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A B S T R A C T
An automated calibration method is proposed and applied to the complex hydro-ecological model
Delft3D-BLOOM which is calibrated from monitoring data of the lake Champs-sur-Marne, a small
shallow urban lake in the Paris region (France). This method (ABC-RF-SA) combines Approximate
Bayesian Computation (ABC) with the machine learning algorithm Random Forest (RF) and a Sen-
sitivity Analysis (SA) of the model parameters. Three target variables are used (total chlorophyll,
cyanobacteria and dissolved oxygen concentration) to calibrate 133 parameters. ABC-RF-SA is first
applied on a set of simulated observations to validate the methodology. It is then applied on a real
set of high-frequency observations recorded during about two weeks on the lake Champs-sur-Marne.
The methodology is also compared to standard ABC and ABC-RF formulations. Only ABC-RF-SA
allowed the model to reproduce the observed biogeochemical dynamics. The coupling of ABC with
RF and SA thus appears crucial for its application to complex hydro-ecological models.

1. Introduction
Modelling biogeochemical cycling and phytoplankton dy-

namics in aquatic ecosystems is a complex task. It implies
taking into account many processes that belong to different
scientific fields, ranging from physics to biology to chem-
istry. Mechanistic hydro-ecological models, which seek to
include all these processes, are often very complex and over-
parameterized [36, 27, 37, 49, 25]. In addition, most param-
eters are difficult to measure directly by field observations.
Reference values for key model parameters can be found in
scientific literature but they are uncertain and often have a
wide range of variability [e.g. 27, 18], which affects the re-
liability of the models.

For these reasons, sensitivity analysis, calibration and
validation of complex hydro-ecological models are impor-
tant tasks. However, Shimoda and Arhonditsis [38] showed
that only half of the publications published between 1980
and 2012 include a proper sensitivity analysis, and when cal-
ibration is performed, it is mostly done by trial-and-error.
Yet, while the results of trial-and-error calibration depend
heavily on the skill and knowledge of the modeler [25], auto-
mated calibration can reduce model uncertainty and simulta-
neously allow to carry out a sensitivity analysis of the model
parameters. However, it is rarely applied for complex hydro-
ecological models, especially when they are three-dimensional.
In the literature, automated calibration is only applied on 0D
or 1D models, most often by optimization or Monte Carlo
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and Bayesian inference [49, and references therein].
There are several reasons for this. First, automated cal-

ibration strategies are generally computationally expensive.
They often require a large number of model runs and their
computational cost increases with the number of parameters
to be estimated, which hinders their application to complex
hydro-ecological models. Moreover, in limnological stud-
ies, data traditionally come from field campaigns which, al-
though regular, lead at best to sparse datasets that are not
well suited to automated calibration strategies.

If the available data set is rich enough, a wide range
of approaches and techniques can be applied for automated
calibration. This includes various optimization algorithms,
such as Newton’s algorithms and genetic algorithms (e.g.,
Particle Swarm Optimization), as well as Bayesian parame-
ter inference algorithms [26].

However, classical Bayesian parameter inference is of-
ten problematic for complex mechanistic models. For such
models, the likelihood function is analytically intractable and
its evaluation by computational methods is extremely com-
putationally demanding. Approximate Bayesian Computa-
tion (ABC) is an innovative and promising technique for pa-
rameter inference, rooted in Bayesian statistics, which has
the great advantage of bypassing the computation of the like-
lihood function. It requires a large number of model runs
with different sets of parameters obtained by random sam-
pling according to user-defined prior distributions. This set
of simulations is used as a training dataset, in order to ap-
proximate the posterior probability distribution function of
the parameters. Different methods can be used for this pur-
pose, among which machine learning techniques. For ex-
ample, the use of random forests has been recently proposed
and seems to be particularly advantageous [35].
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Like most calibration techniques, ABC is expensive in
terms of computational effort. However, it offers a good
compromise between the number of parameters to identify
and the number of model evaluations [26]. Moreover, com-
pared to other calibration techniques such as evolutionary
algorithms, it has the advantage of not being iterative. This
allows the model evaluations to be performed in parallel,
which is particularly interesting in the case of complex hydro-
ecological models with high simulation times. ABC has al-
ready been applied to complex statistical models [29] and
individual-based ecological models (e.g. [24, 47, 16]) with
a few dozen parameters, but, to the best of our knowledge,
never to a complex process-based model with more than 100
parameters.

In this work, an innovative method for automated cali-
bration is proposed and applied to the complex hydro-ecological
model Delft3D-BLOOM [14]. This method (called ABC-
RF with SA hereafter) is based on the ABC-RF (Approxi-
mate Bayesian Computation - Random Forest) method pro-
posed in [35] which is combined with a sensitivity analysis
(SA) of the model parameters.

The main computational cost of ABC is the large num-
ber of model simulations that must be performed in order
to build a robust training dataset to apply the ABC. In this
study, the availability of high-frequency data aggregated to
an hourly time step, allowed the calibration effort to be fo-
cused on a 16-day simulation, greatly reducing the compu-
tational time while focusing on the model’s ability to simu-
late short-term variations. The aim of this study is to test
the ability of the ABC-RF with SA to reproduce a series
of observations with a complex biogeochemical model that
involves a large number (133) of parameters. Three target
variables are considered in this calibration procedure: total
chlorophyll, phycocyanin and dissolved oxygen. These vari-
ables are representative of biological processes in aquatic
ecosystems. Total chlorophyll is an indicator of total phy-
toplankton biomass and is the variable on which most alert
guidelines for monitoring harmful algal blooms are based.
Phycocyanin is a pigment specific to cyanobacteria that can
be considered an indicator of their abundance. Finally, dis-
solved oxygen concentration, especially in a eutrophic envi-
ronment, can be considered as a resultant variable of various
processes: growth, mortality, decomposition of organic mat-
ter, and nutrient recycling.

The method ABC-RF with SA is first applied on a set
of simulated data to validate the method and test its ability
to reproduce both the simulated data and the parameter val-
ues. It is then applied on a real observation dataset of the
lake Champs-sur-Marne, a small shallow lake of the Paris
region. The standard ABC method and the ABC-Random
Forest (ABC-RF) method are also applied for comparison.

2. Materials and methods
2.1. Dataset and study site

The lake Champs-sur-Marne is a small and shallow lake
located in the Great Paris region. Its surface area is of 0.12

Figure 1: Satellite picture of the lake Champs-sur-Marne
(source: géoportail.fr) and sketch of the measuring system
at the three locations (A, B and P).

km2, and the average and maximum depths are about 2.5 m
and 4 m respectively. As shown in Fig. 1, the lake has no
inflow or outflow and is fed primarily by groundwater from
the Marne River that flows north of the water body.

The lake Champs-sur-Marne suffers from strong eutroph-
ication conditions that lead to a succession of serious harm-
ful algal blooms between the months of February and Octo-
ber. The lake is a valuable recreational area for the neigh-
bourhood. However, especially during the summer months,
the dominance of toxic cyanobacteria such as Microcystis
and Aphanizomenon often leads to bathing bans and access
restrictions to the lake.

For these reasons, the lake is monitored by both periodic
surveys and high-frequency automated in situ measurements
of relevant physico-chemical variables at three measuring
sites [46]. Each measurement site is equipped with sensors
located at three depths: at the surface (0.5 m depth), in the
middle (1.5 m depth) and at the bottom (2.5 m depth) layers
(see Fig. 1). Water temperature is measured by the SP2T10
sensor (nke INSTRUMENT®) at the surface and bottom lay-
ers, with a precision of 0.02 ◦C and a resolution of 0.05 ◦C.
At the middle of the water column, a multi-parameter sensor
(MPx, nke INSTRUMENT®) measures, in addition to the
water temperature, the values of oxygen, total chlorophyll
and, at site B only, phycocyanin concentration. Phycocyanin
is a pigment specific to cyanobacteria that is commonly used
as a proxy for their biomass [7]. All measurements are col-
lected every 10 minutes. The resolution and precision of the
multi-parameter sensor are given in table 1.
2.2. Model configuration

Delft3D is a well established and reliable modelling tool
for hydrodynamic and water quality simulations. It includes
different modules that cover a wide range of applications.
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Table 1

Resolution and precision of the high-frequency Mpx multi-
parameter sensor implemented at site B [46].

Variable Resolution Precision

Temperature 0.01◦C 0.05◦C
Dissolved Oxygen 0.01% 1%
Total chlorophyll <0.008 𝜇g.L−1 0.03 𝜇g.L−1

Phycocyanin <0.008 𝜇g.L−1 2 𝜇g.L−1

Phytoplankton concentration is modelled in Delft3D as the
result of two distinct processes, transport and biomass pro-
duction, handled by the FLOW and BLOOM models respec-
tively. FLOW is a hydrodynamic model that solves the Reynolds
averaged Navier-Stokes equations for an incompressible fluid.
It has already been tested in various scenarios and is ex-
tremely reliable [31, 10, 42]. BLOOM is a biogeochemi-
cal model that computes phytoplankton biomass in aquatic
ecosystems, based on a linear programming algorithm de-
signed to optimize biomass production as a function of local
nutrient, light and temperature conditions.

The 3D hydrodynamic model Deltf3D-FLOW has been
configured on the lake Champs-sur-Marne. The bathymetry
was interpolated from in situ measurements. The horizontal
mesh is composed of 813 square cells of 10 m side. Twelve
horizontal layers with a fixed thickness of 27 cm were used
for the discretization of the vertical axis.The choice of par-
allel horizontal layers (rather than 𝜎-layers) avoids artificial
mixing, and improves the model results in terms of water
temperature distribution [21]. The 𝑘-𝜀 turbulence closure
model was used for the computation of turbulent eddy vis-
cosity and diffusivity. Background values for horizontal vis-
cosity and diffusivity were set to 0.0025 m2.s−1, according to
literature values [42] and mesh cell size. Background values
were set to zero [m2.s−1] for vertical viscosity and diffusiv-
ity. The heat budget at the air-water interface was calculated
using the Ocean model. It requires as inputs time series of
relative humidity [-], air temperature [◦C], net solar radia-
tion [J.s−1.m−2], sky cloudiness [-], wind speed [m.s−1] and
wind direction [◦N].

The water temperature simulated with the hydrodynamic
model was compared to the high-frequency observations recorded
at measurement site B for the surface and bottom layers. The
model correctly reproduced the water temperature at both
layers. The computed root mean square error (RMSE) be-
tween model results and high-frequency observations is only
0.5◦C for the surface layer, and 0.6◦C for the bottom layer.

The BLOOM module uses the simulation results from
the FLOW module (current, water temperature), but is run
separately from the hydrodynamic simulation. Four main
modules are activated in the configuration implemented in
this study: oxygen and Biological Oxygen Demand (BOD),
dissolved inorganic matter, organic matter and phytoplank-
ton. Each module contains many variables, which are listed
in table 2. In particular, the phytoplankton module includes
four algal groups commonly present in the lake Champs-sur-
Marne: green algae, diatoms, flagellates and cyanobacteria.

Table 2

Modules and variables activated in the con�guration of the
biogeochemical model.

