����

The particle size distribution was determined on fresh SPM samples using a Cilas 1190 particle size ����

analyzer under ultrasound and sample agitation, according to ISO standard 13320 (ISO, 2009). For the ����

sediment core samples, the particle size distribution was determined on a Mastersizer 2000�� instrument ����


Malvern Panalytical, Instruments Ltd., Malvern, UK) with a small-volume wet dispersion unit. Tests ����



carried out to compare results obtained by these two instruments showed that there are no significant ����

differences between the results. ����

The analysis of geochemical properties involved the quantification of 20 trace and major elements ��	�

(metals) in the total and reactive fractions (see supplementary material “Database_Rhône_River”). As ��
�

highlighted by Dabrin et al. (2021), soft extraction using HCl has been used for many years to identify ����

metals adsorbed on the reactive fraction of SPM, which is mainly present in anthropized systems. The ����

total fraction was determined after triacid mineralization (12 M hydrochloric acid, 14 M nitric acid and ����

22 M hydrofluoric acid, respectively proportioned at 1.5 mL, 0.5 mL and 2 mL) on a heating plate. The ����

reactive fraction was obtained by soft extraction using hydrochloric acid (1 M) at room temperature ����

(Dabrin et al., 2014). The difference between the concentrations of the two fractions correspond to what ����

we call a ‘non-reactive fraction’. Further details can be found in Begorre et al. (2021). Major and trace ����

elements were analyzed in both fractions by inductively-coupled plasma optical emission spectroscopy ����

(ICP-OES, Agilent 720-ES) or triple-quadrupole inductively-coupled plasma mass spectrometry (TQ-��	�

ICP-MS, Thermo iCAP-TQ) according to their limit of quantification and concentration in the samples. ��
�

Certified reference materials (IAEA-158, marine sediment for total extraction, and LGC-6187, river ����

sediment) were analyzed in triplicates for each analytical series to control the accuracy of results. ����

Precision was lower than 11% for each element analyzed. When considering sediment samples, ����

precision of the analysis by ICP-OES was similar between the total and HCl fractions with values in the ����

range of 0.3-9.7% depending on the metal. For analysis by ICP-MS, analytical precision on triplicates ����

was lower than 7% for the total fraction against lower than 9% for the HCl fraction. In addition, blanks ����

were systematically included in the mineralization and analytical series to confirm that the samples were ����

not contaminated during the analytical process.  ����

 ��	�

2.4. Sediment core dating ��
�

Sediment core dating was performed according to the procedure detailed in Morereau et al. (2020). ����

Briefly, the sediment core could not be dated with the traditional markers such as 137Cs and 210Pbxs ����



(Appleby, 1998; Foucher et al., 2021). In fact, the Marcoule nuclear facility located along the Rhône ����

River also releases those radionuclides into the waters in proportion that diluted the contributions of the ����

watershed and masked the traditional markers (Provansal et al., 2010). For this reason, the dating of this ����

archive was carried out by modelling using the data on the releases from this facility (Morereau et al., ����

2020). Dry samples of sediment were conditioned in 17-mL or 60-mL boxes depending on the quantity ����

of sediment available and were placed in vacuum-sealed packages and stored for at least one month ����

before analysis to ensure the secular equilibrium of the 210Pb necessary to determine the concentration ��	�

of 210Pbxs (Morereau et al., 2020). Measurements of gamma emitters were performed with a germanium ��
�

detector. Dating was confirmed using additional information input, such as the chronology of past ����

flooding events. Morereau et al. (2020) showed that, because of the location of the coring site, the ����

deposited sediments mainly correspond to flood deposits. Dating of the sediment core showed that the ����

43 layers included sediments deposited from 1981 to 2017. The mean apparent sedimentation rate was ����

estimated at 7.8 cm yr-1. ����

 ����

2.5. Statistical analysis and fingerprinting procedure ����

2.5.1. Data treatment before implementation in the geochemical (mixing) model ����

Trace and major element concentrations in the total or residual (non-reactive) fraction were corrected ��	�

for differences in particle size between the SPM sources and the sediment core. The correction method ��
�

applied was the method described by Gellis and Noe (2013) and implied a particle size difference ����

between SPM from tributaries (source samples) and the sediment core (target samples). As illustrated ����

in Supplementary Information SI.1, the SPM of the Ardèche and Durance rivers had significantly ����

different D50 values (median value of the particle size distribution) than the sediment core samples. For ����

metals that correlate positively with D50 values, concentrations were corrected according to Eq. (1):  ����

Cf = Ci -[D50(S) –D50m(Sed)] x p ���� (1) 



where Cf is corrected concentration of tracer i, Ci is initial concentration of tracer i in source s, D50(S) ����

is median particle size value of source s, D50m(Sed) is average D50 value for all target sediment samples, ����

and p is slope of the regression line. ��	�

Trace and major elements integrated in the geochemical model were selected by a three-step ��
�

procedure: a range test to keep conservative metals (Eq. (2)), a Kruskal-Wallis test to remove ����

redundant elements, and a discriminant factor analysis (DFA) to determine the signature that ensures ����

optimal source discrimination. Results of this tracer selection process are reported in Table 2.  ����

[min(Cis)]mean – 0.10 × [min(Cis)]mean < Ci < [max(Cis)]mean – 0.10 × [max(Cis)]mean ����

where Cis is concentration of tracer i in source s, and Ci is concentration of tracer i in sediment core ����

layers. The concentration of tracer i in the sediment core must lie within the source range represented ����

by the minimum and maximum concentrations of tracer i in sources for which a 10% error is accepted. ����

The distribution-mixing model coupled to Monte Carlo simulation resolved Eq. (3) to estimate the ����

source contributions with their associated uncertainties from the selected tracers for each layer of the ��	�

sediment core. Uncertainties associated with the source contributions were calculated based on 95% ��
�

confidence interval and mean absolute error (MAE; Eq. 4). �	��

� � � � � � � � � 	 � �� 
 ��


 ��
���

����
���  �	��

where PS is percentage contribution from SPM tributary s, Cis is concentration of tracer i in tributary s, �	��

n is number of tributaries, and Ci is tracer concentration in the target sediment samples (Hughes et al., �	��

2009; Haddadchi et al., 2013). Note that this model is based on two conditions: the source �	��

contributions should be between 0 and 100%, and the sum of the contributions is equal to 100% �	��

(Hughes et al., 2009; Navratil et al., 2012; Collins et al., 2017). �	��

��� � � � �� � � � � � �� � � 	 � ��
�
��� 
 � �� � �

�
��� �� 
  �	��

where m is number of properties. If the MAE is greater than 0.85, then the model results are reliable. �		�

2.5.2. Statistical tests to investigate metal reactivity in the sediment cores �	
�

(2) 

(3) 

(4) 



To investigate metal reactivity in the sediment profile, a Student’s t-test or Wilcoxon test was used to �
��

compare tracer concentrations between total and non-reactive fractions of SPM, concentrations �
��

between tributaries, and concentrations of metals between top (1991–2017 period) and bottom (1981–�
��

1990 period) layers of the sediment core. The level of significance used in statistical tests was set at a �
��

p-value < 0.05.  �
��

3. Results and Discussion �
��

3.1. Reactivity of tracers in SPM and sediment core from the Rhône River basin �
��

Total and non-reactive metal concentrations in SPM for each studied tributary are reported in Fig. 2. �
��

The two layers corresponding to sediment deposited in 2014 and 2017 were removed from further �
	�

analysis because the non-reactive concentrations of 7 out of the 12 metals analyzed were below the �

�

limit of quantification, which could narrow the applicability of the fingerprinting method by ����

decreasing the number of available tracers. The study reported here therefore considers the 1981–2013 ����

period. To apply a robust fingerprinting method, it is necessary to select metals with low or moderate ����

reactivity in SPM for all tributaries and in the sediment core. To investigate the spatial (contemporary ����

SPM) and temporal (sediment core) variability in metal reactivity, we assessed metal reactivity ����

according to percentage of reactive fraction to percentage of total fraction (see Table 2). Based on ����

these percentages, we categorized the trace and major elements into three groups: low reactivity ����

(< 20%), moderate reactivity (20%–50%) and high reactivity (>50%). The percentages listed in Table ����

2 were determined from the mean percentage values of all samples for each tributary. Only two ��	�

samples were available for the Gardon River,�and so we were unable to reach a definitive conclusion ��
�

on metal reactivity for this tributary.  ����

Begorre et al. (2021) found that all groups of metals in the Upper Rhône River presented the same ����

reactivity in SPM across all the studied tributaries: Al, Cr, Ti and V displayed low reactivity, Co and ����

Ni had moderate reactivity, and Cu, Mn and Sr showed strong reactivity. Here we found a globally ����

similar pattern of results, although the SPM from the Ardèche and Durance rivers had the highest ����

reactive fractions of most metals compared to other tributaries. In addition, the reactivity group of Ba, ����



Fe and Zn varied according to the source considered, whereas Al, Co, Cr, Cu, Mn, Ni, Sr, Ti and V ����

were assigned to the same reactivity group whatever the tributary considered. For example, Ba showed ����

low reactivity in SPM at the Andancette (Middle Rhône River) and Isère river stations (18% and 19%, ��	�

respectively), whereas it was moderately reactive in the Ardèche and Durance rivers (32% and 40%, ��
�

respectively). Iron also showed spatial variability in its reactivity, with low reactivity in SPM from the ����

Isère River (19%), but moderate reactivity for SPM collected at the Andancette, Ardèche and Durance ����

rivers (30%–31%). Finally, Zn showed moderate reactivity in SPM from the Isère and Durance rivers ����

(33% and 43%, respectively), whereas it was highly reactive in SPM from the Andancette (56%) and ����

Ardèche (65%) rivers. This higher reactivity of Zn at the Andancette and Ardèche river stations could ����

be explained by Zn pollution caused by numerous anthropogenic activities, i.e., by vineyards and ����

industries along the Middle Rhône River, and by farming and old mining tailings on the Ardèche ����

River (Ollivier et al., 2011; Dendeviel et al., 2020).  ����

Metal concentrations in the sediment core displayed different temporal patterns (Fig. 3). Based on ��	�

linear regression (i.e., data not shown), total concentrations of Al, Ti, V, Mn, Ni, Co, Sr and Fe did not ��
�

show a significant trend from the deepest layers through to the top of the sediment core. In contrast, ����

Cr, Cu, Zn and Ba concentrations in the total sediment fraction decreased from 1981 to 2013 ����

(statistically significant linear regression with R²Cr=0.67 and p<0.05, R²Cu=0.65 and p<0.05, R²Zn=0.67 ����

and p<0.05, R²Ba=0.78 and p<0.05). In detail, total Cu, Zn, Cr and Ba concentrations before 1990 ����

differed significantly from concentrations measured after 1990, and they all followed a decreasing ����

trend in the total fraction from 1981 to 1990 (Fig. 3). For Cr and Ba, this temporal trend is also ����

highlighted for non-reactive concentrations, which could mean that Cr and Ba were not influenced by ����

past anthropogenic inputs. Conversely, non-reactive concentrations of Cu and Zn did not vary over ����

time and were significantly different from their total concentrations,�suggesting that only the reactive ��	�

fraction of Cu and Zn decreased over time (from 1981 to 1990), which could be explained by ��
�

historical anthropogenic inputs of reactive metals. This decrease in total Zn concentrations is ����

consistent with Zn concentrations in the sediment core (Ferrand et al., 2012) and surface sediments ����

from the National Basin Network of the French Water Agency, which highlighted a decreasing trend ����



from 1986 to 1990 (Ferrand et al., 2012). Furthermore, Dendeviel et al. (2020) highlighted (i) that Cu ����

and Zn were delivered all along the Rhône River by multiple anthropogenic activities (i.e., vineyards, ����

mining, cable production, a nuclear power plant, the Marcoule reprocessing spent fuel facility) in the ����

1980s, and (ii) that Cu and Zn concentrations decreased from 1960 to 1990. Moreover, Morereau et al. ����

(2020) reported that the Marcoule facility (on the Rhône River, just north of the Durance tributary) ����

released liquid effluents highly contaminated with Cu and Zn until 1990. Based on these observations, ��	�

we supposed that some metals are more reactive in the deepest sediment core layers (1981–1990) ��
�

compared to the more recent layers (1991–2013). We therefore scrutinized metal concentrations in the ����

sediment core separately for these two periods, i.e., 1981–1990 and 1991–2013.  ����

Concentrations of Al, Ti, V, Mn, Ni, Co, Sr, Fe, Cr and Ba measured in the non-reactive fraction co-����

evolved with the total fraction over time, whereas concentrations of Cu and Zn in the non-reactive ����

fraction remained stable along the sediment core. This means that the total concentrations of these two ����

elements may be influenced by variable anthropogenic inputs or variable reactivity, which makes them ����

unreliable for tracing historical sediment sources. This is supported by our metal reactivity study based ����

on proportions of the reactive fraction, which classified all metals except Zn into the same reactivity ����

groups whatever the sediment core layer considered. Indeed, Zn showed moderate reactivity in the ��	�

upper part of the core (50%) but was highly reactive in the deepest layers (1981–1990) of the sediment ��
�

core (63%). Begorre et al. (2021) also showed that, in a sediment core sampled in the Upper Rhône ����

River, the reactive fraction of Zn was higher before the 1990 layer (80%) compared to the more recent ����

layers (66% for the 1991–2013 period).  ����

Metal reactivity could also differ between SPM tributaries and the sediment core. Al, Co, Cr, Cu, Mn, ����

Ni, Sr, Ti and V showed the same degree of reactivity in SPM tributaries and the sediment core, which ����

is consistent with results obtained by Begorre et al. (2021) for the sediment core sampled in the Upper ����

Rhône River. However, Sr showed significant differences between the highest reactive fraction in ����

SPM from the Durance River (89%) and all other stations (~65%). The reactive fraction of Sr ����

determined in the sediment core layers was similar between the top and bottom of the core at values of ��	�

around 74–76%. These results showed that SPM from the Durance River were characterized by a ��
�



higher Sr reactivity than sediment core layers and SPM from the other tributaries. This could be ����

explained by the high carbonate contents in SPM from the Durance River because of its sedimentary ����

basin (Ollivier et al., 2011). Ollivier et al. (2011) showed that Sr is mainly associated with carbonates, ����

which represent the most reactive fraction of particles, meaning that Sr can easily be removed from ����

particles to the dissolved phase under varying physicochemical conditions. They also highlighted that ����

the Rhône River drains mainly carbonate bedrocks, which are significant sources of SPM during major ����

flood events, as in the case of the 2001 and 2002 floods (Ollivier et al., 2011). These events ����

correspond to the increase in total concentrations of Sr found, in the present study, in the recent layers ����

of the core (2001–2013) collected at the outlet of the Rhône River. Liu et al. (2013) studied changes in ��	�

concentrations of metals associated with reducible and carbonate phases in two coastal sediment cores ��
�

(Taiwan) and found that metal concentrations were correlated to the carbonate content and that Sr �	��

concentrations in the carbonate fraction were higher in the recent layers compared to the deepest �	��

layers (Liu et al., 2013). Given that Sr has a high affinity with the carbonate fraction in the Rhône �	��

River, it is consistent that total Sr concentrations were higher in the recent layers (2001–2013) of the �	��

sediment core studied here.  �	��

The reactive fraction of Ba, Fe and Zn also differed between the sediment core and SPM samples at �	��

some stations (Table 2). For example, in case of Ba, the reactive fraction measured in SPM from the �	��

Isère (19%) and Andancette (18%) stations was significantly different (p<0.05) than the reactive �	��

fraction in the sediment core (39% and 43% for the 1981–1990 and 1991–2013 periods, respectively). �		�

Conversely, the percentages of the reactive fraction of Ba in SPM from the Ardèche (32%) and �	
�

Durance (40%) rivers were similar to those found in the sediment core. As reported by Kresse et al. �
��

(2007), the erosion of sedimentary rocks constituted by Ba-enriched carbonates could explain the �
��

higher reactivity of Ba in SPM from the Ardèche and Durance rivers, in comparison to other �
��

tributaries. Furthermore, comparison of our results against those obtained for the sediment core �
��

sampled on the Upper Rhône (Begorre et al. 2021) shows that Ba reactivity increased downstream of �
��

the watershed, i.e., from 20% for the Upper Rhône to 39%–43% at downstream sites. Ba-based �
��

minerals are generally found in the non-reactive fraction of the particles, but under anoxic conditions, �
��



these minerals are dissolved and then precipitate again in the sedimentary deposits (Henkel et al., �
��

2012). This may explain, depending on the presence of such minerals, the increase in the total and �
	�

non-reactive concentrations of Ba with depth. The spatial variation in total and non-reactive Ba �

�

concentrations from the Upper Rhône (mean of 253 mg kg-1 and 203 mg kg-1, respectively) to the ����

Rhône River outlet (mean of 577 mg kg-1 and 336 mg kg-1, respectively) may be explained by a ����

missing source of dissolved Ba that precipitates under oxic conditions. Values for the reactive fraction ����

of particulate Fe were similar between the Middle Rhône (Andancette station), Ardèche and Durance ����

rivers (30–31%) and also similar to those observed in the sediment core layers deposited between ����

1991 and 2013 (32%). The SPM from the Isère River was the only exception, with a lower percent ����

reactive fraction of Fe (19%). Liu et al. (2013) highlighted that Fe is mainly associated with the oxide ����

fraction of particles. However, to validate this assumption in the case of the Rhône River, it would be ����

necessary to have information about the oxide fraction in SPM samples from each tributary. For Zn, a ��	�

high reactivity was found in SPM from the Ardèche River (65%), which is almost two-fold higher ��
�

than the lowest value measured for SPM from the Isère River (33%). This Zn reactivity in SPM of the ����

Ardèche River (65%) was similar to the Zn reactivity in the deepest layers of the sediment core (63% ����

for the 1981–1990 period). We assume that because Zn is statistically selected and used in the ����

geochemical model,�the high reactivity of Zn would introduce a bias in the contribution estimates for ����

the model based on the total fraction.  ����

Note that the metal reactivity investigation can serve to identify the most appropriate tracers for ����

reliably estimating source contributions. Owens et al. (2016) highlighted that the range test, which is ����

commonly used to remove non-conservative elements, is not fully reliable. This was explained by the ����

fact that (1) even if total concentrations of a tracer remain within the range values of the sources, they ��	�

can still evolve because of tracer reactivity and move away from initial concentrations (e.g.,�metal ��
�

precipitation in the mixing zone may lead to higher tracer concentrations), and that (2) some elements ����

were removed from the procedure because of higher concentrations from an unidentified source ����

(Owens et al., 2016). In the present study, based on the range test results, metals included in the low ����

and moderate reactivity groups (i.e., Al, Ba, Co, Cr, Fe, Ni, Ti and V) could be used to reliably trace ����



sediment sources. However, total concentrations of metals in the third (high reactivity) group (i.e., Cu, ����

Mn, Sr) are not recommended for estimating source contributions. Zn is a distinctive element as it is ����

moderately reactive at the top of the sediment core (1990–2013 period) while it is highly reactive in ����

the deeper layers (1981–1990; Table 2). ����

 ��	�

3.2. Historical reconstruction of relative contributions of SPM sources to the Rhône River  ��
�

3.2.1. Selection of tracers in the geochemical model ����

The optimal composite signature integrated in the geochemical model was selected using the range ����

test, as detailed in Section 2.5.1. The range test results (Table 3) show that four elements (i.e., Ba, Cr, ����

Cu and Ti) were excluded from this procedure for the total fraction, and that Mn, Sr and Zn, which are ����

highly reactive, were kept for further statistical tests (Kruskal-Wallis and DFA). For the non-reactive ����

fraction, only two elements (i.e., Ba and Ti) were excluded from the fingerprinting procedure. ����

Following the range test, the tracers selected by the combination of the Kruskal-Wallis test and DFA ����

were Co, Fe, V and Zn for the total fraction, and Al, Cr, Fe, Mn and Zn for the non-reactive fraction. ����

For the total fraction, the procedure statistically selected Zn to estimate the source contributions, ��	�

which could influence the reliability of the results. For the non-reactive fraction, two reactive metals ��
�

(i.e., Mn and Zn) were integrated into the geochemical model, but the estimation of source ����

contributions based on their non-reactive concentrations made it possible to overcome problems ����

associated with metal reactivity or past anthropogenic inputs. These results are in agreement with the ����

work of Begorre et al. (2021), showing that tracer selection varied between both fractions leading to a ����

larger number of available tracers for the non-reactive fraction. ����

3.2.2. Global trends in historical SPM inputs to the Mediterranean Sea  ����

Fig. 4 shows the contributions of SPM sources, expressed as percentages, estimated from tracer ����

concentrations in the total and non-reactive fractions. Overall, along the whole sediment core (1981–����

2013), the contributions modeled from the total fraction differed significantly (p� 0.05) from the ��	�



contributions estimated using the non-reactive fraction for the Durance and Isère rivers. For example, ��
�

the SPM contributions of the Durance River modeled using the total and non-reactive fractions were ����

22 ± 13% and 52 ± 18%, respectively. Given that the sediment core was collected in the Rhône River ����

downstream of the confluence with the Durance, the sediment core is probably strongly influenced by ����

SPM inputs from the Durance River (Vauclin et al., 2021).  ����

Source contributions modeled using the total fraction showed that the Isère and Ardèche rivers were ����

the main contributors to the SPM at the outlet of the Rhône watershed from 2013 to 1991 (27–175 cm ����

depth) and from 1990 to 1981 (184–300 cm depth), respectively. Contributions estimated using non-����

reactive concentrations showed that the Durance River was the main source of deposited sediments ����

over time, except in layers from 1989, 1996, 1998 and 2001 for which the main SPM inputs came ��	�

from other tributaries (Fig. 4-b). Globally, the Middle Rhône River inputs were low and relatively ��
�

stable (5.6 ± 3.1%) over time, except in the layers from 1989 (37%), 2001 (19%) and 2003 (16%). In ����

the absence of historical SPM flux data, we compared our results against results from the literature ����

(Zebracki et al., 2015; Poulier et al., 2019). Zebracki et al. (2015) used radionuclide analyses to ����

investigate contemporary sources of SPM transported to the Rhône River outlet between 2001 and ����

2011, and identified three groups of tributaries: upstream (Ain, Fier, Isère, and Saône rivers); pre-����

alpine (Durance, Drôme rivers) and Cévenol (Ardèche, Gardon rivers). The Durance River was ����

identified as the main contributor of SPM (53%), followed by the “Andancette + Isère” (35%) and ����

Cévenol rivers (11%) (Zebracki et al., 2015). The results obtained here using the non-reactive fraction ����

(52 ± 18%, 22 ± 13%, and 26 ± 16%, respectively) are therefore more consistent with the findings of ��	�

Zebracki et al. (2015) than the results obtained using the total fraction. We also compared our ��
�

estimates of source contributions against the relative SPM flux contributions calculated over the ����

2000–2016 period by Poulier et al. (2019) for the Middle Rhône (16%; Upper Rhône River + Saône), ����

Isère (25%), and Durance (24%) rivers. The major SPM contributors to the Mediterranean Sea were ����

the Isère and Durance rivers. According to these results, our estimates of SPM contributions based on ����

the total fraction are likely more accurate than those based on the non-reactive fraction for the 2000–����

2016 period. However, these results should be interpreted with caution�because Poulier et al. (2019) ����



did not include the Cévenol tributaries. The differences in conclusion between both comparisons ����

might be associated with the method applied to evaluate the contribution of SPM sources. Poulier et ����

al. (2019) used the SPM flux data calculated at each sub-watershed outlet without calculating relative ��	�

SPM proportions delivered to the Rhône River, whereas Zebracki et al. (2015) and the present study ��
�

compared geochemical signatures between SPM sources and sediment core layers.�Zebracki et al. �	��

(2015) noted the presence of a large number of dams along the Rhône River continuum, which may �	��

explain the underestimated contributions from upstream tributaries. Estimates of source contributions �	��

using geochemical models were therefore more representative of SPM inputs to the watershed outlet. �	��

Regarding result reliability, the MAE calculated for each layer of the sediment core were higher for �	��

the non-reactive fraction (average = 99.8%) than for the total fraction (average = 95.4%). Considering �	��

each layer individually, it can be observed that all MAE were higher than 85%, which means that the �	��

results are reliable except for the 2003 layer for the total fraction (MAE = 81%). �	��

3.2.3. Temporal variations in historical SPM contributions �		�

The contributions of the Andancette station estimated from total and non-reactive fractions were very �	
�

low and not significantly different in top (7 ± 3% and 8 ± 5% for the total and non-reactive fractions, �
��

respectively; p=0.88) and bottom (4 ± 3% and 7 ± 8% for the total and non-reactive fractions, �
��

respectively; p=0.07) layers of the sediment core. In contrast, the source contributions of the Isère, �
��

Ardèche, Gardon and Durance rivers varied over time (Fig. 4).  �
��

Differences in source contributions between both fractions depended on the sediment core layers. For �
��

the total concentrations, the contributions of SPM sources differed significantly between the top of �
��

the core (from 1991 to 2013) and the deepest layers (from 1981 to 1990), whereas for the non-reactive �
��

fraction, the contributions were not significantly different between both parts of the sediment core. �
��

For example, in the top of the sediment core, the contributions of the Ardèche and Gardon rivers were �
	�

similar for those estimated based on the total fraction (13 ± 6% and 14 ± 13%, respectively) and the �

�

non-reactive fraction (15 ± 5% and 13 ± 13% respectively), whereas in the deepest layers, the ����

estimated source contributions were significantly different between fractions (total fraction: 32 ± 16% ����

and 22 ± 14% for the Ardèche and Gardon rivers, respectively; non-reactive fraction: 12 ± 3% and ����



13 ± 9%, respectively). To explain these differences, a Pearson correlation test and a principal ����

component analysis (PCA) were carried out based on the tracers selected by DFA for the total (Co, ����

Fe, V, Zn) and non-reactive (Al, Cr, Fe, Mn, Zn) fractions, and results were interpreted according to ����

the geochemical model results (Fig. 5). These statistical tests showed that the contributions of the ����

Ardèche River were significantly correlated to Zn concentrations in the total fraction (p<0.05; Fig. 5-����

a). In addition, as previously demonstrated (see Section 3.1), Zn was characterized as highly reactive ��	�

in the 1981–1990 layers, meaning that it was influenced by past anthropogenic inputs (Dendeviel et ��
�

al., 2020). Consequently, the estimated increasing contributions from the Ardèche River from 1990 to ����

1981 did not reflect an increase in Ardèche River SPM inputs but instead revealed substantial historic ����

anthropogenic inputs of Zn at the global Rhône River scale, as discussed above.  ����

3.2.4. Cross-analysis of relative historical SPM contributions and past flood events ����

To discuss and confront the results of the two fingerprinting approaches, we compiled the main ����

historical flood events (DREAL, 2011), and reported them in Fig. 4-c according to each identified ����

layer of the sediment core. The discussion is presented in reverse chronological order. ����

In 2010 (42 cm depth), a flood of the Isère River with a ten-year return period, i.e., a flow exceeding ����

900 m3 s-1, was recorded, which implies higher SPM inputs from the Isère River compared to the other ��	�

tributaries. For this layer, there was no marked peak in contributions for any particular tributary in ��
�

either total or non-reactive fraction, as there was no sediment deposition from this flood event at the ����

study site. For the total fraction, the Isère River SPM contribution was 39% against only 13% for the ����

non-reactive fraction. Combining the contributions of the Middle Rhône with those of the Isère River ����

for the present study, the SPM contributions modeled using the total and non-reactive fractions were ����

45% and 17% of total SPM inputs, respectively. For the Durance River, the SPM contributions ����

modeled from the total and non-reactive fractions were 36 ± 19% and 59 ± 19%, respectively. Given ����

that the Durance River is much closer to the sediment core site than the Isère River (see Fig. 1), it is ����

possible that the flood peak of the Isère River was not observed at this time in the sediment core at the ����

Rhône River outlet because of SPM storage in the dam reservoir located downstream of the ��	�

confluence of the Isère River and the Rhône River (Zebracki et al., 2015).  ��
�



In 2003 (96 cm depth), the deposited sediments were characterized by SPM transported during an ����

extensive Mediterranean flood implying a flood on the Durance (1100 m3 s-1) and Ardèche ����

(2510 m3 s-1) rivers. Total and non-reactive fractions showed a major contribution of the Durance ����

River of 58% and 54%, respectively, which is consistent with the hydrological data illustrated in Fig. ����

4-c (DREAL, 2011) and with Zebracki et al. (2015), who estimated contributions of the Durance River ����

at between 38% and 53% during the Mediterranean floods for the 2000–2012 period. Contributions of ����

the Ardèche River were estimated at 21% and 25% for the total and non-reactive fractions, ����

respectively. These contributions could be explained by the flood event that occurred on the Ardèche ����

River and reached a water flow of 2510 m3 s-1, which is around three times higher than flood threshold ��	�

(Q = 845 m3 s-1).   ��
�

The generalized floods of 2001–2002 at the Andancette station (water flow of 4780 m3 s-1) and the ����

Isère (928 m3 s-1) and Gardon (6700 m3 s-1) rivers was identified at 102 cm depth in the sediment core. ����

The geochemical modeling results based on the total and non-reactive fractions were similar for the ����

Ardèche (7% and 8%, respectively), Durance (11% and 8%) and Gardon (37% and 43%) rivers. Based ����

on the occurrence of a generalized flood at Andancette station, the contribution obtained with the non-����

reactive concentrations (19%) was more relevant than the contribution estimated using the total ����

fraction (5%). The SPM contribution from the Isère River was estimated at 23% based on the non-����

reactive fraction. Contributions modeled for the Gardon River could only be validated based on past ����

flooding events because of the absence of hydro-sedimentary data for this period. The SPM ��	�

contributions of the Gardon River for the total and non-reactive fractions (37% and 43%, respectively) ��
�

are consistent with the reported water flow of 6700 m3 s-1, which is around six times higher than the ����

flood threshold (Q = 402 m3 s-1). Consequently, based on the SPM source contributions modeled here ����

for the Middle Rhône and Isère rivers, the non-reactive fraction appears to be more relevant than the ����

total fraction for tracing the SPM contributions of this major event. ����

The sediments deposited in 1996 (131 cm depth) reflect the SPM inputs during a Cévenol flood. ����

According to the 10-yr flood of the Ardèche River, which reached a maximum water flow of 1780 m3 ����

s-1, the estimated SPM contribution for this tributary was very small (0.5%). Results obtained for the ����



sediment core showed that, based on the total fraction, the Isère and Gardon rivers were the main SPM ����

contributors at 36% and 39%, respectively, while SPM inputs from the Durance, Ardèche and Middle ��	�

Rhône rivers were much lower (19%, 0.5% and 6%, respectively). In contrast, the modeling performed ��
�

with the non-reactive concentrations resulted in more relevant estimates than using the total ����

concentrations, with contributions of 9% from the Ardèche River and 33% from the Gardon River. ����

However, it is possible that the geochemical signatures (based on the tracers selected) of the Gardon ����

and Ardèche rivers were not clearly distinct, which would suggest that part of the SPM inputs from the ����

Ardèche River would be assimilated as inputs from the Gardon River. For this type of hydrological ����

event, Zebracki et al. (2015) estimated that the contributions were similar between the upstream ����

tributaries (31%; Andancette station, Isère), the pre-alpine tributaries (30%; Durance), and the ����

Cévenol tributaries (39%; Ardèche, Gardon). According to these results, the estimated SPM ����

contributions of the Durance River in the 1996 layer are more similar using the non-reactive fraction ��	�

(23%) than the total fraction (19%). Moreover, by combining the estimated contributions for ��
�

Andancette station and Isère River, the contribution for the non-reactive fraction (35%) was similar to ����

the value estimated by Zebracki et al. (2015) (31%), in contrast to our geochemical modeling with the ����

total concentrations (42%). ����

In 1993 and 1994 (i.e., at 142–151 cm depth), there were three extensive Mediterranean floods that led ����

to moderate floods of the Isère River and the Middle Rhône at Andancette and high water flows for the ����

southern tributaries (peaks of 2350 m3 s-1 and 4340 m3 s-1 for the Durance and Ardèche rivers, ����

respectively). Therefore, the main expected SPM contributions are probably those of the Ardèche and ����

the Durance rivers. As the only hydrological data available for the Gardon River was the occurrence of ����

a 10-yr flood in 1993 (DREAL, 2011), it was not possible to validate the SPM contribution of this ��	�

tributary. Geochemical modeling with the total fraction resulted in a major contribution from the ��
�

Durance River (45%). In contrast to expected results, the Isère River had a larger relative SPM �	��

contribution (29%) than the Ardèche River (15%). Geochemical modeling with the non-reactive �	��

fraction confirmed the Durance River as the main source of SPM (75%), followed by the Ardèche �	��

River (13%). Moreover, SPM inputs from the Isère River were lower using the non-reactive fraction �	��



(7%) than for the total fraction (29%), which once again suggests that the results obtained with the �	��

non-reactive fraction are more reliable than results obtained with the total fraction. �	��

Finally, in 1990 (184 cm depth), the Rhône was subjected to a very intense oceanic flood that �	��

particularly affected the tributaries located upstream of the city of Lyon (Upper Rhône River) with �	��

peak water flows of 4310 m3 s-1 and 1040 m3 s-1 for the Middle Rhône and Isère River, respectively. �		�

Our estimates modeled using the total fraction showed that the Isère and Gardon rivers were the main �	
�

contributors to SPM inputs at the outlet of the Rhône River basin and that the other three tributaries �
��

supplied less than 4% sediment each. In contrast, contribution estimates modeled using the non-�
��

reactive fraction were equivalent between the Isère River (37%) and the Middle Rhône (37%), which �
��

better reflects the SPM inputs of the major event studied. For this flooding event, the results modeled �
��

from the non-reactive fraction are therefore more reliable than the results obtained with the total �
��

fraction.  �
��

 �
��

4. Conclusion �
��

To overcome the non-conservative behavior of metals, we used the metal concentrations in the non-�
	�

reactive fraction of SPM/sediments on a sediment core collected at the outlet of the Rhône basin, a site �

�

for which no information on the historical SPM contributions was available. This study focused on the ����

estimation of tributary contributions over the last 40 yr using a geochemical modeling approach. We ����

demonstrated that estimations of SPM contributions were significantly influenced by past ����

anthropogenic inputs responsible for an increase in total Zn concentrations in the deepest layers of the ����

sediment core. In fact, the range test selected Zn as a conservative tracer even though it is highly ����

reactive in the deepest layers of the sediment core, which may bias the results of contribution ����

modeling based on the total fraction. Based on a comparison with the results of Zebracki et al. (2015), ����

who used radionuclide data on SPM, it is clear that the results obtained with the non-reactive fraction ����

are closer to those obtained by Zebracki et al. (2015) compared to contributions estimated using the ��	�

total fraction. Indeed, using the non-reactive fraction, we showed that the main SPM contributor over ��
�



the 1981–2013 period was the Durance River. Moreover, the detailed study of major past flooding ����

events showed that our estimates of tributary SPM contributions were more reliable and consistent ����

when the non-reactive metal concentrations were used, especially to trace SPM sources in the deepest ����

layers of the sediment core. Therefore, when concentrations of a geochemical element are influenced ����

by anthropogenic inputs, as for investigations relative to historical SPM inputs, it is more relevant to ����

use the non-reactive fraction rather than the total fraction. This study demonstrated that our original ����

fingerprinting method based on the non-reactive fraction of metals in SPM/sediment is a robust tool ����

for estimating source contributions in a sediment core, as it removed the influence of past ����

anthropogenic inputs on tracer concentrations. Furthermore, this fingerprinting approach made it ��	�

possible, for the first time in the Rhône River basin, to reconstruct the historical contributions of the ��
�

main tributaries during major flooding events. It would now be instructive to apply this method to ����

SPM/sediments in coastal environments or those affected by significant past anthropogenic inputs ����

(e.g., rivers influenced by mining activities). ����

Thus, this fingerprinting method using the residual fraction at the Rhône River basin scale allows to: ����

- Increase the number of available tracers after the range test of SPM sources, as demonstrated by ����

Begorre et al. (2021),  ����

- Remove the influence of past anthropogenic inputs of metals such as Zn,  ����

- Provide results that are more relevant when comparing with available hydrological and ����

sedimentary data, ��	�

- Provide information on the major sources of sediments that are exported into the Mediterranean ��
�

Sea that could impact its ecosystems. ����

In terms of recommendations for future studies, as presented by Begorre et al. (2021), the use of total ����

metal concentrations, especially when they are highly reactive, is problematic. Indeed, source ����

fingerprinting using total concentrations of metals must be applied only for metals with low reactivity ����

to improve estimation of SPM source contributions. Therefore, before applying source fingerprinting in ����

a river basin, it is necessary to investigate metal reactivity to avoid the use of high-reactive metals. ����



Finally, we highly recommend using tracers in the non-reactive fraction when sources and target samples ����

were not sampled at the same period (e.g., with a difference of more than 5 or 10 yr). ����
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