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Bienvenu Sambou g 

a Centre de Suivi Ecologique, Dakar, Senegal 
b CIRAD, UPR AIDA, Dakar, Senegal 
c AIDA, Univ. Montpellier, CIRAD, Montpellier, France 
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A B S T R A C T   

Around the world, SDMs have been widely used to support forest management planning and biodiversity con
servation. Beyond the prediction of species distribution provided by the SDMs, this study aimed to analyze the 
spatial distribution of tree species diversity using SDMs. The study area is a Faidherbia albida parkland in Central 
Senegal. It is characterized by a tree-based farming system dominated by Faidherbia albida. 

Using a robust and representative dataset of 9258 tree species occurrence, we first determined by an SDM the 
current potential spatial distribution of the 16 main tree species forming the parkland. Specifically, using 6 SDM 
algorithms and applying several modeling techniques with different categories of predictor variables (e.g., 
climate, topography, soil properties and human impact) we benchmarked 576 SDMs to achieve best model 
predictions for tree species. Then, tree species diversity maps were created on the basis of the resulting SDM 
predictions. Finally, the spatial dynamics of tree species diversity were discussed in relation to landscape 
characteristics, including heterogeneity, composition and human impact. 

The results showed that there is no single ‘best’ SDM algorithm (among the 6 algorithms tested) or modeling 
approach for all species. Benchmarking several modeling techniques allowed strengthening SDM performance, 
achieving AUC values that ranged from 0.64 (intermediate accuracy) to 0.87 (very good accuracy). The spatial 
dynamics of tree species diversity is related to the landscape heterogeneity and composition. In the Sahelian 
agroforestry systems (AFS), tree diversity is sustained by anthropization. A significant negative correlation with 
the distance to the village was found, i.e. the closer you get to the village, the greater the diversity of trees. 

This study could be crucial for analyzing tree species diversity when abundance information is not available.   

1. Introduction 

Trees are an integral part of African smallholder family farming 
systems with a close relationship between tree species and smallholder 
livelihoods and resilience to future changes (e.g. Bayu, 2019; Rosenstock 
et al., 2019). In Sahelian agroforestry systems (AFS), the configuration 
of the parkland, both in its composition and structure, is shaped by the 
socioeconomic practices of farmers and local populations. Tree species 
are selected for their usefulness, either in terms of agroforestry proper
ties or in terms of food, phytomedicine or revenue sources, among others 

(Sambou et al., 2017; Bayala et al., 2014; Michon and De Foresta, 1999). 
The rich biodiversity of agroforestry parklands makes them ecologically 
resilient with increasingly better ecological and socioeconomic func
tions (Achiso & Masebo, 2019; Bucheli & Bokelmann, 2017). 

Understanding the spatial distribution of tree species is crucial for 
achieving successful conservation of parkland biodiversity and pre
dicting responses to environmental and climatic changes (Cabello et al., 
2012). Thus, an up-to-date and accurate spatial description of parkland 
tree diversity is critical for designing and implementing management 
strategies to improve agroforestry system productivity for food security 
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and sustainable development (Chen et al., 2018). The exhaustive in
ventory of trees remains the most robust method for monitoring tree 
diversity, but it is difficult to implement at a large landscape scale. 
Because of their spatial completeness and long time series, remote 
sensing and derived proxies of landscape ecology represent useful data 
sources for mapping tree species (Fassnacht et al., 2016) and biodiver
sity characterization (e.g., Geller et al., 2017) at the landscape scale. In 
particular, multispectral and hyperspectral images with very high 
spatial resolution (<2 m) have been used for mapping trees (e.g., Brandt 
et al., 2020) and tree species (e.g., Hycza et al., 2018; Karlson et al., 
2016; Lelong et al., 2020; Pu and Landry, 2012). However, due to 
spectral similarity between tree species, the existing very high spatial 
resolution images do not yet allow for complete identification and 
mapping of tree species in complex landscapes, such as the Sahelian 
agroforestry parklands (Lelong et al., 2020). 

In this context, species distribution models (SDMs) therefore remain 
valuable tools enabling tree species mapping and monitoring (Falk and 
Mellert, 2011; Vila-Viçosa et al., 2020). Around the world, SDMs have 
been widely used to support forest management planning (Pecchi et al., 
2019) and biodiversity conservation, e.g., in protected areas (Rahman 
et al., 2019; Swan et al., 2021). SDMs combine information collected on 
species locations and environmental conditions to infer habitat suit
ability to predict species distributions (Elith & Leathwick, 2009; 
Franklin, 2010). However, SDM performance can vary significantly 
because of several factors related to modeling components or ap
proaches (Angelov, 2018; Bucklin et al., 2015; Khatchikian et al., 2011; 
Senay and Worner, 2019). 

First, the predictors or environmental variables used in SDMs may be 
derived from different sources (Araújo et al., 2019). Early studies of 
species distributions used only climatic variables as predictors (Huntley 
et al., 1995; Sykes et al., 1996). Subsequently, several studies have 
shown that combining different types of variables, e.g., including 
satellite-derived climatic variables with nonclimatic variables (land 
cover, topography, phenology, etc.) can improve SDM performance (e. 
g., Austin and Van Niel, 2011; Burns et al., 2020; Fournier et al., 2017; 
Suárez-Seoane et al., 2004; Vila-Viçosa et al., 2020). Currently, envi
ronmental variables used in SDMs are related to climate, topography, 
substrate, land cover and vegetation, phenology, measures of landscape 
patterns, and information about other species (biotic interactions), 
among others (Amiri et al., 2020; Austin and Van Niel, 2011; Burns 
et al., 2020; Fournier et al., 2017; Gardner et al., 2019; Nguyen et al., 
2015; Vila-Viçosa et al., 2020). 

Second, there are various methods for selecting relevant environ
mental variables used as predictors in ecological modeling (Lin and 
Chiu, 2020). Pradhan (2016) showed the importance of taking into ac
count the correlation between variables to minimize collinearity, with a 
risk of missing out on very important variables. Some authors first 
performed ecological niche factor analysis (ENFA) to identify the best 
variables that define species ecological niches and then used these 
variables to predict species distributions (Ciss et al., 2019). 