Module Variables

Oxygen-BOD Dissolved oxygen
Particulate and dissolved Inorganic matter (IM1)
inorganic matter Ammonium

Nitrate
Ortho-phosphate
Adsorbed ortho-phosphate
Dissolved Silica
Opal-Si

Organic matter POC, fractions 1,2,3,4
PON, fractions 1,2,3,4
POP, fractions 1,2,3,4
DOC
DON
DOP
Detritus C in sediment layer
Detritus N in sediment layer
Detritus P in sediment layer

Phytoplankton Cyanobacteria
Freshwater diatoms
Freshwater �agellates
Green algae

In the biogeochemical cycle, the activated variables depend
on each other through a large number of processes, simu-
lated by the BLOOM module. A complete description of
these processes can be found in the user manual [15]. Bio-
geochemical models often include a large number of param-
eters, which may be site-dependent. In our case study, the
activated processes and variables lead to a set of 144 modi-
fiable parameters.
2.3. Formulation of the calibration problem

In this work, we are interested in the automated calibra-
tion of the complex biogeochemical model BLOOM applied
to the case of the lake Champs-sur-Marne. The objective is
to find one or more parameter sets that lead to simulated val-
ues of the variables of interest that are close to the observed
data over a chosen time period.

Among the 144 parameters of the chosen configuration
of the BLOOM model (presented in Section 2.2), 114 were
selected to be estimated by the calibration process, along
with 19 initial conditions. Ultimately, this leads to 133 pa-
rameters and initial conditions to be estimated by the cal-
ibration. The other parameters and initial conditions were
not included in the calibration. Either their values were con-
sidered to be known with a sufficiently low uncertainty, or it
was demonstrated by previous tests that they have a negligi-
ble influence on the model outcomes.

A 16-days high-frequency monitoring period from July
25 to August 10, 2018, was selected for the automated cal-
ibration of the biogeochemical model. The variables of in-
terest considered for calibration are total chlorophyll, phyco-
cyanin, and dissolved oxygen. Before being used in the au-
tomated calibration procedure, the raw measurements of the
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three variables had to be converted to the appropriate units
used in the model simulations, namely gC.m−3 for cyanobac-
teria and gO.m−3 for oxygen concentration, while total chloro-
phyll already had the correct unit (𝜇g Chl.L−1). Oxygen sol-
ubility in water is temperature dependent and was therefore
converted from a percentage of saturation to gO.m−3 using
the empirical equation proposed by Weiss [51] together with
high-frequency water temperature data from the MPx sensor.
Phycocyanin was first converted to the equivalent of chloro-
phyll using a conversion factor deduced by comparison with
monthly profiles taken in situ with the BBE FluoroProbe pro-
filer, and finally to carbon content using the stoichiometric
ratio Chl:C value of 0.03, often found in scientific literature
[e.g. 19, 18]. In addition, profiles taken on July 25, 2018,
with the BBE FluoroProbe were used to set and validate the
initial conditions of the model in terms of 𝜇g Chl-a.L−1.

The methodology used for the automated calibration is
based on a recently developed approach combining Approx-
imate Bayesian Computation (ABC) and Random Forests
(RF), hereafter referred to as ABC-RF. This approach is de-
scribed in section 2.4. In section 2.5, we then introduce a
calibration procedure that combines the ABC-RF with a sen-
sitivity analysis of the model outputs.
2.4. Calibration method
2.4.1. Approximate Bayesian Computation

Approximate Bayesian Computation (ABC) is a class of
computational methods rooted in Bayesian statistics first pro-
posed by Beaumont in 2002 [5]. It allows for parameter in-
ference without the need to explicitly compute the likelihood
function [44]. Developed in the field of population genetics,
it has quickly grown as a solid alternative to likelihood-based
methods for model calibration and it has already been ap-
plied in evolutionary biology and ecology [12].

Given a model 𝜇(𝑥, 𝜃) where 𝑥 is the vector of variables
and 𝜃 the vector of parameters, and 𝐷 a vector of observed
values of 𝑥, the posterior probability of the model parameters
can be obtained through the Bayes’ theorem:

𝜋(𝜃|𝐷) =
𝜋(𝐷|𝜃)𝜋(𝜃)

𝜋(𝐷)
(1)

where 𝜋(𝜃|𝐷) is the conditional probability of the model pa-
rameters given the observations 𝐷 (the posterior probabil-
ity), 𝜋(𝐷|𝜃) is the conditional probability of the observations
given the parameter values (the likelihood function), 𝜋(𝜃) is
the prior distribution of 𝜃, and 𝜋(𝐷) is the marginal probabil-
ity of the data. The marginal probability can be considered a
normalizing constant and is often neglected in applications
where model intercomparison is not involved. In Bayesian
inference, the desired posterior probability can therefore be
described through the prior distribution and the likelihood
function.

However, for the present application, the likelihood func-
tion is analytically intractable making the estimation of the
posterior distribution through standard computational meth-
ods (such as Markov Chain Monte Carlo algorithms) impos-
sible. The idea at the core of ABC is to bypass the explicit
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Figure 2: �Parameter estimation by Approximate Bayesian
Computation: a conceptual overview.� Figure adapted from
[43].

evaluation of the likelihood function, directly obtaining an
approximation of the posterior probability distribution. To
do so, prior probability distributions are first defined for the
model parameters. The model 𝜇 is then used to generate a
large set of simulations by randomly sampling the parame-
ter values according to their priors [47]. From these simula-
tions a set of relevant summary statistics, which summarize
the information contained in the model runs, is computed
and stored, along with the corresponding parameter values,
in a dataset called “reference table” 1. The posterior dis-
tributions can eventually be estimated using this reference
table through the application of a rejection algorithm or of
machine learning techniques (see Figure 2 for a conceptual
overview of ABC).
2.4.2. ABC random forest

In its standard form, ABC retrieves the posterior param-
eters distribution starting from the reference table through a
rejection algorithm [9]. This entails the definition of a dis-
tance and of a tolerance level separating acceptance from
rejection. However, such threshold is arbitrary and should
be calibrated for each particular application [39]. Moreover,
to use the standard ABC algorithm, a small number of sum-
mary statistics should be used, and it is often not easy to find
out which ones are the most relevant for the available data.

To overcome these issues, Raynal et al. [35] proposed to
substitute the distance-based rejection algorithm with a ma-
chine learning technique, namely the random forests (RF).

1In practice, the reference table is only a table having as many rows as
model simulations, and in the columns of which are stored the values of the
parameters and of the summary statistics of each of these simulations.
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At the expense of introducing a few parameters defining the
structure of a RF, this allows overcoming the definition of
a distance and a tolerance level and enables the user to take
into account a large number of summary statistics. More-
over, the RF algorithm is proven to be numerically more ef-
ficient than the rejection algorithm used in the standard ABC
[8].

A regression tree is a structure made of binary nodes that
can either be internal nodes or terminal nodes (the leaves). It
can be automatically built by iteratively dividing a training
dataset into subsets of increasing uniformity until a certain
condition is satisfied. Namely, the process of growth of the
tree continues until all terminal nodes either (a) have less
than 𝑛 data points (with 𝑛 possibly equal to 1), or (b) are
“pure”, that is all elements in a node have (almost) the same
outcome.

With such a process, we can build a regression tree to get
an estimation of the value of 𝜃𝑖 ∈ ℝ, the 𝑖𝑡ℎ component of
the model parameters vector 𝜃. This tree will be trained on
a training set of 𝑀 summary statistics (𝑋𝑘 with 𝑘 = 1 ∶ 𝑀 ,
see section 2.4.3), which are computed from the set of model
simulations and which constitute the reference table. Once
the tree is trained, we can apply it on the observed dataset 𝐷
and get the estimated value of the parameter 𝜃𝑖.A random forest consists in aggregating (or bagging) ran-
domized regression trees. A large number of trees (n𝑡𝑟𝑒𝑒) are
trained each on a different bootstrap subsample taken from
the complete available reference table. Furthermore, only a
subset of 𝑚𝑡𝑟𝑦 summary statistics among the 𝑀 available are
randomly considered at each node for splitting [35]. The es-
timations obtained by the n𝑡𝑟𝑒𝑒 regression trees can be treated
and used to obtain an approximation of the posterior prob-
ability distribution for the parameters 𝜃𝑖 [e.g. 35]. Eventu-
ally, once the random forest is grown, different choices can
be made for the inference of the parameter value (see section
2.4.5). For example, the final estimated value of 𝜃𝑖 can be
determined by averaging all the n𝑡𝑟𝑒𝑒 predictions obtained in
the random forest, or by taking the most probable value from
the posterior distribution. A conceptual overview of the pro-
cess of parameter estimation by ABC-RF is given in figure
3.

In the present paper, we tested a first calibration proce-
dure that relies on the assumption that the model parameters
can be considered independent of each other. In that case,
the ABC-RF method is applied separately once for each pa-
rameter of the model. This way, one RF is built for each
parameter and the associated approximate posterior distri-
butions can be plotted, from which an estimate value of the
parameters are deduced (see section 2.4.5). The different
steps for the application of the ABC-RF to multiple param-
eters are outlined in Algorithm 1.

For the implementation of the ABC-RF, we make use of
a 𝑅 package (regAbcrf ), developed by Raynal et al. [35] for
ABC-RF parameter inference. To configure the ABC-RF,
we need to choose two main arguments: (i) the number of
trees to grow in the random forest (n𝑡𝑟𝑒𝑒), and (ii) the num-
ber of variables among which to choose for splitting at each

➊
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Figure 3: Parameter estimation by Approximate Bayesian
Computation with Random Forest: a conceptual overview.
Figure adapted from [43].

node (𝑚𝑡𝑟𝑦). For the former, different values have been tested
(see section 2.6) while the latter was set to its default value,
which is the maximum between 1 and the number of vari-
ables divided by 3.
2.4.3. Prior distributions and summary statistics

For parameter inference, BLOOM was run 30000 times
to create the reference table, by drawing parameters randomly
from the user-assigned prior distributions. Either a uniform
or a gamma distribution was assigned to each model parame-
ter. Such distributions were defined on the basis of the mod-
eller expertise, derived from default and literature param-
eter values and previous “trial and error” calibration tests.
Gamma distributions were defined for most of the parame-
ters, using values from previous trial-and-error calibration
tests to set the mean value of the distribution, and setting
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Algorithm 1: ABC-RF (multidimensional)
Data: 𝑁 : number of parameters to be estimated

𝑀 : number of summary statistics
𝑋𝑘: summary statistics (𝑘 = 1∶𝑀)

Result: estimated value �̂�𝑖 of 𝜃𝑖 for 𝑖 = 1∶𝑁

1 for i=1:𝑁 do
2 Application of ABC-RF to estimate the

parameter 𝜃𝑖 from the set of summary statistics
{

𝑋𝑘, 𝑘 = 1 ∶ 𝑀
}

→ posterior distribution of
𝜃𝑖

3 Determination of the estimated value �̂�𝑖 of 𝜃𝑖from the approximate posterior distribution of
𝜃𝑖

4 end

the standard deviation to 20%. The choice of the gamma
distribution is motivated by the fact that, unlike normal dis-
tributions, it is defined only on positive values. A uniform
density function was assigned to those parameters (such as
the initial conditions) for which very little information was
available from literature or previous studies. The uniform
distributions were built using default values or values from
previous calibration tests as a central value and taking 0 as
a left limit. For parameters with default values very close to
0, the upper limit was set to 1.

In the application of ABC, model results and observa-
tions are summarized into a set of user-chosen summary statis-
tics. The ABC-RF allows the use of a large number of sum-
mary statistics without incurring in the curse of dimension-
ality [33], as the relevant summary statistics will be automat-
ically selected by the ABC-RF. A set of summary statistics
is a set of metrics that summarizes the most relevant char-
acteristics of model results. For each model run originated
by the model 𝜇, the summary statistics are computed and
stored in the reference table together with the corresponding
parameter set. Ultimately, the reference table constitutes the
training data set on which ABC is applied.

The summary statistics therefore replace the raw model
runs in the calibration procedure, and their definition is cru-
cial. They should minimize information loss and maximize
dimension reduction [12]. However, their choice is also re-
lated to the processes subject of the study. Here, we are
mainly interested in the time evolution of a phytoplankton
community. Summary statistics are calculated on the com-
plete set of model runs as well as on the observed data for the
three variables considered for calibration, which are some
time series of total chlorophyll, cyanobacteria and dissolved
oxygen concentrations. Two different summary statistics were
tested: (1) the normalized square of residuals (R) between
each model run (�̂�) and the observation series (𝐷) and (2)
the normalized mean square error (𝑁𝑀𝑆𝐸) between �̂� and
𝐷. In this work, the summary statistics have the particular-
ity to be dependent on the observation series 𝐷; this choice
will be further discussed in section 4.

Consider two time series data 𝐷 and �̂�, the first one cor-
responding to the set of measured values 𝐷𝑖 of a given vari-
able at different time instants 𝑡𝑖 for 𝑖 = 1 ∶ 𝑛𝑡, and the second
one to the set of simulated values �̂�𝑖 of the same variable at
the same time instants 𝑡𝑖.The normalized square of residuals (𝑅) between 𝐷 and �̂� is
defined as follows:

𝑅 =
𝐼𝑛
𝐼𝑑

(2)
where:

• 𝐼𝑛 is the numerical integration (over time) of the time
series data (

𝐷𝑖 − �̂�𝑖
)2 which is an approximation of

∫ (�̂�(𝑡) −𝐷(𝑡))2𝑑𝑡, where 𝐷(𝑡) and �̂�(𝑡) are the time-
continuous variables associated with 𝐷 and �̂� respec-
tively,

• 𝐼𝑑 is the numerical integration (over time) of the time
series data (𝐷𝑖

)2 which is an approximation of ∫ (𝐷(𝑡))2𝑑𝑡,
where 𝐷(𝑡) is the time-continuous variable associated
with 𝐷,

The numerical integration in 𝐼𝑛 and 𝐼𝑑 has been performed
with the function integrate.xy of the 𝑅 package sfsmisc.

The normalized mean square error (𝑁𝑀𝑆𝐸) was com-
puted as defined in [32], and normalized over the product
between the mean ̄̂𝐷 of the time series of simulated data and
the mean �̄� of the time series of observation data:

𝑁𝑀𝑆𝐸 = 1
𝑛𝑡

𝑛𝑡
∑

𝑖=1
(�̂�𝑖 −𝐷𝑖)2 ⋅

( ̄̂𝐷 ⋅ �̄�
)−1 (3)

2.4.4. Preselection of a subset of simulations
The ABC-RF method can be applied to the whole set

of 30000 simulations or on a subset of simulations. This
would reduce the dimension of the reference table and, con-
sequently, the computational time. Such subset can be cho-
sen in different ways. For instance, as the goal is to find
some values of model parameters that correspond to the ob-
served data, we can focus on simulations close to the obser-
vations, that is on simulations with small values of the sum-
mary statistics 𝑅 and 𝑁𝑀𝑆𝐸. For this purpose, we calcu-
lated for each simulation the sum of the summary statistics
(that is the sum of the 𝑅 or 𝑁𝑀𝑆𝐸 values of the variables):
this value is hereafter called “total 𝑅” or “total 𝑁𝑀𝑆𝐸”.
The set of simulations with the smallest values of total 𝑅 or
total 𝑁𝑀𝑆𝐸 were selected for the subset. Different sizes
were tested for the subsets, as described in section 2.6.
2.4.5. Estimation of the parameter value from the

posterior distribution
In a classical Bayesian framework, the estimated values

of the parameters are determined from the posterior proba-
bility distributions, which can be obtained using the Bayes
rule (1). However, as mentioned previously the likelihood is
intractable here. Hence, instead of using exact posterior dis-
tributions, we use approximate posterior distributions, ob-
tained thanks to the ABC approach (the ABC-RF algorithm
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in our case). These distributions might present various local
maxima which makes the estimation of the optimal value for
the parameters difficult. Three options were therefore con-
sidered and tested in this study.
Consider a parameter 𝜃 and an approximation 𝜋𝜖 of the pos-
terior distribution 𝜃 ↦ 𝜋(𝜃|𝐷) of the form 𝜋𝜖 =

∑𝑁
𝑖=1 𝜔𝑖𝛿𝜃𝑖 ,where (

𝜔𝑖
)

𝑖 is a sequence of non-negative numbers sum-
ming to 1, (𝜃𝑖)𝑖 is an increasing sequence and 𝑁 ∈ ℕ∗. We
can choose an estimated value �̂� of the parameter as follows:

∙ option 𝑃𝑚𝑎𝑥: the estimated parameter value is the one
with the maximal value of the approximate posterior proba-
bility distribution:

�̂� = 𝜃𝑋 (4)
where 𝜃𝑋 is such that 𝜔𝑋 > 𝜔𝑖 for all 𝑖 ≠ 𝑋.

∙ option 𝑃𝑚𝑒𝑑 : the estimated parameter value is the me-
dian of the approximate posterior probability distribution:

�̂� = 𝜃𝑑 (5)
where 𝜃𝑑 is such that ∑𝑑

𝑖=1 𝜔𝑖 ≤ 1∕2 and ∑𝑑+1
𝑖=1 𝜔𝑖 ≥ 1∕2.

∙ option 𝑃𝑚𝑖𝑥,𝑘: it is a compromise between the first two
options. Depending on a criterion, �̂� will be equal either to
the most probable value (option 𝑃𝑚𝑎𝑥) or the median (option
𝑃𝑚𝑒𝑑):

�̂� =

{

𝜃𝑋 if 𝜔𝑋 > 𝑘
𝜃𝑁−𝜃1

𝜃𝑑 elsewhere (6)

where 𝜃1 and 𝜃𝑁 are the lower and upper bounds of the sup-
port of the approximate posterior distribution 𝜋𝜖 (which is
determined numerically and has therefore a finite support),
and 𝑘 is a constant value that has to be chosen. In this study,
we will test the values 𝑘 = 2, 3.

The option 𝑃𝑚𝑎𝑥 is well adapted to the case where the
posterior distribution is peaked, whereas the option 𝑃𝑚𝑒𝑑 is
more suitable for flat distributions (see figure 7 as an exam-
ple). The option 𝑃𝑚𝑖𝑥,𝑘 introduces a threshold to switch be-
tween the first two options depending on the shape of the
posterior distribution.
2.5. Including sensitivity analysis in ABC-RF

When the model parameters are considered independent
from each other, the ABC-RF can be applied to each param-
eter independently from each other as in algorithm 1. How-
ever, the value of some of the model parameters might have
a non-negligible influence on the remaining ones. In order to
take into account the possible mutual influence, we set up a
different calibration procedure, which includes a sensitivity
analysis of the model parameters.
2.5.1. General procedure

Before applying ABC-RF to the model parameters, a sen-
sitivity analysis is performed using the set of 30000 available
simulations. This allows us to identify the parameters that
have the greatest influence on the simulated model outputs

and to rank them from most to least important. We can then
apply the ABC-RF method iteratively, starting with the most
important parameter, and at each iteration adding the previ-
ously estimated parameters to the set of summary statistics.
The steps of this calibration procedure are summarized in
the Algorithm 2 and will be discussed in paragraphs 2.5.2
and 2.5.3.

Hereafter, this calibration procedure will be referred to
as ABC-RF with SA or ABC-RF SA.

Algorithm 2: ABC-RF with SA
Data: 𝑁 : number of parameters to be estimated

𝑀 : number of summary statistics
𝑋𝑘: summary statistics (𝑘 = 1∶𝑀)
𝑆𝑖,𝑘: sensitivity indices (𝑖 = 1∶𝑁, 𝑘 = 1∶𝑀)

Result: estimated value �̂�𝑖 of 𝜃𝑖 for 𝑖 = 1∶𝑁

1 Sorting of the parameters according to the values of
the sensitivity indices 𝑆𝑖,𝑘
→ vector 𝜎 of sorted sensitivity indices

2 for i=1:N do
3 Selection of a subset 𝑌 of summary statistics 𝑋𝑘
4 Application of ABC-RF to estimate the

parameter 𝜃𝜎(𝑖) from the set of summary
statistics {𝑌 , 𝜃𝜎(1∶𝑖−1)

}

→ posterior
distribution of 𝜃𝜎(𝑖)

5 Determination of the estimated value �̂�𝜎(𝑖) of
𝜃𝜎(𝑖) from the posterior distribution of 𝜃𝜎(𝑖)

6 end

2.5.2. Sensitivity indices and sorting
Performing a standard sensitivity analysis (based on Sobol

or FAST methods) directly to the set of 30000 simulations
was not possible because the model parameters are possibly
not independent from one another. To overcome this issue,
the methodology for models with correlated inputs proposed
in [48] was adopted. Details about the computation of the
sensitivity indices following this methodology are given in
the appendix A.

Following this methodology, a sensitivity index was cal-
culated for each of the 133 parameters and for each summary
statistic (namely the 𝑅 and the 𝑁𝑀𝑆𝐸 values) of the three
variables (chlorophyll, phycocyanin and dissolved oxygen).
These indices represent the sensitivity of the summary statis-
tic of a variable to the variation of the parameter. For each
summary statistic and each parameter, three sensitivity in-
dices have therefore been obtained, one for each variable.

For a given summary statistic, two options were then
tested to sort the parameters based on the sensitivity indices
obtained for the 133 parameters and the three variables (step
1 of Algorithm 2):

∙ option “Max”: sort the parameters following the value
of the largest sensitivity index among the three;
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∙ option “Sum”: sort the parameters following the value
of the sum of the three sensitivity indices.

2.5.3. Selection of a subset of summary statistics
In Algorithm 2, at each iteration of the loop on the model

parameters to be estimated, we can choose a subset of sum-
mary statistics on which the calibration will be applied (step
3 of Algorithm 2). If the parameters are sorted following
the values of the sum of the sensitivity indices, we chose to
apply the calibration on the whole set of summary statistics
at each iteration (3 summary statistics) to which we add the
previously estimated parameter values. In the case where
the parameters are sorted following the value of the largest
sensitivity index, two options were considered: the calibra-
tion was performed (1) either on the whole set of summary
statistics (3 summary statistics + the previously estimated
parameter values), (2) or only on the summary statistics of
the variable for which the sensitivity index of the current pa-
rameter is the largest (1 summary statistic + the previously
estimated parameter values).
2.6. Preliminary tests

The calibration methodology was first applied to a set
of simulated observations, that is some data issued from a
model simulation. The use of simulated observations instead
of real observations ensures the existence of a known param-
eter set with whom the model will reproduce the data cor-
rectly. This allows us to test the capability of the calibration
methodology to reproduce both the simulated observations
and the parameter values in an ideal case where the model is
exact.

Here, the simulation with the lowest total 𝑁𝑀𝑆𝐸 (i.e.
the closest one to the real observations, see section 2.4.4)
among the 30000 model runs was selected, and the results in
terms of total chlorophyll, dissolved oxygen and cyanobacte-
ria concentration were used as simulated observations. Namely,
the best simulation is simulation number 4022, and the asso-
ciated summary statistics were discarded from the reference
table before the application of the calibration methodology.