Third, in the last two decades, many SDM approaches have been 
developed (Elith et al., 2006; Guisan et al., 2007; Norberg et al., 2019). 
The increasing number and complexity of modeling techniques (Hegel 
et al., 2010) challenge the choice of the best approach to make pre
dictions for a given occurrence (Merow et al., 2014). Based on studies 
that have compared different SDM methods and performance (Elith and 
Graham, 2009; Elith et al., 2006; Norberg et al., 2019; Segurado and 
Araújo, 2004), it appears that there is no “best” SDM algorithm or 
approach that is relevant in all circumstances. It has therefore been 
suggested to test a suite of algorithms and modeling techniques for 
benchmarking their predictive ability under the particular circum
stances of a study (Norberg et al., 2019; Qiao et al., 2015). 

Species distribution models (SDMs) are generally used to explain and 
predict species ranges and environmental niches. However, computing 
species diversity indices to assess tree species diversity from SDM pre
dictions is still challenging. Some studies have reported the use of SDMs 

to appreciate the spatial distribution of species richness (Kwon et al., 
2018; Luo et al., 2020; Vila-Viçosa et al., 2020). But for diversity indices 
such as Shannon’s and Simpson’s, which are commonly used to assess 
species diversity, it is important to infer species abundances from the 
SDM predictions for their computation. Some studies investigated the 
suitability of deriving species abundance estimates from SDM pre
dictions, i.e., the relationship between species abundance and habitat 
suitability. The reported results are not clear-cut and would depend on 
the study species or the used variables to define habitat suitability 
(Dallas & Hastings, 2018; Gutiérrez et al., 2013; Martin & Canham, 
2020; Van Couwenberghe et al., 2013; VanDerWal et al., 2009; Young & 
Carr, 2015). Using only climate variables, authors found the relationship 
to be weak and not significant (Dallas & Hastings, 2018; Martin & 
Canham, 2020). In contrast, a significant relationship was found in 
studies with more assorting environmental variables integrating cli
matic and non-climatic variables(Gutiérrez et al., 2013; Van Cou
wenberghe et al., 2013; VanDerWal et al., 2009; Young & Carr, 2015). 

Conducted in a Faidherbia albida parkland in Central Senegal, the 
main objective of this paper was to analyze the spatial distribution of 
tree species diversity using SDMs. Specifically, the purpose was to derive 
tree diversity indices from SDM predictions and then to analyse their 
spatial dynamics. This is original considering that applications of SDM 
methods are generally limited to explain and predict species ranges and 
environmental niches. In other words, this study proposes an approach 
that goes beyond simple predictions of species distribution to calculate 
diversity indices to analyze tree species diversity. This is especially 
innovative in agroforestry parklands in Senegal for which we are not 
even aware of work conducted using SDMs. 

To achieve our goal, we proceed in 3 steps. (i) First, the probabilities 
of occurrence of the main tree species forming the Faidherbia albida 
parkland were predicted using SDMs. Several SDM techniques are 
benchmarked to improve the SDM predictions. (ii) Then, tree diversity 
indices were derived from the predicted probabilities of occurrence of 
tree species. This allowed tree diversity mapping (iii) Finally, the spatial 
dynamics of tree species diversity were discussed in relation to land
scape characteristics, including heterogeneity, composition and human 
impact. 

2. Materials and methods 

2.1. Study area 

The study area is located in the Senegalese Peanut Basin, covering 20 
× 20 km around Ngayokheme village (Fatick region – Fig. 1). It is a 
Sahelian agroforestry parkland dominated by Faidherbia albida, which is 
a nitrogen-fixing species with an inverted phenology. Faidherbia albida is 
known to increase soil fertility and crop yields in farm fields. The region 
is characterized by rainfed agriculture, with millet and groundnut being 
the main staple and cash crops, respectively. The climate is semiarid. 
The average annual rainfall is around 500 mm during the recent period 
1985–2015, with a strong interannual variability (Lalou et al., 2019). 
The rainy season lasts from July to October. Soils can generally be 
classified into two main types: sandy ‘dior’ soils mainly located in flat 
and dune areas and more clayish ‘deck’ soils mainly located in lowland 
and interdune areas, with intermediate categories (deck-dior - Ler
icollais, 1999). With almost 60 % of the country’s rural population, the 
Senegalese Peanut Basin is facing strong demographic pressure (Bigne
bat & Sakho-Jimbira, 2013). 

2.2. Data 

2.2.1. Tree species occurrence data 
A field campaign for tree species data collection was carried out in 

May 2018. To prevent the sampling bias frequently found in species 
occurrence records, we used an optimized sampling strategy based on 
landscape heterogeneity classification (see Ndao et al., 2021 for more 
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details). It is a weighted stratified sampling of 213 observation sites 
distributed according to a landscape heterogeneity gradient. At each 
site, an exhaustive inventory of the trees in a 1 ha plot was carried out. In 
addition, extra species (not present in the plot) observed within a radius 
of 400 m were included to increase the odds of recording all species in 
the area. Individual tree location and species were recorded with a 
Garmin GSMAP 64 GPS device. Due to a GPS-reported accuracy of 3 m, 
the location of each individual tree was then adjusted by photointer
pretation using Pleiades images (0.5 m spatial resolution). In all, a 
dataset of 9258 georeferenced trees encompassing 63 different species 
was collected. Abundance analysis of the species in the dataset showed 
the existence of many relatively rare species, each representing<1 % of 
the population (Ndao et al., 2021). 

The entire database of 9258 georeferenced trees was used. But, as 
most SDM methods are sensitive to the sample size (Stockwell and 
Peterson, 2002; Wisz et al., 2008), we only modeled species with>100 
individuals recorded. These are the 16 majority species whose numbers 
constitute 94 % of the surveyed population (the database). For each 
species, the presences correspond to the occurrences, i.e. the locations 
where the species was recorded. The absences are the other locations 
where the species has not been recorded, i.e. all locations of the tree 
species that are different from the considered one (Table 1). 

2.2.2. Predictor variables 
Different types of environmental variables derived from various 

sources of geospatial data and remote sensing methods were used as 
predictor variables. These are a suite of 36 variables related to (i) 
climate, (ii) soil properties, (iii) human impact, (iv) vegetation 
phenology and productivity, and (v) watershed topography. We pre
processed the environmental variables by setting them on the same 
projection system (WGS 84, UTM, Zone 28 N), cropping them to the 
same extent and resampling them at the same spatial resolution (250 m) 
using the nearest neighbor resampling approach. 

2.2.2.1. Climatic data. Bioclim variables are widely used as predictors 
in plant species distribution modeling studies (Gardner et al., 2019). The 
climatic variables used in this study correspond to the standard list of 19 
“Bioclim” variables extracted from the WorldClim database version 2 
(http://www.worldclim.com/). The 19 “Bioclim” variables represent 
the average conditions of temperature and rainfall for the years 
1970–2000. As more biologically meaningful variables, they represent 
annual trends (e.g., mean annual temperature and annual precipitation), 
seasonality (e.g., annual range in temperature and precipitation) and 
extreme or limiting climatic factors (e.g., temperature of the coldest and 
warmest month, and precipitation of the wet and dry quarters – 1/4 of 

Fig. 1. Location (green square) and land use/land cover map (from Ndao et al., 2021) of the study area in the Senegalese Peanut Basin. The names on the map are the 
municipality names. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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the year) (Fick and Hijmans, 2017). 

2.2.2.2. Soil property data. Soil properties are one of the most important 
factors controlling the growth, distribution and abundance of tree spe
cies (Ben-Shahar, 1991; Freycon et al., 2003; Nguyen et al., 2015). Soil 
property data were obtained from the recently released AfSoilGrids 
database (Hengl et al., 2015, Hengl et al., 2017). AfSoilGrids products 
are generated using machine learning algorithms with soil samples 
from>500,000 sites covering the period 1950–2012 and a set of soil 
covariables used as proxies for soil-forming processes (landform, vege
tation, lithology and climate). Seven soil properties in the topsoil (0–30 
cm) were considered in this study, namely, soil texture fraction clay, 
organic carbon, soil texture fraction silt, soil pH in H2O, total nitrogen, 
soil texture fraction sand and total phosphorus. 

2.2.2.3. Topographic data. Closed relationships between topographic 
characteristics and the presence and abundance of tree species have 
been well demonstrated (Nguyen et al., 2015). In this study, topographic 
variables were derived from the 30 m NASA Shuttle Radar Topography 
Mission (SRTM) digital elevation model (https://dwtkns. 
com/srtm30m/) using the Soil and Water Assessment Tool (SWAT, 
https://swat.tamu.edu/). SWAT was used to delineate the sub
watersheds within the study area (Winchell et al., 2010). A total of 69 
subbasins were extracted in a vector file format, with their attribute 
table composed of 7 topographic variables: subbasin slope, subbasin 
tributary reach slope, field slope length, longest path within the sub
basin, elevation of the subbasin centroid, subbasin tributary reach width 
and subbasin tributary reach depth. See (Table 2). 

2.2.2.4. Phenological data.. The phenology of vegetation is affected by 
environmental factors such as precipitation, temperature or latitude 
(Han et al., 2020). Sometimes, as an adaptive trait, phenology may be a 
proxy for species distribution (Chuine, 2010). Two phenological metrics 
were used in this study, namely, the start of the growing season (SOS) 
and the small integral (SINT), i.e., the normalized difference vegetation 
index (NDVI) integral between the start and the end of the growing 

season. The mean SOS and SINT over the 2000–2018 period were 
derived from the 16-day MODIS NDVI time series (MOD13Q1 product) 
using Timesat software (Eklundh and Jönsson, 2011). 

2.2.2.5. Human impact data. In addition to biophysical drivers, farmers 
play a key role in the selection and preservation of trees in parklands, 
depending on the socioecosystem services they provide (Sambou et al., 
2017). To account for the potential human impact on the distribution of 

Table 1 
List of the main tree species forming the F. albida parkland (each species 
has>100 individuals recorded; >1% of the surveyed population). For example, 
the presence of Acacia seyal was recorded 107 times in the database of 9258 
georeferenced trees. The remaining 9151 records (i.e. 9258–107) consisting of 
species different from Acacia seyal represent its absences.  

Species Presence (Number 
of trees) 

% Presence in the 
database 

Absence 
(Number of 
trees) 

Acacia seyal 107 1 % 9151 
Prosopis juliflora 107 1 % 9151 
Celtis integrifolia 148 2 % 9110 
Tamarindus indica 152 2 % 9106 
Sclerocarya birrea 153 2 % 9105 
Bauhinia rufescens 215 2 % 9043 
Ziziphus 

mauritiana 
215 2 % 9043 

Piliostigma 
reticulatum 

225 2 % 9033 

Borassus 
aethiopium 

248 3 % 9010 

Azadirachta indica 272 3 % 8986 
Diospiros 

mespiliformis 
272 3 % 8986 

Acacia nilotica 357 4 % 8901 
Adansonia digitata 573 6 % 8685 
Anogeissus 

leiocarpus 
810 9 % 8448 

Balanites 
aegyptiaca 

1017 11 % 8241 

Faidherbia albida 3872 42 % 5386 
Others (<1%) 515 6 % 8743  

Table 2 
List of the variables tested to model the species distribution. The codes used in 
the modeling process, the units and the spatial resolution (SR) are provided.  

Category of 
variables 

Variables Codes Units SR 

Climatic Annual Mean Temperature Bio1 ◦C 1 km 
Mean Diurnal Range (Mean of 
monthly (max temp - min 
temp)) 

Bio2 ◦C 1 km 

Isothermality (Bio2/Bio7) 
(×100) 

Bio3  1 km 

Temperature Seasonality 
(Stand. Dev. × 100) 

Bio4 ◦C 1 km 

Max Temperature of Warmest 
Month 

Bio5 ◦C 1 km 

Min Temperature of Coldest 
Month 

Bio6 ◦C 1 km 

Temperature Annual Range 
(Bio5-Bio6) 

Bio7 ◦C 1 km 

Mean Temperature of Wettest 
Quarter 

Bio8 ◦C 1 km 

Mean Temperature of Driest 
Quarter 

Bio9 ◦C 1 km 

Mean Temperature of Warmest 
Quarter 

Bio10 ◦C 1 km 

Mean Temperature of Coldest 
Quarter 

Bio11 ◦C 1 km 

Annual Precipitation Bio12 mm 1 km 
Precipitation of Wettest Month Bio13 mm 1 km 
Precipitation of Driest Month Bio14 mm 1 km 
Precipitation Seasonality 
(Coefficient of Variation) 

Bio15  1 km 

Precipitation of Wettest Quarter Bio16 mm 1 km 
Precipitation of Driest Quarter Bio17 mm 1 km 
Precipitation of Warmest 
Quarter 

Bio18 mm 1 km 

Precipitation of Coldest Quarter Bio19 mm 1 km 
Soil properties Soil texture fraction clay CLYPPT g/ 