In order to choose the main characteristics of the ABC-
RF (e.g. the number of simulations constituting the refer-
ence table, and the number of trees used to build the random
forests) of the ABC-RF, a series of preliminary tests were
performed. The tests were performed with the classic ABC-
RF formulation only (see Algorithm 1). Namely, the tests
investigated the influence on the calibration outcomes of the
number of simulations, the randomness inherent to the ABC-
RF procedure, the use of a preselected subset of simulations
(according to section 2.4.4), the number of trees in the ran-
dom forests, and the different options for the estimation of
the parameter values from the posterior distribution (see sec-
tion 2.4.5). For these preliminary tests, only one summary
statistic was considered (𝑁𝑀𝑆𝐸). The tests are detailed
hereafter.

In order to test the influence of the number of simulations
used in the ABC-RF, various calibrations were carried out
using subsets of simulations of increasing size. Namely, the
number of simulations was varied between 2000 and 30000,

with a 2000 step. The subsets were chosen in two ways. Ei-
ther the elements of each subset were chosen randomly or
only the best simulations (in terms of values of total NMSE)
were selected as proposed in section 2.4.4. For these tests,
the number of trees was set to 500, and each calibration was
performed ten times (with the same parameters configura-
tion) to test the variability of the results inherent to the ran-
domness of the method.

Similarly, eight calibrations were carried out with an in-
creasing value of the number of trees. The number of trees
was varied from 250 to 2000 with a 250 step and tested for
all simulation subsets between 5000 and 30000 with a 5000
step. Each calibration was performed only once.

For each of these tests, once the posterior distribution
was obtained for each model parameter, the four options de-
fined in section 2.4.5 (options 𝑃𝑚𝑎𝑥, 𝑃𝑚𝑒𝑑 , 𝑃𝑚𝑖𝑥,2 and 𝑃𝑚𝑖𝑥,3)
were applied. This provided several sets of estimated pa-
rameter values. For each of these estimated parameter sets,
the model was then run. The so-obtained simulations were
finally compared with one another by calculating the total
𝑁𝑀𝑆𝐸 between calibrated model results and simulated ob-
servations.

A summary of all the calibration runs performed for the
preliminary tests is given in Table 3.
2.7. Validation on simulated observations

Following the results of the preliminary tests presented
in section 3.1.1, the ABC-RF (algorithm 1) and the ABC-
RF with SA (algorithm 2) were tested and compared under
two configurations: using a subset of either (i) 10000 or (ii)
25000 preselected simulations. In both cases, the number of
trees used to build the random forests was set to 500, and
both 𝑅 and 𝑁𝑀𝑆𝐸 were tested as summary statistics. In
the case of ABC-RF with SA, the three possible combina-
tions of parameters sorting options (section 2.5.2) and op-
tions for the selection of a subset of summary statistics (sec-
tion 2.5.3) were tested. Furthermore, the four options for the
choice of the parameter values (options 𝑃𝑚𝑎𝑥, 𝑃𝑚𝑒𝑑 , 𝑃𝑚𝑖𝑥,2and 𝑃𝑚𝑖𝑥,3) described in section 2.4.5 were also examined
for each calibration.

The combination of all the methodologies (ABC-RF and
ABC-RF with SA), configurations and above-described op-
tions, results, for each summary statistic, in a set of 8 calibra-
tion runs with the ABC-RF, and 24 calibration runs with the
ABC-RF with SA, that is (8+24)×2 summary statistics= 64
calibration runs, which are summarized in Table 4. Model
simulations were then performed with the 64 estimated pa-
rameters sets, and the model outputs were compared to the
simulated observations through the value of total 𝑅 or total
𝑁𝑀𝑆𝐸, coherently with the choice of the summary statis-
tics.

The ABC-RF (algorithm 1) and ABC-RF with SA (algo-
rithm 2) were first tested using the set of simulated observa-
tions (as described in section 2.6). In that case, the estimated
parameter values were also compared with the known pa-
rameter values used to generate the simulated observations.
To do so, the error (𝑒) between estimated and known param-
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Table 3

Summary of the calibration runs performed for the preliminary tests.

Method of Summary Reference Simulation Number Repetition Parameter Number of

calibration statistic table size preselection of trees number value estim. calib. runs

ABC-RF 𝑁𝑀𝑆𝐸 2000:2000:30000 random 500 10 𝑃𝑚𝑎𝑥, 𝑃𝑚𝑒𝑑 1200
ABC-RF 𝑁𝑀𝑆𝐸 5000:5000:30000 & closest 250:250:2000 1 𝑃𝑚𝑖𝑥,2, 𝑃𝑚𝑖𝑥,3 384

Table 4

Summary of the calibration runs performed for the validation on simulated data and the
application on real data with (i) preselection of the closest simulations for the reference
table, (ii) 500 trees per random forest, (iii) no repetition, (iv) the three variables

Method of Summary Reference Parameter Sensitivity Variables Number of

calibration statistic table size estimation index sorting used in calib. calib. runs

ABC-RF 𝑁𝑀𝑆𝐸 & 𝑅 10000 & 25000 𝑃𝑚𝑎𝑥, 𝑃𝑚𝑒𝑑 , 𝑃𝑚𝑖𝑥,2, 𝑃𝑚𝑖𝑥,3 - - 16

ABC-RF SA 𝑁𝑀𝑆𝐸 & R 10000 & 25000 𝑃𝑚𝑎𝑥, 𝑃𝑚𝑒𝑑 , 𝑃𝑚𝑖𝑥,2, 𝑃𝑚𝑖𝑥,3

Max One
48Max All

Sum All

eters was calculated, normalized over the range of variability
allowed for each parameter, and converted into a percentage:

𝑒 =
|𝜃𝑒𝑠𝑡𝑖𝑚 − 𝜃𝑡𝑟𝑢𝑒|
𝜃𝑚𝑎𝑥 − 𝜃𝑚𝑖𝑛

⋅ 100 (7)

where 𝜃𝑒𝑠𝑡𝑖𝑚 is the value of the estimated parameter, 𝜃𝑡𝑟𝑢𝑒 is
the known parameter value used to generate the simulated
observations, and 𝜃𝑚𝑎𝑥 and 𝜃𝑚𝑖𝑛 are the values of 𝜃 above
and below which the prior distribution takes values smaller
than 0.05.
2.8. Application on real data

After validation of the calibration procedures on the sim-
ulated observations, the ABC-RF (algorithm 1) and ABC-
RF with SA (algorithm 2) were tested using the set of real
data as observations. The 64 calibration runs described in
section 2.7 in the case of simulated observations (and sum-
marized in Table 4) were applied to the real data set.

Finally, we tested the ABC-RF with SA using only one
of the three variables (i.e. as if observations were recorded
for only one variable). To do so, we decided to focus on total
chlorophyll, one of the variables most commonly measured
in the framework of freshwater ecological studies. This was
done with two main objectives: (i) to assess the quality of the
calibration when only one variable is targeted; (ii) to test the
capacity of the calibrated model to simulate the two remain-
ing variables when they are not included in the calibration.
For this test, only the ABC-RF with SA was applied and the

summary statistics relative to total chlorophyll was the only
one used. Similarly to the previous calibration runs, two pre-
selected subsets of 10000 and 25000 simulations were tested,
but the selection was based on the total 𝑅 values of the to-
tal chlorophyll only. The four options described in section
2.4.5 for parameter values estimation were considered. The
two options for parameters sorting (see section 2.5.2) and the
two options for the selection of a subset of summary statistics
(see section 2.5.3) being the same when only one variable is
considered, we finally performed 8 calibration runs that are
summarized in Table 5.

3. Results
3.1. Validation of the methodology

The ABC methodology was first validated on a set of
simulated observations issued from the best model run among
the complete set of simulations in terms of total 𝑁𝑀𝑆𝐸
value (run number 4022, see Fig. 8).
3.1.1. Preliminary tests

The most relevant results of the tests that investigate the
influence on the calibrated model outputs of (i) the num-
ber of simulations used to build the reference table, (ii) the
uncertainty deriving from the inherent randomness of the
ABC-RF, and (iii) the use of preselected simulations to build
the reference table are highlighted in Fig. 4. The figure
shows the evolution of the total 𝑁𝑀𝑆𝐸 between the cal-
ibrated model outcomes and the simulated observations, ac-
cording to the size of the simulations subset used for the cal-

Table 5

Summary of the calibration runs performed for the application on real data with (i) prese-
lection of the closest simulations for the reference table, (ii) 500 trees per random forest,
(iii) no repetition, (iv) only real chlorophyll data

Method of Summary Reference Parameter Sensitivity Variables Number of

calibration statistic Table size estimation index sorting used in calib. calib. runs

ABC-RF SA 𝑅 10000 & 25000 𝑃𝑚𝑎𝑥, 𝑃𝑚𝑒𝑑 , 𝑃𝑚𝑖𝑥,2, 𝑃𝑚𝑖𝑥,3 Max=Sum One=All 8
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Figure 4: Preliminary tests. Total 𝑁𝑀𝑆𝐸 between the sim-
ulated observations and the model results calibrated through
the ABC-RF calibration, according to the size of the simula-
tions subset used to generate the reference table. Panel a):
randomly selected subsets; panel b): subsets of preselected
simulations. The boxplots represent relevant statistical char-
acteristics of the sets of ten equivalent runs of ABC-RF cali-
bration. The blue lines and red points indicate the median and
the mean values of the set, respectively. The bottom and top
edges of the boxes mark the 25th and 75th percentiles respec-
tively, and the maximal and minimal values of the ensemble are
marked through the whiskers extent. Eventually, the solid red
line in panel a) represents, for a direct comparison, the mean
values of the boxplots in panel b). Vice versa for the solid red
line in panel b). The number of trees was set to 500 and the
option for parameter values estimation is 𝑃𝑚𝑖𝑥,2.

ibration. Panel a), is relative to subsets with randomly se-
lected simulations, while panel b) is relative to preselected
simulations (see section 2.4.4). For each subset size, ten cal-
ibration runs were carried out. The resulting values of total
𝑁𝑀𝑆𝐸 are plotted in Fig. 4 as a series of boxplots. On the
boxplots, the blue lines and red points indicate the median
and the mean values of the set, respectively; the bottom and
top edges of the box mark the 25th and 75th percentiles, re-
spectively. Eventually, the maximal and minimal values of
the ensemble are marked through the whiskers extent. Fig. 4
shows the calibration results obtained with the option 𝑃𝑚𝑖𝑥,2only; similar results have been obtained for the other options
for parameter values estimation.

The results in Figure 4 show that, for the case of ran-
domly selected simulations (panel a), the mean value and
variability (i.e., the range of boxplots) of the calibration er-
ror decrease sharply for subsets of at least 20000 simulations.
In particular, the minimum values of mean value and vari-
ability of total 𝑁𝑀𝑆𝐸 are obtained for the case of a set
of 24000 simulations. Panel (b) of the same figure shows
that preselecting the best simulations largely improves the

results of the calibration procedure, both in terms of mean
value and variability of total NMSE. In the case of prese-
lected subsets, the mean value and variability seem rather
independent of the number of simulations used for calibra-
tion, as they do not vary strongly with increasing size of the
set of simulations (except for the cases of 18000 and 22000
simulations where the mean values and variability are larger,
possibly due to the randomness of the method and the insuf-
ficiently large number of repetitions). Minimum values are
obtained for 10000 and 12000 simulations. With randomly
selected subsets, at least 20000 simulations are needed to ob-
tain performances comparable to the case of the preselected
subsets.