100 g 
250 
m 

Organic carbon ORCDRC g/kg 250 
m 

Soil texture fraction silt SLTPPT g/ 
100 g 

250 
m 

Soil pH in H2O PHIHOX  250 
m 

Total nitrogen NTO g/kg 250 
m 

Soil texture fraction sand SNDPPT g/ 
100 

250 
m 

Total phosphorus P mg/ 
kg 

250 
m  

Topographic 
Subbasin slope slo [%] 30 m 
Subbasin tributary reach slope Csl [%] 30 m 
Field slope length sll m 30 m 
Longest path within the 
subbasin 

Len1 m 30 m 

Elevation of the subbasin 
centroid 

Elev m 30 m 

Subbasin tributary reach width wid1 m 30 m 
Subbasin tributary reach depth dep1 m 30 m 

Phenological 
metrics 

Start of the Season SOS  250 
m 

Small Integral (NDVI integral 
between the start and the end of 
the season) 

SINT  250 
m 

Human impact Distance to the village DTV km 250 
m  
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tree species, a distance-to-village variable was derived from the village 
location provided by Open Street Map (https://www.openstreetmap. 
org/). To do so, the Euclidean distance between each element of a 
grid with 250 m cells and the nearest village was computed. 

2.3. Method 

2.3.1. Selection of determining variables of the species spatial distribution 
Making a subjective choice or inappropriate selection may reduce 

prediction accuracy (Lecours et al., 2016). The environmental variables 
relevant for each species were thus selected by performing ecological 
niche factor analysis (ENFA; Basille et al., 2008; Hirzel et al., 2002). To 
this end, we used the R CENFA package (Rinnan, 2020), which allows 
ENFA to be performed and the results to be visualized via a biplot. The 
environmental variables are represented by arrows in the biplot. The 
length of the arrow is proportionate to the contribution of a given 
environmental variable to the definition of the axes of the ENFA (Basille 
et al., 2008). The longest arrows represent the critical variables in terms 
of habitat selection (Basille et al., 2008; Costa et al., 2016). As reported 
by Basille et al. (2008), “The ENFA is a factorial analysis that extracts one 
axis of marginality and several axes of specialization. The marginality 
identifies the preference of the individual, population or species for specific 
conditions of the environment, among the whole set of possibilities. The 
specialization appears as a consequence of the narrowness of the niche on 
some environmental variables”. An illustration of the ENFA biplot for 
F. albida is provided in Fig. 2. 

2.3.2. SDM benchmarking for best prediction performance 
SDM benchmarking consisted of selecting the best combination of 

models, cross-validation approaches, and variable data sets to predict 
the probability of the presence of a given species. After selecting the 
most relevant variables for each species using ENFA, different types of 
models were tested to identify the best model: profile models (Domain 
and Bioclim), regression models (GLMs), and machine learning models 
(random forest, SVM and MaxEnt). 

Two approaches of cross-validation (cv) were applied: a random k- 
fold cv and a k-fold blocked cv, both with 5 folds (i.e., 80 % of the data 
were used for model fitting, and 20 % were used for model testing). 
Cross-validation consists of partitioning the data into k parts (folds) and 
then iteratively using one part for testing and the remaining part (k -1- 
fold) for model fitting until all folds have been used for testing. If the 
data partitioning is done randomly, it is called random k-fold cv. When 
the data are first stratified into blocks taking into account environ
mental, temporal or spatial factors and then the folds are constructed 
based on these blocks, this is called k-fold blocked cv. The blocking 
technique is used to account for spatial autocorrelation (Roberts et al., 
2017; Valavi et al., 2019). Spatial blocking was computed using the R 
BlockCV package (Valavi et al., 2019), which splits the data into units of 
geographic area (blocks) grouped with similar characteristics while 
accounting for spatial autocorrelation. Within a given unit, all species 
data are treated together and allocated to the same fold of cv as training 
or testing data. Several blocks could be allocated to one cv fold. For 
instance, in Fig. 3, the spatial blocking of the occurrence data of F. albida 
generated 29 blocks for model fitting and 7 blocks for testing. 

Both approaches of cross-validation were performed first using only 
climatic variables and then integrating climatic and nonclimatic vari
ables, including and not including variables of human impact. To sum
marize, for each of the 16 main species, we calculated 36 SDMs 
combining six models (Domain, Bioclim, GLM, random forest, SVM and 
MaxEnt), two cross-validation approaches (random k-fold and k-fold 
blocked), and three different variable sets (only climatic variables, cli
matic and nonclimatic variables without human impact variables, and 
climatic and nonclimatic variables including human impact variables), 
leading to a total number of 576 SDMs for benchmarking. 

The area under the ROC curve (AUC; Yang and Berdine, 2017) was 
used to assess prediction errors and to compare the models’ perfor
mance. The AUC is commonly used as a measure of model performance 
in SDMs (Fielding and Bell, 1997; van Proosdij et al., 2016). 

As a result of the benchmark analysis, the best model and modeling 
approach (regarding the AUC values) obtained for each studied species 

Fig. 2. Illustration of ENFA for F. albida, the most abundant species in the studied parkland. Marginality is represented on the X-axis, and the first specialization axis 
is represented on the Y-axis. The white area represents the multivariate environmental space available in the study area. The darker gray area represents the 
species niche. 
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was used to predict and map the species probability of presence. 

2.3.3. Tree species diversity mapping 
The compilation of all predicted species distribution maps allowed us 

to derive the species richness index from the sum of presence of all 
species at pixel scale (250 m × 250 m) then carry out the species richness 
map. Indeed, the maps of the species probability of presence constitute a 
prediction of the presence of species and can therefore be expressed as a 
binary map with pixels where the species is present and pixels where the 
species is absent. Thus, the superposition of all the presence/absence 
maps of the different species allowed us to have at each pixel the number 
of species present by summing up the presences: this is the species 
richness index. 

Then, we hypothesized that by considering assorting environmental 
variables of different categories we have, as reported by Van Cou
wenberghe et al. (2013), a significant relationship between the relative 
abundance of tree species and their environmental conditions. Indeed, it 
is well known that the presence and development of a given species are 
closely related to environmental conditions. The more favorable the 
environmental conditions are for a given species, the better its devel
opment will be. On this basis, since SDM predictions are driven by 
environmental variables, we hypothesized that between two species, if 
the probability of presence from the SDM is higher for one species, the 
environmental conditions are more favorable for it. Subsequently, 
assuming a significant correlation between tree species abundance and 
their environmental conditions (Van Couwenberghe et al., 2013), will 
allow to hypothesize that “the higher the probability of presence of a 
species, the greater its abundance relative to other species”. Based on 
this hypothesis, the probabilities of species presence predicted by the 
SDMs were translated into relative abundances of species. The latter 
were used to calculate the Shannon’s diversity index (SHDI; Shannon, 
1948), Simpson’s diversity index (SIDI; Simpson, 1949) and Pielou’s 
evenness index (Pielou, 1966). 

2.3.4. Tree species diversity analysis 
After the diversity indices mapping, the potential human impact on 

tree diversity was investigated using a nonparametric Kruskal-Wallis 
one-way analysis of variance to compare tree diversity indices among 
different distance-to-village (DTV) classes. Using a k-means clustering 
method, five DTV classes were defined. Focused principal component 
analysis (FPCA) was also used to complete the explanatory analysis. In 
addition, landscape heterogeneity analysis in the same study area of 

Ndao et al. (2021) was used to further discuss and appreciate the spatial 
dynamics of species diversity. 

3. Results 

3.1. Analysis of the determining variables of the species spatial 
distribution 

The most relevant predictors of each of the main species are identi
fied through ecological niche factor analysis (ENFA). Fig. 4 shows the 
number and types of variables selected as predictors for each species. 
The detailed list with the names of the variables selected per species is 
presented in the appendix as supplementary data (Table S1). 

The climatic variables related to temperature variability are relevant 
for all species. The climatic variables related to rainfall and its temporal 
distribution are also relevant for several species (13 species out of 16), as 
well as the variables related to the physical properties of the soil (14 
species) and to topography (11 species). The phenological metrics are 
less relevant (3 species). 

Depending on the species considered, the type of variables and 
number of relevant variables may be very different. For example, all 
types of variables are relevant for A. digitata, whereas only 3 types of 
variables are retained for A. nilotica or F. albida. Similarly, for 
B. rufescens, a total of 19 variables are relevant, while only 8 are retained 
for F. albida. It is also interesting to note that for 8 species, namely, 
B. aegyptiaca, A. digitata, A. indica, D. mespiliformis, B. aethiopum, S. 
birrea, T. indica, and C. integrifolia, the distance to the village contributes 
significantly to the definition of their ecological niches, indicating that 
these species are sensitive to the anthropization of their environment. 

3.2. Modeling the spatial distribution of tree species 

3.2.1. Benchmarking of modeling approaches 
Figs. 5 and 6 present the comparison of the predictive model per

formances according to the type of variables (climatic variables, non
climatic variables, human impact variable) and the cross-validation 
modeling approaches (random k-fold cv vs k-fold blocked cv), 
respectively. 

Generally, the MaxEnt model provided the best performance (Fig. 5 
and Fig. 6). In addition, Bioclim and Domain models could provide good 
prediction performances depending on the species of interest (Fig. 5 and 
Fig. 6). However, it should be noted that these three models predicted 

Fig. 3. Spatial blocking of the occurrence data of F. albida. Blue dots represent records of F. albida (i.e., presence of F. albida) selected for the training set and testing 
set. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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the different species in very different ways (high variability of AUC). 
Depending on the model, for some species, they provided very good 
performance (AUC > 0.7), while for others, the performance was low to 
poor (AUC < 0.6). On the other hand, the GLM, random forest and SVM 
models yielded very poor to mediocre performance, although they were 
more consistent in prediction (all species predicted in almost the same 
way – low variability of AUC). 

Overall, Fig. 5 shows that integrating nonclimatic variables in 
addition to climatic variables does not systematically and significantly 
improve the performance of the SDMs. Additionally, taking into account 
the anthropization of the environment does not always improve the 
performance of the models. Fig. 6 shows that dealing with spatial 
autocorrelation by choosing folds with spatial blocking in cross- 
validation tends to decrease model performance. 

3.2.2. Using the best SDM for predicting a given species 
Table 3 presents for each species the best modeling approach (model, 

cross-validation approach and sets of variables) selected from the SDM 
benchmarking on AUC criteria. It was used to predict the spatial dis
tribution of species. 

Two species were predicted with intermediate performance (AUC >
0.60), eleven with good performance (AUC > 0.70), and three with very 
good performance (AUC > 0.80). For most species, integrating non
climatic variables allowed us to achieve the best performance of the 
model. The best performances were achieved with the three model types 
previously identified as high performers, namely, MaxEnt, Bioclim and 
Domain models. For most species, the MaxEnt model performed the best 
prediction with the k-fold blocked cv approach. 

We used the 16 best SDMs obtained to predict the probability of 
presence for each of the main species. From these predictions, we 
derived the four tree species diversity indices: Species richness, Shan
non’s diversity index (SHDI), Simpson’s diversity index (SIDI) and Pie
lou’s evenness index. 

3.3. Tree species diversity index mapping 

Fig. 7 presents the maps of the tree species diversity indices, namely, 
Species richness, Shannon’s diversity index (SHDI), Simpson’s diversity 
index (SIDI) and Pielou’s evenness index. The richness, SHDI and SIDI 
showed progressive spatial dynamics of tree diversity from northeast to 
southwest. The northeastern part is the least diversified, while the 
southwestern part presents a greater diversity of tree species. However, 
the high values of Pielou’s evenness index (J > 0.8) suggest that the 
species abundances are fairly similar at the local scale (pixel scale 250 
m), although there may be disparities from one locality to another. 

3.4. Effect of human impact and landscape characteristics on tree species 
diversity 

To explore the effect of human impact on tree species diversity, Fig. 8 
and Fig. 9 present the results of the Kruskal-Wallis one-way analysis of 
variance and the FPCA of the tree diversity indices relative to distance to 
the village (DTV), respectively. The analysis of the relationship between 
tree diversity and DTV as a proxy of human impact showed very sig
nificant differences in tree species diversity values according to DTV 
classes (Fig. 8) and a significant correlation between the DTV and the 
tree species diversity indices (Fig. 9). The species richness as well as the 
SHDI and SIDI decrease as the DTV increases (negative correlation), i.e., 
tree species around villages are more diverse close to villages than in 
remote areas. On the other hand, Pielou’s evenness index increases as 
the DTV increases (positive correlation), i.e., near villages, some species 
tend to dominate the stand (Fig. 9). 