The tests performed on the number of trees used to con-
struct the random forests did not show any significant influ-
ence on the calibration results, which did not improve as the
number of trees increased, neither in terms of total 𝑁𝑀𝑆𝐸
nor in terms of variability (see Appendix B for some detailed
numerical results).

The way the parameter values are chosen from the pos-
terior distribution (options described in section 2.4.5) has an
impact on the calibration results. However, the preliminary
tests did not show clear and conclusive results, and it was not
possible to identify an option that consistently outperformed
the others for all three variables at once. For this reason, all
four options (𝑃𝑚𝑎𝑥, 𝑃𝑚𝑒𝑑 , 𝑃𝑚𝑖𝑥,2 and 𝑃𝑚𝑖𝑥,3) have been tested
in subsequent applications.

In conclusion, the tests described above indicate that, for
the model considered, a reference table built from at least
24000 randomly selected simulations is necessary to min-
imize the mean value and the variability of the calibration
error obtained with the ABC-RF method. In the case of
preselected simulations, comparable results can be obtained
with a smaller reference table of about 10000 simulations.
The number of trees did not show a significant effect on the
calibration error, and none of the four options for choosing
parameter values could be preferred over the others.
3.1.2. Application on simulated observations

Following the results of the preliminary tests (section
3.1.1), ABC-RF (algorithm 1) and ABC-RF with SA (algo-
rithm 2) were tested and compared to the simulated observa-
tions, under two main configurations: with subsets of either
(i) 10000 or (ii) 25000 preselected simulations. The set of
calibration runs summarized in Table 4 were performed, re-
sulting, for each summary statistic, in eight calibration runs
for ABC-RF and 24 runs for ABC-RF with SA.

In general, the calibration results were of similar quality
whether using 𝑅 or 𝑁𝑀𝑆𝐸 as a summary statistic. Since
the best calibration was obtained with𝑅 as a summary statis-
tic, the results using 𝑁𝑀𝑆𝐸 will not be discussed.

The eight best calibration runs (in terms of total 𝑅 value)
for ABC-RF with SA with 𝑅 as the summary statistic are
listed in Table 6, along with the two best calibration runs
for ABC-RF without SA. In the table, for each calibration
run, the size of the reference table built from the preselected
set of simulations (10000 or 25000), the name of the method
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Table 6

Application to the simulated observations. List of the calibration runs with the lowest total
𝑅 values for the ABC-RF with SA (eight best runs) and without SA (two best runs), sorted
according to the total 𝑅 value. The characteristics of each calibration run are detailed in
terms of: size of the reference table, calibration method, sorting of the sensitivity indices,
variables used in the calibration, and option for the estimation of the parameter value
(see sections 2.5.2, 2.5.3 and 2.4.5). The total 𝑅 value of the closest simulation to the
simulated observations is also provided as a reference.

Reference Method of Sensitivity Variables Parameter Total

table size calibration index sorting used in calib. estimation 𝑅
25000 ABC-RF SA Max One 𝑃𝑚𝑎𝑥 0.057
10000 ABC-RF SA Sum All 𝑃𝑚𝑖𝑥,3 0.109
25000 ABC-RF SA Sum All 𝑃𝑚𝑒𝑑 0.115
10000 ABC-RF SA Max All 𝑃𝑚𝑎𝑥 0.125
10000 ABC-RF SA Sum All 𝑃𝑚𝑖𝑥,2 0.127
25000 ABC-RF SA Sum All 𝑃𝑚𝑎𝑥 0.137
10000 ABC-RF SA Max All 𝑃𝑚𝑖𝑥,2 0.137
25000 ABC-RF SA Max All 𝑃𝑚𝑎𝑥 0.138
25000 ABC-RF - - 𝑃𝑚𝑒𝑑 0.594
10000 ABC-RF - - 𝑃𝑚𝑒𝑑 0.671

Sim. number

Best simulation: 12936 0.144

(ABC-RF or ABC-RF with SA), the options used for the cal-
ibration, and the total 𝑅 value are specified. The different
options for the ABC-RF with SA method are described in
the sections 2.5.2, 2.5.3 and 2.4.5. The calibration runs are
sorted according to the total 𝑅 value. The total 𝑅 value of
the simulation that is closest to the simulated data (sim. n.
12936) is also provided as a reference in the table.

The best calibration run among all (the one with the low-
est value of total 𝑅) is obtained with the larger set of 25000
simulations. Its total 𝑅 value (0.057) is sensibly lower than
all the other calibration runs. However, the remaining seven
calibration runs presented in table 6 for the ABC-RF with
SA also show good model performances. In particular, the
use of the smaller preselected set of simulations to generate
the reference table does not deteriorate model performances.
Notably, the second best calibration (total 𝑅 = 0.109) is ob-
tained with a set of 10000 preselected simulations.

The integration of sensitivity analysis into the ABC-RF
with SA method greatly improves the calibration results when
compared to those obtained with ABC-RF and to the closest
simulation to the data. All calibration runs listed in Table 6
that use SA show total 𝑅 values five to ten times lower than
those obtained by ABC-RF without SA. Compared to sim-
ulation n. 12936, the calibration error is reduced by about
60% compared to the best calibration run, and by about 25%
compared to the second best calibration run. Thus, the in-
tegration of SA in the ABC-RF framework seems to be cru-
cial for the application of ABC to a complex process-based
model.

Simulations from the two best calibration runs are plot-
ted for the three variables of interest in Fig. 5, and compared
with both simulated observations and the simulation closest
to the data (simulation n. 12936).

The total chlorophyll value (Fig. 5-a) shows the strongest

variations from one calibration run to another. The simula-
tion from the best calibration run (red line) follows the simu-
lated observations very closely, reproducing the daily oscil-
lations correctly. The simulation from the second best cali-
bration run (blue line) shows an early and slightly overesti-
mated peak of chlorophyll, while simulation n. 12936 shows
a delayed and still slightly overestimated peak of chlorophyll.

Simulations from both calibration runs give good results
for cyanobacteria (Fig. 5-b), with a slight underestimation
with the second best calibration run (blue line) in the last
days of the bloom. For oxygen concentration (Fig. 5-c), the
results obtained with both calibration runs are significantly
better than the simulation that is closest to the data (black
lines).

As shown in Table 6, the two best calibration runs shown
in Fig. 5 are obtained by different configurations of ABC-
RF with SA. Indeed, the best calibration run, which is per-
formed with a reference table built from a set of 25000 sim-
ulations, was obtained by sorting the parameters according
to the value of the largest sensitivity index among the three
variables of interest (option “Max” in section 2.5.2), and by
calibrating each parameter only using the summary statistic
of the corresponding most influential variable (see section
2.5.3). The second best calibration run (reference table built
from a subset of 10000 simulations) is obtained by using
the opposite options for sorting the parameters and select-
ing the summary statistics used for calibration (see sections
2.5.2 and 2.5.3). The options for estimating parameter val-
ues from the posterior distribution are also different for these
two calibrations (𝑃𝑚𝑎𝑥 and 𝑃𝑚𝑖𝑥,3).

The use of simulated observations ensures that there ex-
ists a known set of parameter values to replicate the data.
The difference between the estimated parameter sets and the
reference parameter set (the one used to generate the simu-
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(a) Total chlorophyll
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(b) Cyanobacteria
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(c) Oxygen

Simulated data
Closest simulation

Overall best calibration (25000)

Second best calibration (10000)

Figure 5: Time series of total chlorophyll (a), cyanobacteria (b) and dissolved oxygen (c) concentrations for the two best
calibration runs (red and blue lines), the simulated observations (grey lines) and the closest simulation to the data (simulation n.
12936, black lines). The best calibration run among all (red lines) is obtained with a set of 25000 simulations, while the second
best (blue lines) with a set of 10000 preselected simulations.

lated observations) was quantified using the error 𝑒 defined
in equation (7). Figure 6 shows the values of this error 𝑒 for
the two best calibration runs (i.e. those plotted in Fig. 5):
the best calibration run among all (obtained with a subset of
25000 simulations, Fig. 6-a) and the second best calibration
run (obtained with a subset of 10000 simulations, Fig. 6-b).

The parameters whose errors are shown in Fig. 6 are
sorted according to the value of the sensitivity indices and
the option chosen: option “Max” for the best calibration run
among all, option “Sum” for the second best calibration run
(see section 2.5.2 and table 6 for the details). Only the first
30 parameters are shown. The values (based on the sensi-
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b) Second best calibration (with 10000 preselected simulations)
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Colorchart of the largest sensitivity index among the three

Figure 6: Normalized error 𝑒 (see equation (7)) between the estimated parameters set and the one used to generate the simulated
observations and associated color charts showing the sensitivity indices of the 30 most in�uential parameters. Panel a) is relative
to the best calibration run among all (obtained with a subset of 25000 simulations). The parameters were sorted according to
the value of the largest sensitivity index among the three. Panel b) is relative to the second best calibration run (obtained with
a subset of 10000 simulations). The parameters were sorted according to the value of the sum of the three sensitivity indices.
Both color charts are plotted with a logarithmic scale.

tivity indices) used to sort the parameters are also shown in
Figure 6 (black dots and color chart); they are normalized
over the sum of the values and converted to percentage of
importance.

As shown in Figures 6-a) and 6-b), the order of impor-
tance of parameters varies only slightly between the two cal-
ibration runs. Regarding the ten most important parameters,
the main differences between the two calibration runs are the
permutation of the second and third most important parame-
ters and the ninth parameter, which changes from the growth
rate of flagellates (for the run with 10000 preselected simu-
lations) to the Chl/C ratio for flagellates (for the run with
25000 simulations). Figure 6 also shows that the percent-
age of importance of the parameters decreases rapidly: for
both calibration runs, it is about 25% for the most important
parameter, and drops below 5% after the tenth parameter in
importance order.

In terms of errors on parameter values, the two calibra-
tion runs in Fig. 6 show different behaviours. The second
best calibration run (panel b) has rather small errors, less
than 25%, for the ten most important parameters. Errors ex-
ceed 40% only for parameters with a very low impact on the
model outputs.

On the other hand, the best calibration run among all
(panel a) shows considerable errors for the most important
parameters (about 60% for the most important, and about
30% for the second and third). Low errors are then found for

the other parameters until the tenth position. After the tenth
position, the errors increase without a specific pattern, sim-
ilar to what was found for the other calibration run. Despite
these large errors in the estimation of the most relevant pa-
rameters, the simulations from this calibration run give the
best overall results (see Figure 6-a).

The application of ABC-RF with SA influences the shape
of the posterior distributions of the parameters. As the num-
ber of summary statistics used for calibration increases with
each iteration of the algorithm 2, the resulting posterior dis-
tributions tend to be smoother and less irregular compared
to those obtained with the ABC RF method, in which the
same set of summary statistics is used to calibrate each of the
parameters independently. This smoothing effect increases
with the number of iterations of the algorithm 2, but can al-
ready be seen after only a few iterations and thus on most
parameters.

Figure 7 shows, as an example, the posterior probabil-
ity densities of one calibration run with ABC-RF and those
of the two best calibration runs of ABC-RF with SA for
three parameters, namely the first (PON1), the fourth (TcP-
MxBLU_P) and the twentieth (b_poc1doc) parameters in or-
der of importance according to the sensitivity analysis pre-
sented in Fig. 6. By the fourth iteration, the posterior dis-
tribution appears to be significantly smoother in the case of
ABC-RF with SA (Fig. 7-b). This is even more striking for
parameters further down the calibration loop, such as for the
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Figure 7: Examples of prior and posterior probability densities of three parameters: PON1, TcPMxBLU_P and b_poc1doc. The
corresponding values for P𝑚𝑎𝑥 and P𝑚𝑒𝑑 are also compared. The posterior densities obtained with ABC-RF, and ABC-RF with SA
for the two best calibration runs are given for comparison.

twentieth parameter.
This smoothing effect has a strong impact on the estima-

tion of the parameter values. With the ABC-RF method, we
see in Fig. 7 that at least three significantly different param-
eter values correspond to local maxima of the posterior dis-
tribution of TcPMxBLU_P that have nearly the same value.
Although local maxima are also present on the posterior dis-
tributions obtained with ABC-RF with SA, it is easier to de-
termine the most likely parameter value.