Fig. 10 provides a comparative view of the tree species diversity 
index (Richness – Fig. 10a), the stratification of landscape heterogeneity 
(Fig. 10b) and the land use/land cover (Fig. 10c) maps. The stratification 
of the landscape heterogeneity shows that in the southwestern part, 
where the species diversity indices are higher, the four identified 

Fig. 4. Number and types of variables selected as relevant predictors for each of the main species according to ENFA.  
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landscape classes are intermingled and the area is more heterogeneous 
than that in the northeastern part (Fig. 10b). The southwestern part is 
also characterized by the relative importance of small wetlands 
(numerous ponds, swamps, marshlands and ephemeral rivers – Fig. 10c 
– Ndao et al., 2021). 

4. Discussion 

4.1. Optimizing the prediction accuracy of the SDM for mapping tree 
species distribution 

Different factors impacting the quality of the accuracy were bench
marked to achieve the best prediction of the distribution of each of the 
studied species. We first identified the best environmental variables, 
then the best variable set and finally the best calibration approach to use 
for each of the studied species. 

4.1.1. ENFA allows us to select the relevant predictors of a given species 
An important aspect that has a pivotal role in the accuracy of the 

prediction for a given species is the selection of relevant environmental 
variables used as predictors during the modeling flow. Making a sub
jective choice or inappropriate selection may reduce prediction accuracy 
(Lecours et al., 2016). The right method of variable selection is closely 
related to the aims and questions of the study. Since high probabilities of 
presence are often linked to high habitat suitability, ecological niche 
factor analysis (ENFA) was used in this study to identify the environ
mental variables of importance for the suitability of a species’ habitat. 
Good to very good accuracy was reached by combining ENFA for 

environmental variable selection with MaxEnt for the prediction of the 
probability of species presence (Ciss et al., 2019). In fact, important 
variables for habitat suitability in ecological niche modeling will be 
important for the probability of presence in the SDM. The ENFA results 
showed that the relevant types and number of predictors differ accord
ing to the species (Fig. 4), strengthening the importance of having a 
selection strategy of predictors specific to each species to be able to 
define its ecological niche. Thus, the application of ENFA to the different 
species allowed us to customize for each species the specific predictors 
used subsequently during the modeling phase. 

4.1.2. Climate and soil property variables are relevant for modeling plant 
species distribution 

The ENFA results also showed that climatic variables and soil prop
erty variables are very common to the different species (Fig. 4). In fact, 
the climatic variables from WorldClim (Hijmans et al., 2005) used in this 
study are often noted as relevant in plant SDMs. Out of 150 SDM studies 
analyzed by Gardner et al., (2019) identifying 289 unique climatic 
variables, the top 10 variables used as predictors were “Bioclim” vari
ables from WorldClim. Distal variables such as “Bioclim” variables are 
assumed to correlate proximal variables that are directly related to plant 
physiology and development (Gardner et al., 2019; Kearney and Porter, 
2009). They provide a good description of average environmental con
ditions in a given climate (Bennie et al., 2014). Proximal variables such 
as physiological variables (e.g., soil water content) are nevertheless 
suggested to be more robust in plant SDMs (Austin, 2002; Gardner et al., 
2019). However, many of the proximal variables directly affecting 
plants are difficult to obtain or unavailable for many regions (Kearney 

Fig. 5. Comparison of the 6 predictive models according to the different sets of variables (only climatic variables (C), climatic and nonclimatic without human 
impact variables (CN), and climatic and nonclimatic including human impact variables (CNH)), for both cross-validation approaches (k-fold blocked (Bl) and random 
k-fold (Rd)). The box plots represent the performances (AUCs) of the 6 predictive models computed for the 16 main species. 
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and Porter, 2009). That is why Bioclim variables and several others 
derived from remote sensing and GIS technology remain useful and 
resourceful as a good compromise for SDMs (Amiri et al., 2020; Austin, 

2002; Kearney and Porter, 2009). Regarding soil property variables, 
studies have reported that they are also generally good and relevant 
predictors for plant SDMs (Buri et al., 2017; Hageer et al., 2017). 
Whether at the global or local scale, edaphic data add useful information 
for plant SDMs (Velazco et al., 2017). 

4.1.3. Integrating nonclimatic variables in the SDMs is inconclusive 
The possibility of using only climatic variables for the SDMs is known 

(Amiri et al., 2020; Gardner et al., 2019; Huntley et al., 1995; Sykes 
et al., 1996). However, integrating different types of variables, including 
climatic variables with nonclimatic variables (land cover, topography, 
phenology, etc.), is suggested to improve SDM performances, i.e., to 
increase the reliability of predictions (Austin and Van Niel, 2011; Burns 
et al., 2020; Fournier et al., 2017; Suárez-Seoane et al., 2004; Vila- 
Viçosa et al., 2020). Gardner et al. (2019) showed that generally 
building models with both climatic and soil variables provides better 
performances than dealing with only climatic variables. However, in this 
study, we found that, although suggested in several studies, the inte
gration of climatic and nonclimatic variables does not systematically 
improve SDM performances (Fig. 5). Even if in this study the best per
formance for most species was obtained by integrating nonclimatic 
variables, the results varied depending on the species or model consid
ered. Bucklin et al. (2015) found that the addition of nonclimatic vari
ables has a relatively minor effect on the performance of climate-based 
SDMs and predictions, and they suggested that using only climatic 
predictors may already provide satisfactory accuracy. In their study, the 
addition of human influence predictors was the only one that provided 

Fig. 6. Comparison of the 6 predictive models according to the 2 cross-validation approaches (k-fold blocked cv (Bl) and random k-fold cv (Rd)) for the 3 scenarios of 
variable sets (only climatic variables (C), climatic and nonclimatic without human impact variables (CN), and climatic and nonclimatic including human impact. 
(CNH)). The box plots represent the performances (AUCs) of the 6 predictive models computed for the 16 main species. 

Table 3 
The best SDM obtained for each of the main species: model performance (area 
under the ROC curve) and modeling approaches (model type, cross-validation 
approach and variable set). For the variable set, C represents only climatic 
variables, CN represents climatic and nonclimatic variables without the human 
impact variable, and CNH represents climatic and nonclimatic variables 
including the human impact variable.  