The shape of the posterior distribution also modifies the
results of the four options described in section 2.4.5. For the
posterior distribution in Fig. 7 obtained with ABC-RF with
SA, the 𝑃𝑚𝑎𝑥 and 𝑃𝑚𝑒𝑑 options lead to values that are very
close to each other, whereas in the case of classical ABC-RF,
the two values are very different.
3.2. Application on real observations

The ABC RF and ABC RF with SA were applied to the
real observation dataset (see Table 4). As for the applica-
tion on simulated observations, the calibration results were
of similar quality whether 𝑅 or 𝑁𝑀𝑆𝐸 was used as sum-

mary statistics. As the best calibration run among all is ob-
tained with 𝑅, only the results obtained with this summary
statistic will be presented hereafter.

Table 7 lists the best calibration runs obtained with ABC-
RF with SA (eight runs) and ABC-RF without SA (two runs)
on the real observation dataset, using 𝑅 as the summary
statistic. In the table, the calibration runs are sorted accord-
ing to the total 𝑅 value, which is also shown in the table with
the characteristics of each calibration run. The total 𝑅 value
of the simulation that is closest to the real observations (sim-
ulation number 4022, see section 2.6) is also provided as a
reference.

As already pointed out in the section 3.1.2, the use of
sensitivity analysis via the implementation of ABC-RF with
SA (algorithm 2) is crucial to make ABC work on a com-
plex model such as the one examined. Indeed, only the cal-
ibration runs with ABC-RF with SA lead to total 𝑅 values
lower than the one of the best simulation (simulation number
4022). The best calibration runs of the ABC-RF without SA
are reported in table 7 for subsets of 10000 and 25000 sim-
ulations, and show poor performances, with a total 𝑅 value
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Table 7

Application to the real observations. List of the calibration runs with the lowest total 𝑅
values for the ABC-RF with SA (�rst eight runs) and without SA (�rst two runs), sorted
according to the total 𝑅 value. The characteristics of each calibration run are detailed in
terms of: size of the reference table, calibration method, sorting of the sensitivity indices,
variables used in the calibration, and option for the estimation of the parameter value (see
sections 2.5.2, 2.5.3 and 2.4.5). The total 𝑅 value for the closest simulation to the real
observations is also provided as a reference.

Reference Method of Sensitivity Variables Parameter Total

table size calibration index sorting used in calib. estimation 𝑅
10000 ABC-RF with SA Sum All 𝑃𝑚𝑖𝑥,3 0.282
25000 ABC-RF with SA Sum All 𝑃𝑚𝑎𝑥 0.327
10000 ABC-RF with SA Sum All 𝑃𝑚𝑎𝑥 0.341
10000 ABC-RF with SA Sum All 𝑃𝑚𝑖𝑥,2 0.342
25000 ABC-RF with SA Sum All 𝑃𝑚𝑖𝑥,2 0.343
10000 ABC-RF with SA Max All 𝑃𝑚𝑎𝑥 0.344
25000 ABC-RF with SA Max All 𝑃𝑚𝑖𝑥,2 0.345
10000 ABC-RF with SA Max All 𝑃𝑚𝑖𝑥,2 0.346
25000 ABC-RF - - 𝑃𝑚𝑒𝑑 0.594
10000 ABC-RF - - 𝑃𝑚𝑒𝑑 0.671

Sim. number

Best simulation: 4022 0.368

about two times larger than that of the best calibration run.
The best calibration run among all is obtained here with

the smallest set of 10000 simulations, and by implementing
the algorithm 2 (ABC-RF with SA). With a total 𝑅 value
of 0.282, it is significantly better than the other calibration
runs. Indeed, the results of the second best calibration run,
obtained with a larger set of 25000 simulations, lead to a
total 𝑅 value 16% larger (𝑅=0.327). This total 𝑅 value is
21% larger for the third best calibration run.

In terms of configurations, the five best calibration runs
are all obtained by sorting the parameters on the basis of the
value of the sum of the sensitivity indices of the three vari-
ables (option “Sum” in section 2.5.2). But none of the four
options for estimating parameter values from the posterior
distribution seems to be preferable to the others.

The simulations from the best calibration run are plotted
in Figure 8 (red lines) and compared with the real observa-
tions (gray lines) and with the simulation that is closest to the
observations (simulation number 4022, black lines). Com-
pared to the simulation n. 4022, the model simulations after
calibration with ABC-RF with SA improve by about 24%.
In particular, the peak of chlorophyll is more correctly mod-
elled after calibration, both in terms of timing and maximum
concentration; the cyanobacteria concentration is also more
accurately simulated, especially during the growth phase.
Concerning the oxygen concentration, identifying the initial
condition avoided underestimation in the second half of the
simulation. After calibration with the ABC-RF with SA, the
model seems to be able to reproduce the general behaviour
for the three variables correctly. However, the amplitude of
the observed daily variations is strongly reduced in the sim-
ulations, especially for total chlorophyll and oxygen concen-
tration.

ABC-RF with SA was finally applied using only total

chlorophyll data. Several calibration runs with different con-
figurations were performed, as presented in section 2.8 and
summarized in table 5. The best calibration run, in terms of
𝑅 value for total chlorophyll only, was obtained with a subset
of 10000 preselected simulations and is shown in Fig. 8 (pur-
ple lines). In terms of total chlorophyll (panel a), the simula-
tions from this calibration are better than those from the best
calibration on the full dataset (red lines), with 𝑅 values (for
total chlorophyll) equal to 0.0764 and 0.0929, respectively.
However, the improvement obtained by focusing only on one
variable is marginal (about 15%), especially when looking
at the other two variables. Panels b and c of Figure 8 show
how phytoplankton growth is attributed to species other than
cyanobacteria, and how anoxic conditions are poorly simu-
lated in this case by the model. In particular, the total 𝑅
value (over the three variables) of the simulation calibrated
only on total chlorophyll is equal to 1.377, while that of the
best overall calibration is equal to 0.282.

Finally, note that in this application, the alternatives for
estimating the parameters 𝑃𝑚𝑖𝑥,2 and 𝑃𝑚𝑖𝑥,3 always coincided
with 𝑃𝑚𝑎𝑥, suggesting particularly peaked posterior distri-
butions. Calibration on total chlorophyll data alone was not
significantly improved by using a larger subset of 25000 sim-
ulations, leading to an𝑅 value of 0.0761 for total chlorophyll
and a total 𝑅 value (over the three variables) of 1.377.

4. Discussion
In this paper, Approximate Bayesian Computation with

Random Forest (ABC-RF) has been tested for the calibration
of a highly parametrized complex biogeochemical model.
The calibration procedure focuses on three variables that are
particularly relevant to aquatic ecology and water resource
management: total chlorophyll, cyanobacteria and dissolved
oxygen concentrations.
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(a) Total chlorophyll
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(b) Cyanobacteria
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Figure 8: Time series of total chlorophyll (a), cyanobacteria (b) and dissolved oxygen (c) concentrations for: real observations
(grey lines), closest simulation to the data (simulation n. 4022, blak lines), best overall calibration run (red lines), and the best
calibration considering only total chlorophyll (purple lines).

4.1. A novel approach for parameter inference
Approximate Bayesian Computation (ABC) is a method-

ology that has quickly become a standard technique for pa-
rameter inference [5, 45, 35]. Although ABC theoretically
allows Bayesian inference for models of almost arbitrary com-
plexity [47, 3, 12], both deterministic and non-deterministic
[45], ABC has not yet been tested on highly parameterized

deterministic models. To our knowledge, our application to
the Delft3D-BLOOM biogeochemical model is the first to
test an ABC methodology for the calibration of a complex
physically based model with so many parameters to be esti-
mated.

To date, most applications of ABC for parameter infer-
ence either use its standard formulation, in which the pos-
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terior distribution is estimated by a rejection algorithm [e.g.
24, 47, 16], or focus on methods that improve the robust-
ness and efficiency of the rejection algorithm (e.g. Markov
chain Monte Carlo [28] or sequential Monte Carlo methods
[40, 45, 4]).

The ABC random forest (ABC-RF), proposed in 2019,
replaces the rejection algorithm with the random forest ma-
chine learning technique [35]. There are currently only a few
applications of this recent methodology in the scientific liter-
ature outside of [35] (e.g. [11, 17]). ABC-RF was tested here
in its original form as proposed by Raynal et al. [35], and in a
new framework where the results of a sensitivity analysis are
integrated into the calibration procedure. This allow taking
into account the mutual influence between model parame-
ters and their relative importance with respect to the model
outputs.

Preliminary tests were performed on ABC-RF to define
a robust configuration in terms of the number of simulations
used to generate the reference table and the number of trees
in the random forests. These tests show that a reference ta-
ble generated from at least 25000 simulations is necessary
to obtain a good calibration of the three variables under con-
sideration. A comparable value of 20000 simulations was
found in a similar application for a model with fewer pa-
rameters [24]. In [17], where the authors applied ABC-RF
not for parameter inference, but for model selection, a set
of 10000 simulations was used. In our application, we also
found that the number of simulations could be reduced to
10000 without deteriorating the overall performance of the
calibration, provided that the simulations closest to the ob-
servations were selected. On the other hand, the test per-
formed on the influence of the number of trees shows that
this variable does not have a great impact on the results of
the calibration: it has therefore been set at its default value
as recommended in [17].

Due to the novelty of the methods, ABC-RF and ABC-
RF with SA were tested in different configurations. Both
methods were then validated on simulated observations be-
fore being applied on the real observations dataset.

Regardless of the number of simulations, the application
of the ABC-RF method (without SA) did not allow us to cal-
ibrate the model correctly. On the other hand, the calibration
procedure greatly benefits from the coupling with the sensi-
tivity analysis proposed here in the algorithm 2. After cali-
bration with the ABC-RF with SA, the simulations resulting
from the model have improved considerably, fully justifying
the use of this methodology.
4.2. Computational effort
4.2.1. The stock of simulations

The main computational cost in ABC is the generation of
the set of simulations from which the reference table is built.
The preliminary tests showed that, for the model BLOOM, a
set of at least 25000 simulations can drastically reduce both
the overall error and the uncertainty of model outcomes. De-
pending on the model under consideration, this might be a
relatively high number of model runs.

However, differently from other popular techniques for
automated calibration (e.g. Newton or genetic algorithms),
the computational cost of the methods based on ABC resides
mainly in the generation of the set of simulations. Once this
task is completed, the calibration itself is computationally
inexpensive. This allows, for instance, to carry out numer-
ous calibration runs under different configurations. This rep-
resents a great advantage, especially in relation to a young
methodology such as ABC that still lacks a structured work-
ing framework.
4.2.2. The computational impact of coupling ABC-RF

and SA
With the implementation of the algorithm 2 (ABC-RF

with SA), the computational cost increases: at each iteration
the number of summary statistics is incremented, inducing
an increase in computation time. Moreover, the calibration
of each of the parameters depends on those of the preced-
ing ones and their calculation can therefore not be paral-
lelized. Generally speaking, with a set of 25000 simulations,
the ABC-RF with SA can take up to ten times longer than
ABC-RF to complete the estimation of all 133 parameters.