Species AUC Model 
type 

Cross-validation 
approach 

Variable 
set 

P. juliflora 0.87 MaxEnt k-fold blocked CN 
A. seyal 0.86 MaxEnt Random k-fold CN 
D. mespiliformis 0.83 MaxEnt k-fold blocked C 
B. aegyptiaca 0.80 MaxEnt k-fold blocked CNH 
A. indica 0.80 MaxEnt k-fold blocked CNH 
C. integrifolia 0.78 Domain k-fold blocked CNH 
Z. mauritiana 0.77 Bioclim k-fold blocked C 
A. digitata 0.76 MaxEnt k-fold blocked CNH 
B. rufescens 0.76 MaxEnt Random k-fold CN 
S. birrea 072 Domain k-fold blocked C 
A. leiocarpus 0.72 Domain k-fold blocked CN 
A. nilotica 0.72 Domain k-fold blocked CN 
B. aethiopium 0.72 MaxEnt k-fold blocked CN 
P. reticulatum 0.71 MaxEnt Random k-fold CN 
T. indica 0.66 Bioclim k-fold blocked CN 
F. albida 0.64 MaxEnt k-fold blocked CN  
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significantly higher accuracy compared with using only climatic 
predictors. 

4.1.4. Accounting for spatial autocorrelation in the blocking strategy could 
improve the reliability of species modeling 

The results showed that random k-fold cross-validation tends to be 
more performative than k-fold blocked cross-validation. Indeed, when 
the partitioning of the data was randomized, testing and training in
dividuals that are spatially close may have similar characteristics 
(spatial autocorrelation). This probably led to overestimation of the 
predictive power of the models (Roberts et al., 2017). However, in this 
study, the difference in accuracy between both cross-validation ap
proaches was not significant, showing that blocking methods could 
improve the reliability of the models by avoiding autocorrelation phe
nomena without significantly affecting the performance estimation. 
Roberts et al. (2017) showed that k-fold blocked cv can be much more 
appropriate than random k-fold cv in cases such as SDMs. 

4.1.5. Each species is sensitive to a specific algorithm 
SDM results are very sensitive to the algorithm used for the predic

tion (Senay and Worner, 2019), making the choice of the model type 

crucial. In this paper, a comparative analysis of six algorithms showed 
that no single algorithm was the best for all species. This confirms pre
vious studies on a wide range of SDMs showing that there is no single 
’best’ SDM algorithm for all circumstances (Elith et al., 2006; Norberg 
et al., 2019; Qiao et al., 2015). For a given case, it should be important to 
test different types of algorithms and modeling techniques to identify an 
adequate model. The results of this study showed the importance of 
benchmarking several modelling approaches. For example, although the 
Maxent model performed better for most species in this study, the 
benchmarking analysis showed that for the species C. integrifolia and Z. 
mauritiana in particular, the Domain and Bioclim models respectively 
should be used to obtain the best modelling results (see Table 3). 

4.2. Deriving tree species diversity mapping from SDM predictions 

Using SDM predictions to appreciate the spatial distribution of spe
cies richness is already known. (Kwon et al., 2018; Luo et al., 2020; Vila- 
Viçosa et al., 2020). Species richness is the number of species within a 
defined region (Moore, 2013). In this study, species richness index was 
computed by compiling species distribution maps then summing species 
presences at pixel scale (250 m × 250 m). The species richness index is a 

Fig. 7. Maps of the tree species diversity indices derived from the probabilities of presence maps: a) richness index, b) Shannon’s diversity index - SHDI, c) Simpson’s 
diversity index -SIDI and d) Pielou’s evenness index. 
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simple measure of diversity. Considering species distribution in addition 
to species richness strengthens the analysis and provides a better 
appreciation of diversity. Thus, the diversity indices of Shannon, 
Simpson and Pielou were computed on the basis of an assumption to 
complete the species richness index. The hypothesis is not verified in this 
study but it is strong and has been defended and discussed on the basis of 
previous studies. Also, it is very important to note that the Shannon and 
Simpson indices provided the same trends as the species richness index, 
i.e. even if the hypothesis is not proven the richness index alone, which 
was not based on the hypothesis, would have provided almost the same 
conclusions of this study. 

The hypothesis assumes a significant correlation between the prob
abilities of occurrence of tree species and their relative abundances. 
Indeed, there is no denying that environmental factors affect the pres
ence of tree species, their spatial distribution and their abundance. A 
significant correlation between environmental factors and the abun
dance of several tree species has been shown (Nguyen et al., 2015; 
Schwarz et al., 2003), suggesting a relationship between the probability 
of species presence derived from environmental predictors and species 
abundance. Therefore, SDM predictions could provide useful informa
tion to appreciate abundance distributions depending on environmental 
conditions (Gutiérrez et al., 2013; Van Couwenberghe et al., 2013; 
VanDerWal et al., 2009). Authors using only climate variables as pre
dictors found this relationship to be weak or even neutral. They sug
gested integrating nonclimatic variables with climatic variables to better 
understand this relationship (Dallas and Hastings, 2018). Analyzing 243 
vascular species at 10 996 French forest sites, Van Couwenberghe et al. 
(2013) reported a significant relationship between plant species abun
dances and the environmental conditions regarding variables of tem
perature, water balance and soil pH. In this study, we integrated 
different types of climatic and nonclimatic variables, including variables 

of topographic and soil properties, which are both highly crucial for tree 
species presence and abundance (Nguyen et al., 2015). We also 
accounted for human impact knowing that factors other than environ
mental variables (Schwarz et al., 2003) could be needed for better 
predictions and characterization of spatial variation of tree species. The 
great significance of human influence predictors for SDMs has already 
been demonstrated (Bucklin et al., 2015). The integration of the 
different types of variables affecting the presence of trees increases the 
significance of the relationship between the species probability of 
presence predicted by the models and their abundance. 

4.3. Spatial dynamics of tree species diversity in parklands 

The results showed a significant negative correlation between the 
DTV and tree diversity, suggesting in this study a positive human impact 
on tree diversity (i.e., the closer to the village we are, the higher the tree 
diversity). These results are in contrast with the negative impact of the 
human footprint on species diversity that is commonly reported in 
studies on forest ecosystems (Vuyiya et al., 2014), showing that tree 
species diversity decreases linearly toward the village boundary 
(Popradit et al., 2015). The effects of human activities and presence on 
tree diversity are much less studied in African agroforestry systems. 
Nevertheless, a positive effect of village proximity on tree species di
versity in agroforestry parklands was reported in this paper. Lelong et al. 
(2020) showed in the Senegalese Peanut Basin that tree species diversity 
is higher around villages. This positive effect could be linked to the many 
goods and services that people benefit from tree species (Sinare and 
Gordon, 2015), which they tend to sustain. In West Africa, agroforestry 
systems are highly anthropized, and the structure of tree diversity is 
mainly designed by people who select tree species generally for their 
contributions to their livelihoods (food, fodder, wood, medicine, and 