In this respect, using a subset of preselected simulations
to build the reference table can significantly reduce the com-
putation time taken by the ABC-RF with SA. Our results
showed that the use of a smaller number of preselected sim-
ulations (the 10000 simulations that are the closest to the
observation data) did not deteriorate the calibration results
and made it possible to reduce the calculation time by ap-
proximately 2/3 compared to a calibration made on 25000
simulations.

Finally, the results of the sensitivity analysis could be ex-
ploited to select a reduced number of parameters to include
in the calibration, further reducing the computational cost of
ABC-RF with SA. Such an approach has not yet been tested
in this work. For this, it would be necessary to set a thresh-
old of significance for the parameters according to their sen-
sitivity index, which would subsequently make it possible to
discard the parameters of lesser importance.
4.3. Parameter estimation is improved by coupling

ABC-RF and SA
4.3.1. The uncertainty in parameter estimation

In Bayesian parameter inference, once the posterior prob-
ability is retrieved, estimating the value of the parameter
is not always straightforward [23]. Some distributions can
be very peaked which facilitates the determination of the
value of the parameter. But others will instead show mul-
tiple local maxima or will be rather flat [23]. The P𝑚𝑖𝑥,2 and
P𝑚𝑖𝑥,3 options described in section 2.4.5 were designed to
discriminate automatically between peaked and flat distribu-
tions, making it easier to estimate the value of the parameter.
Among the four options tested for estimating the values of
the parameters from the posterior distributions, the results
of the application of the calibration on simulated and real
observations data showed that the option P𝑚𝑒𝑑 was the least
suitable.
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In the algorithm 2, new information is added to each iter-
ation of the calibration routine (namely, the values of the pre-
viously estimated parameters). After only a few iterations,
this has a marked effect on the shape of the posterior dis-
tributions which appear smoother and more peaked. This
clearly reduces the uncertainty in the estimation of the pa-
rameters and ultimately represents a clear advantage for the
calibration procedure.
4.3.2. Equifinality

The benefit of reducing uncertainty in parameter estima-
tion is negligible during the very first iterations of the algo-
rithm that deal with the most relevant parameters. This is
evident when looking at Fig. 6 which shows the error be-
tween real and estimated parameters (calibration performed
on simulated data). For some parameters, a considerable
error is made. The error is very low for the parameters of
medium-high importance (between the 3rd and the 10th po-
sition approximately), whereas it increases again for certain
parameters having a low sensitivity index. Despite the dif-
ferences in parameter values between the simulations (set
of parameters used to generate the simulated observations
and those obtained with the two calibration runs in Fig. 6),
the simulations are globally comparable. The total R val-
ues given in tables 6 and 7 indeed show that different sets
of parameters, resulting from calibration runs with different
characteristics, can lead to comparable model performances.

The objective of this calibration work was not to recover
the real values of the model parameters, but rather to iden-
tify sets of parameters that lead to model simulations close to
the observations, for the three variables of interest. Our re-
sults suggest that several sets of distinct parameters can thus
be obtained. This is known as equifinality: because model
variables are related to each other by complex relationships
in the model, different sets of parameters can produce equiv-
alent model outputs [2, 20].

The non-uniqueness of the parameterization of complex
hydro-ecological models is a known problem [6, 2, 20]. It
derives from the fact that the dimension of the observations
𝐷 is much smaller than those of the vectors of state variables
and parameters (𝑥, 𝜃) [6]. Automated calibration procedures
therefore seek to optimize certain dynamics which are of a
significantly higher order than what can be observed to de-
scribe the system [6, 20].

The ability to run multiple calibrations, thanks to the
rather low computational cost of ABC methodologies, once
the reference table has been built, has highlighted the exis-
tence of multiple sets of parameters with equivalent model
outputs. This is certainly more related to the complex struc-
ture of the model than to the proposed calibration methodol-
ogy, partly calling into question the idea of seeking an opti-
mal set of parameters for a complex biogeochemical model.
4.4. A specific working framework

In this article, the ABC-RF method has been applied
to a specific framework, particularly in terms of available
dataset, parameters to be estimated and summary statistics.

4.4.1. Use of high-frequency data
High-frequency measurements of three variables rele-

vant to aquatic ecology and environmental modelling were
available for this work. This allowed the calibration effort
to be concentrated in a period of 16 days, relatively short
for typical hydro-ecological modelling applications, which
often extend over a few months at least. The main objec-
tive here was to test the ability of a complex biogeochemi-
cal model to reproduce a bloom event correctly, and to dis-
criminate the biomass between cyanobacteria and other algal
species.

Events of this duration are often completely ignored by
traditional limnological monitoring, which is based on pe-
riodic sampling or profiling. However, these events are ex-
tremely important for the management of water resources
in general and for that of our study site in particular, where
bathing bans must be issued quickly in the event of the pres-
ence of cyanobacteria. Short-term reliable model simula-
tions could be a great advantage in this regard.

Moreover, the choice of a short simulation period also
made it possible to contain the computational cost of each
model simulation, considerably alleviating the application
of ABC-based methods from a computational point of view.
4.4.2. Choice of the parameters

A set of 133 parameters is considered in this work for
the calibration. It includes 114 model parameters and 19
initial conditions. The total number of model parameters is
considerably higher. However, previous trial-and-error tests
have shown that many of these parameters have little influ-
ence on the model outputs, at least with respect to the three
target variables. This is the case for parameters involved
in processes that do not directly affect the target variables.
Three main physical processes were targeted in this calibra-
tion: those related to algal physiology (e.g. growth, mortal-
ity, and sedimentation), oxygen consumption, and nutrient
and organic matter evolution. The 114 model parameters in-
cluded in the calibration were selected based on their physi-
cal significance and direct association with the processes of
interest.

The choice to include certain initial conditions in the cal-
ibration is explained by the fact that the 34 variables listed in
table 2 must be initialized. However, some of them, such as
the four fractions of particulate organic matter for example,
are extremely difficult to measure or estimate, despite their
importance in the model. The presence of nutrients in read-
ily available forms or in less accessible compounds clearly
influences the model results in terms of phytoplankton dy-
namics and, subsequently, in terms of oxygen concentration.

In our application, the available data did not allow the
concentrations of the different nutrient fractions to be esti-
mated without uncertainty; these concentrations were there-
fore included in the parameters to be calibrated. Even when
measurements are available, they may be affected by a de-
gree of uncertainty justifying their calibration. For exam-
ple, the scattering that characterizes high-frequency mea-
surements of oxygen and cyanobacteria concentrations intro-
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duces uncertainties in the measurements. This is why these
two initial conditions have also been included in the list of
parameters to be estimated.

However, the sensitivity analysis shows that most of the
considered parameters have negligible influence on the model
outputs, with 10 (20, respectively) parameters accounting
for about 70% (80%, respectively) of the overall variability.
According to the sensitivity analysis, nitrogen is the most
important nutrient in the system. In particular, its distribu-
tion among dissolved and fast-decomposing particulate or-
ganic fractions was particularly important for model simu-
lations. The calibration of the initial conditions, when their
values are uncertain, can therefore significantly improve the
results of the model, and, in the light of the formulation of
the model, give new information on the functioning of the
system.

The most important physiological parameters were those
directly involved in the equation of phytoplankton growth
(i.e. the coefficients for temperature dependence of growth
and the potential growth rates).
4.4.3. Choice of the summary statistics

The choice of summary statistics is crucial for the ABC.
To our knowledge, in all applications of the ABC, summary
statistics do not depend on observations. Generally, the set
of simulations is used by ABC approaches to generate an in-
verse model which is intended to be applied to several sets of
observations to estimate the associated parameters. This is a
great advantage of ABC approaches. However, this cannot
be applied to any model. In our case, for example, the set of
simulations depends on the meteorological conditions that
are specific to the period under consideration. In this case,
the inverse model generated by the ABC method is also spe-
cific and only remains valid for the period considered.

This is the reason why it was possible in our case to use
summary statistics that depend directly on the observations,
such as 𝑅 and 𝑁𝑀𝑆𝐸. Other choices of summary statistics
independent of the observations have been tested to describe
the time series (e.g. series of successive means, spline pro-
jection coefficients). However, using error measures as sum-
mary statistics has proven to be the most effective.

Finally, this particular framework also justifies the use
of a subset of preselected simulations to run the ABC, as
we have suggested. Since the subset of simulations can only
be used to calibrate the model on a specific set of observa-
tions, simulations that deviate from the target behaviour do
not provide any useful information and can therefore be re-
moved from the reference table.
4.4.4. Analysis of the performance of the model

BLOOM
The model calibrated on the set of real observation data

reproduces very well the general behaviour of the three tar-
get variables over the selected period. However, the observa-
tions show a strong sub-daily variability which is not entirely
reproduced by the model. This is probably due to the struc-
ture of the model rather than the calibration methodology.

Complex biogeochemical models are generally designed to
represent dynamics that extend over longer time periods than
those simulated here (i.e., monthly to seasonal), and often
do not explicitly model processes at a sub-daily scale [e.g.
14]. Moreover, the configuration set up for this work, i.e.
the set of substances and processes activated in the model,
might not be optimal. A large number of models charac-
terized by different degrees of complexity are available to
simulate the biogeochemical cycle in aquatic ecosystems. A
large literature has already addressed their advantages and
disadvantages [e.g. 1, 34, 50, 22], highlighting the impos-
sibility of fully validating such models due to the complex-
ity of the biogeochemical cycle and the lack of commonly
available observations [50, 22]. In this respect, our config-
uration, although complex, describes only part of the real
natural ecosystem. For example, benthic processes, macro-
phytes and zooplankton are not explicitly included. How-
ever, as with all modelling efforts, the challenge is to find
the right level of complexity for the dynamics of interest.

In this work, the comparison with three variables mea-
sured at high-frequency shows that short-term phytoplank-
ton blooms can be simulated with a model integrating rela-
tively basic processes that can be easily measured (i.e. growth,
mortality, nutrient uptake, oxygen production and decompo-
sition of organic matter). However, without additional data,
it is not possible to assess accurately the importance of cer-
tain processes such as the mineralization of organic matter,
for example. This problem was highlighted with the results
of the model calibration which was carried out using only
total chlorophyll data (this variable was chosen because of
its importance for the management of aquatic ecosystems
[52]). After calibration with total chlorophyll data only, the
model results were only slightly improved in terms of the
target variable compared to the best calibration using data
from the three available variables. On the other hand, the
dynamics in terms of oxygen and cyanobacteria concentra-
tion were extremely inaccurate. This result highlights the
importance of gathering the widest range of data possible
to assess the performance of a model aimed at describing a
complex natural system. Only the comparison with several
variables makes it possible to determine whether the over-
all functioning of the system considered is apprehended as a
whole or not [e.g. 50, 22].

5. Conclusion
Biogeochemical models are often highly parameterized

and complex. Their calibration is difficult and often neglected
in the scientific literature. Our study shows that, among
the various techniques available for automated calibration,
ABC-RF can be successfully applied to calibrate a complex
and highly parameterized biogeochemical model. Our work
focuses on a short-term algal bloom, an event that could pos-
sibly be missed by a traditional periodic survey. After cali-
bration, the model was able to reproduce the rapid biogeo-
chemical dynamics that extend over a relatively short pe-
riod. The growth and mortality of phytoplankton, as well
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as the evolution of the concentrations of cyanobacteria and
dissolved oxygen, were correctly simulated.