Fig. 8. Boxplots of tree species diversity values within DTV classes and Kruskal-Wallis one-way analysis of variance of the tree species diversity indices relative to 
distance to the village (DTV): a) SHDI, b) SIDI, c) richness, and d) Pielou’s evenness index. 
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soil fertility - Bayu, 2019; Sambou et al., 2017). The 8 species that the 
ecological niche factor analysis (ENFA) found to be sensitive to the DTV 
are all species that directly provide ecosystem goods and services to 
people. Almost all parts (roots, bark, fruit, wood and leaves) of 
B. aegyptiaca (Chothani and Vaghasiya, 2011), T. indica (Fandohan et al., 
2010), S. birrea (Sene et al., 2018), A. digitata (Kébenzikato et al., 2015), 
D. mespiliformis (Ahmed and Mahmud, 2017), B. aethiopum (Salako et al., 
2018) and C. integrifolia (Abah et al., 2019) are traditionally used for a 
wide range of human needs (medicine, food, handcraft, etc.). The last 7 
species are particularly important sources of macro- and micronutrients 
required by rural communities and contribute significantly to improving 
the food security and nutrition of rural households (e.g., Chivandi et al., 
2015; Félix et al., 2018; Ickowitz et al., 2014; Koffi et al., 2020). People 
obtain most of their staple food, fruits and drinks from indigenous trees 
(Gustad et al., 2004). For instance, fruit pulp of bearing trees such as 
A. digitata are consumed daily as juice called “booy” locally and is 
particularly rich in carbohydrates, vitamin C and minerals (Chadare 
et al., 2009). A. digitata is mainly planted in home fields so that their 
tenure is guaranteed for farmers (Koffi et al., 2020). A. indica is an 
evergreen species generally planted near and within villages due to its 
shadow cover. It also provides natural pesticides against insects or for 
pest control in agriculture (Schmutterer, 1990). Because of the many 
products and services provided by tree species, farmers have learned 
over generations to select and protect tree diversity according to their 
needs for subsistence, income and food security (Bayu, 2019). Indeed, 
the tree diversity associated with villages is particularly important for 
improving the resilience and food security of communities (Gustad et al., 
2004). 

Furthermore, the results also revealed a spatial dynamic of tree di
versity that was higher in the southwestern part of the study area, 
gradually decreasing toward the northeast. The stratification of the 
landscape heterogeneity carried out by Ndao et al. (2021) in the same 
study area showed that in the southwestern part, the four landscape 
classes they identified are intermingled, and the area is more hetero
geneous than the northeastern part (Fig. 10b). Many different studies 
have analyzed the relationship between environmental heterogeneity 
and species diversity, discovering positive, negative, hump-shaped or 
nonsignificant relationships (Allouche et al., 2012; Heidrich et al., 2020; 
Redon et al., 2014; Stein, 2016). Indeed, there is a level of environ
mental heterogeneity favorable to species diversity. In complex eco
systems with a high level of heterogeneity, especially in forests, the 
increase in landscape heterogeneity tends to reduce plant species rich
ness. On the other hand, in environments with an intermediate level of 
complexity, landscape heterogeneity is more favorable to species di
versity (Allouche et al., 2012; Redon et al., 2014; Yang et al., 2015). 
Especially in agricultural landscapes (intermediate complexity), land
scape heterogeneity has a positive effect on the biodiversity of both 
plants and other groups of organisms (Alignier et al., 2020; Bo et al., 
2016). In agroforestry systems, the spatial dynamics of biodiversity are 
significantly linked to the heterogeneity of the landscape, including the 
crop component and tree component. In particular, a greater level of tree 
diversity and the spatial distribution of trees are closely related to the 
complexity of agroforestry systems (Udawatta et al., 2019). It would 
therefore be important to account for landscape heterogeneity when 
planning biodiversity conservation measures (Harlio et al., 2019). The 
southwestern part is also characterized by the relative importance of 

Fig. 9. Focused principal component analysis of the tree species diversity indices relative to distance to the village (DTV). The variables inside the red circle are 
significantly correlated with the focus variable (DTV). The colored dots (small circles) indicate whether this correlation is negative (yellow) or positive (green). (For 
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

B. Ndao et al.                                                                                                                                                                                                                                    



Ecological Indicators 144 (2022) 109443

13

small wetlands (numerous ponds, swamps, marshlands and ephemeral 
rivers – Fig. 10c – Ndao et al., 2021). This may partly drive the richness 
of tree species in this area. Indeed, in dry areas, the availability of water 
is decisive for the ecology of plants. It leads to gradients in tree diversity 
and structure around water bodies and wetlands (Douglas et al., 2018; 
de Terra et al., 2018). 

5. Conclusion 

Using SDMs, this paper proposed to shift from simple prediction of 
species distribution to quantitative analysis of the spatial distribution of 
species diversity. In short, tree diversity indices were computed and 
mapped from SDM predictions. Benchmarking several SDM algorithms, 
combination of variables and calibration approaches did not lead to 
identifying the best SDM technique for all species. But, this is crucial for 
each species to achieve its best prediction accuracy. It is also important 
but not necessary to integrate different environmental variables, 
including climate and nonclimate variables, to improve SDM 
performances. 

The spatial analyses of the resulting diversity indices maps showed 
that the spatial dynamics of tree species diversity is closely related to 
socio-environmental conditions such as water availability, landscape 
heterogeneity or human impact. For instance, it was shown that, in 
contrast to forest ecosystems, human influence is rather favorable to 
sustaining tree diversity in the vicinity of villages in West African 
agroforestry systems. 

Therefore, this study pointed out the importance of taking into ac
count landscape and human impact factors for territorial planning and 
designing successful management strategies of Sahelian agroforestry 

parklands to improve biodiversity conservation. It also proposed an 
interesting approach for monitoring tree diversity of Sahelian agrofor
estry parklands.in Senegal. 
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Hycza, T., Stereńczak, K., Bałazy, R., 2018. Potential use of hyperspectral data to classify 
forest tree species. N. Z. J. For. Sci. 48 (1), 18. https://doi.org/10.1186/s40490-018- 
0123-9. 

Ickowitz, A., Powell, B., Salim, M.A., Sunderland, T.C.H., 2014. Dietary quality and tree 
cover in Africa. Global Environ. Change 24 (1), 287–294. https://doi.org/10.1016/j. 
gloenvcha.2013.12.001. 

Karlson, M., Ostwald, M., Reese, H., Bazié, H.R., Tankoano, B., 2016. Assessing the 
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