To obtain such results, the coupling of the ABC-RF with
a sensitivity analysis (SA) via the algorithm 2 was crucial,
as well as the availability of high-frequency data. Indeed,
the main computational effort required by the ABC is dedi-
cated to the generation of a set of simulations, which must be
composed of at least 25000 simulations for the optimization
of more than 100 parameters. The computational cost of the
ABC algorithm itself (once the simulations have been per-
formed) can be reduced by preselecting 10000 simulations
among the simulations available to build the reference table.

The summary statistics have been defined here based on
the expertise of the modeller, an approach followed in most
ABC applications so far (eg [24, 16]). This highlights the
importance of the modeller’s experience and knowledge, which
remains an essential feature of the Bayesian approach for
parameter inference, and which should not be ignored also
when applying automated calibration methods.

In optimization techniques such as local gradient-based
methods, the exploration of the parameter space depends on
the initial values of the parameters chosen by the user. This
is not the case for ABC where the parameter space is ex-
plored from user-defined prior distributions. In this regard,
ABC could be a useful technique to define appropriate ini-
tial parameter values for the application of other calibration
algorithms.

Finally, attention should also be paid to the data sets
available when approaching the calibration of a complex hydro-
ecological model. We have indeed shown that the use of
measurements of several variables considerably improves the
overall performance of the model.

6. Replication of results
6.1. Software availability

Version 5.01.03.000000 of the model Delft3D-DELWAQ
and version 6.01.06.62914 of model Delft3D-FLOW2D3D
of the modelling suite software called Delft3D has been used
for the simulation of the concentration of the total chloro-
phyll, the phycocyanin and the dissolved oxygen in the lake
Champs-sur-Marne. This software is open-source and the
version used in this study can be downloaded at
https://svn.oss.deltares.nl/repos/delft3d/tags/delft3d4/3426.

The 𝑅 and Matlab scripts used to implement the calibra-
tion methods (standard ABC, ABC-RF and ABC-RF with
SA) on the case of lake Champs-sur-Marne and perform the
analysis of calibration results presented in this paper are pre-
served in a dataset (https://doi.org/10.15454/QSR3YO, [30])
published on the French repository “Recherche Data Gouv”
(https://entrepot.recherche.data.gouv.fr/).

A project called Calibration_ABC-RF-SA has been cre-
ated in the software repository Gitlab of the INRAE institute
with all the scripts and functions (written only in R) of the
calibration methods ABC, ABC-RF and ABC-RF-SA, and
some scripts (in R) to apply these methods on a “toy exam-
ple”. This repository is accessible at:

https://forgemia.inra.fr/simlake/calibration_abc-rf-sa
6.2. Data availability

The real observation data, the simulated data of the 30000
simulations that have been performed to make the calibra-
tion, the values of the model parameters of the 30000 simula-
tions, and the files with the results of the calibration runs per-
formed in this study (preliminary tests and application of the
calibration methods on simulated and real observation data)
are also stored in the dataset (https://doi.org/10.15454/QSR3YO,
[30]) published on the French repository “Recherche Data
Gouv” (https://entrepot.recherche.data.gouv.fr/).
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A. Computation of the sensitivity indices
In this section, the methodology proposed in [48] for cal-

culating sensitivity indices for models with correlated input
parameters is presented.

Consider the following model:
𝑌 = 𝜂(𝑋) (8)

where 𝜂 ∶ ℝ𝑑 → ℝ is a given continuous function, 𝑋 =
(𝑋1, ..., 𝑋𝑑) is the vector of model parameters and 𝑌 ∈ ℝ is
the model output. Both 𝑌 and 𝑋 are considered as random
variables. In variance-based methods for sensitivity analy-
sis, the impact of variations in the input 𝑋𝑖 on the variance
of 𝑌 (Var(𝑌 )) is evaluated by calculating the first order sen-
sitivity index 𝑆𝑖:

𝑆𝑖 =
Var(𝔼(𝑌 |𝑋𝑖))

Var(𝑌 ) (9)

Under the assumption of independent inputs, various tech-
niques are available to estimate 𝑆𝑖 [41, 13]. However, this
assumption is often not verified in practice, as in our case.
For this reason we rely here on the methodology proposed
by Da Veiga et al [48] for models with correlated inputs 𝑋𝑖,to compute an estimate of 𝑆𝑖 based on local polynomial ap-
proximation of the conditional statistical moment 𝔼(𝑌 |𝑋𝑖).The methodology is described hereafter.

Consider (𝑋𝑘
𝑖
)

𝑘=1,..,𝑛 and (�̃�𝑙
𝑖
)

𝑙=1,..,𝑛′ two parameters sam-
ples from the joint distribution of the 𝑑-dimensional input
𝑋 = (𝑋1, ..., 𝑋𝑑). The methodology we have used to com-
pute an estimate of 𝑆𝑖 is the one proposed by Da Veiga et al
[48] that is composed of 4 steps:

1. For each parameter set 𝑋𝑘 = (𝑋𝑘
1 , ..., 𝑋

𝑘
𝑑 ), 𝑘 = 1 ∶ 𝑛,

computation of the model outputs 𝑌 𝑘 = 𝜂(𝑋𝑘)
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2. Estimation of the variance Var(𝑌 ) with the classical
unbiased estimator:

�̂�2𝑌 = 1
𝑛 − 1

𝑛
∑

𝑘=1
(𝑌 𝑘 − 𝑌 )2 (10)

3. Estimation of the conditional statistical moment𝑚𝑖(𝑥𝑖) =
𝔼(𝑌 |𝑋𝑖 = 𝑥𝑖) which can be locally approximated by
a polynomial of order 𝑝 of the form:

𝑝
∑

𝑗=0
𝛽𝑗(𝑥0𝑖 )(𝑥𝑖 − 𝑥0𝑖 )

𝑗 (11)

for any 𝑥𝑖 in the neighborhood of 𝑥0𝑖 . To obtain the
local polynomial approximation denoted �̂�𝑖(𝑥𝑖) in the
sequel, and determine the parameters 𝛽𝑗(𝑥0), the func-
tion ’loess’ of the R-package ’nprobust’ has been used.

4. Estimation of the variance Var(𝔼(𝑌 |𝑋𝑖)) = Var(𝑚𝑖(𝑋𝑖))from the sample (�̃�𝑙
𝑖
)

𝑙=1,..,𝑛′ using the classical empir-
ical variance expression:

�̂�𝑖 =
1

𝑛′ − 1

𝑛′
∑

𝑙=1

(

�̂�𝑖(�̃�𝑙
𝑖 ) − ̂̄𝑚𝑖

)2 (12)

where ̂̄𝑚𝑖 =
1
𝑛′
∑𝑛′

𝑙=1 �̂�𝑖(�̃�𝑙
𝑖 ).

5. Computation of the estimate �̂�𝑖 of the sensitivity index
𝑆𝑖 by the following formula:

�̂�𝑖 =
�̂�𝑖
�̂�2𝑌

(13)

B. Complementary results about the
preliminary tests
In this appendix, some numerical results are presented to

illustrate the conclusions given in section 3.1.1 on the influ-
ence (on the calibration results) of the number of trees and
the options for estimating the value of the parameter from
the posterior distribution.

In table 8, the value of the total 𝑁𝑀𝑆𝐸 between the
simulated observations and the results of the model cali-
brated with ABC-RF is given, depending on the size of the
subset of simulations used to generate the reference table
and the number of trees used in the random forest. The re-
sults given in this table correspond to calibration runs where
the closest simulations are preselected to build the reference
table, and where the parameter value estimation option is
𝑃𝑚𝑖𝑥,2. Similar results are obtained with the other options for
estimating the values of the parameters and when the simu-
lations are randomly selected from the set of available simu-
lations. As we can see, the number of trees used to build the
random forests did not show any particular influence on the
calibration results.

In table 9, the value of the total 𝑁𝑀𝑆𝐸 between the
simulated observations and the results of the model cali-
brated with ABC-RF is given, depending on the number of

simulations used to generate the reference table and the op-
tions chosen for estimating the value of the parameter from
the posterior distribution. The number of trees used to build
the random forest is here equal to 500. As can be seen, the
option that leads to the smallest value of the total 𝑁𝑀𝑆𝐸
varies according to the number of simulations used to gen-
erate the reference table and the options for the preselection
of the subset of simulations.
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Number of Number of trees Mean standard

simulations 250 500 750 1000 1250 1500 1750 5000 value deviation

2000 5.1229 6.8319 1.6552 1.6181 2.0003 1.6721 1.6324 1.4634 2.7495 2.0494
10000 8.0599 0.9985 0.4979 0.3859 0.7645 0.5888 0.9296 5.0760 2.1626 2.8410
15000 1.1205 0.7562 0.9313 2.0830 3.0540 1.2979 1.1802 1.2144 1.4547 0.7544
20000 1.0874 0.3675 0.3970 0.7469 1.2964 2.4549 1.2106 3.3308 1.3614 1.0331
25000 1.4088 1.8528 1.3224 1.3768 2.1155 1.7682 1.4167 2.1665 1.6785 0.3437
30000 1.3480 1.6790 1.9491 1.9163 2.2417 1.5650 1.9026 1.9620 1.8205 0.2773

Table 8

Preliminary tests (complementary results). Total 𝑁𝑀𝑆𝐸 between the simulated obser-
vations and the model results calibrated with ABC-RF, according to the number of sim-
ulations used to generate the reference table and the number of trees used in the forest.
The closest simulations are preselected to build the reference table, and the option for
parameter values estimation is 𝑃𝑚𝑖𝑥,2.

Option for Parameter Number of simulations

estimation 5000 10000 15000 20000 25000 30000
randomly selected

𝑃𝑚𝑎𝑥 3.6606 3.7882 5.8984 5.7134 1.5134 1.4637
𝑃𝑚𝑒𝑑 7.1250 5.4202 𝟐.𝟓𝟑𝟏𝟖 4.8222 𝟎.𝟒𝟑𝟖𝟗 𝟏.𝟏𝟒𝟑𝟗
𝑃𝑚𝑖𝑥,2 3.6606 3.8847 5.9867 5.2575 1.5134 1.6790
𝑃𝑚𝑖𝑥,3 𝟐.𝟑𝟔𝟔𝟕 𝟑.𝟒𝟑𝟐𝟐 4.1556 𝟎.𝟕𝟒𝟏𝟒 1.7087 1.4220

preselected
𝑃𝑚𝑎𝑥 7.1570 0.8627 𝟎.𝟕𝟓𝟒𝟖 0.4209 1.8528
𝑃𝑚𝑒𝑑 3.8034 3.4905 3.5417 1.9831 𝟏.𝟐𝟑𝟒𝟔
𝑃𝑚𝑖𝑥,2 6.8319 0.9985 0.7562 0.3675 1.8528
𝑃𝑚𝑖𝑥,3 𝟏.𝟔𝟔𝟕𝟐 𝟎.𝟕𝟑𝟕𝟔 1.5152 𝟎.𝟑𝟏𝟓𝟎 1.5677

Table 9

Preliminary tests (complementary results). Total 𝑁𝑀𝑆𝐸 between the simulated obser-
vations and the model results calibrated with ABC-RF, according to the number of simu-
lations used to generate the reference table and the options chosen for the estimation of
the parameter value from the posterior distribution. The number of trees used to build
the random forest is equal to 500. The values in bold correspond to the smallest values
obtained among the four options for parameter estimation.
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