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RESEARCH ARTICLE

Analysis of the causal structure of traits 
involved in sow lactation feed efficiency
Mónica Mora1*  , Ingrid David2, Hélène Gilbert2, Guilherme J. M. Rosa3, Juan Pablo Sánchez1 and Miriam Piles1 

Abstract 

Background: Feed efficiency during lactation involves a set of phenotypic traits that form a complex system, with 
some traits exerting causal effects on the others. Information regarding such interrelationships can be used to predict 
the effect of external interventions on the system, and ultimately to optimize management practices and multi-trait 
selection strategies. Structural equation models can be used to infer the magnitude of the different causes of such 
interrelationships. The causal network necessary to fit structural equation models can be inferred using the induc-
tive causation (IC) algorithm. By implementing these statistical tools, we inferred the causal association between 
the main energy sources and sinks involved in sow lactation feed efficiency for the first time, i.e., daily lactation feed 
intake (dLFI) in kg/day, daily sow weight balance (dSWB) in kg/day, daily litter weight gain (dLWG) in kg/day, daily 
back fat thickness balance (dBFTB) in mm/day, and sow metabolic body weight (SMBW) in  kg0.75. Then, we tested 
several selection strategies based on selection indices, with or without dLFI records, to improve sow efficiency during 
lactation.

Results: The IC algorithm using 95% highest posterior density  (HPD95%) intervals resulted in a fully directed acyclic 
graph, in which dLFI and dLWG affected dSWB, the posterior mean of the corresponding structural coefficients  (PMλ) 
being 0.12 and − 0.03, respectively. In turn, dSWB influenced dBFTB and SMBW, with  PMλ equal to 0.70 and − 1.22, 
respectively. Multiple indirect effects contributed to the variances and covariances among the analyzed traits, with 
the most relevant indirect effects being those involved in the association between dSWB and dBFTB and between 
dSWB and SMBW. Selection strategies with or without phenotypic information on dLFI, or that hold this trait constant, 
led to the same pattern and similar responses in dLFI, dSWB, and dLWG.

Conclusions: Selection based on an index including only dBFTB and dLWG records can reduce dLFI, keep dSWB 
constant or increase it, and increase dLWG. However, a favorable response for all three traits is probably not achiev-
able. Holding the amount of feed provided to the sows constant did not offer an advantage in terms of response over 
the other strategies.

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
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regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/. The Creative Commons Public Domain Dedication waiver (http:// creat iveco 
mmons. org/ publi cdoma in/ zero/1. 0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Background
Feed efficiency in livestock has been widely studied to 
establish strategies to reduce feed costs while reducing 
emissions to the environment and making sustainable 
use of resources. In the case of reproductive females, 

increasing feed efficiency during lactation (LFE) has 
additional benefits in terms of economic costs as well 
as of animal wellbeing, because milk production is one 
of the most energy-demanding processes in the produc-
tive life of a sow [1]. When energy requirements during 
the lactation period are not met by the energy provided 
by feed because of limited feed intake, body reserves are 
mobilised [2] and, if this mobilization is excessive and/
or repeated in successive cycles, it impairs subsequent 
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reproductive performance [3], body condition, and health 
status of the female, which can result in early culling.

In pig production, most breeding programs include 
increasing feed efficiency during the growth/finish phase 
of production and litter size in the reproductive phase 
among the priority aims. Genetic improvement of these 
traits has had as correlated effects a reduction in appetite 
and feed intake capacity at fattening,which also extend to 
other stages of the animal’s life [4], as well as an increase 
in energy requirements during lactation, as a conse-
quence of the high levels of prolificacy and piglet growth 
achieved. Some authors have suggested improving sow 
LFE through genetic selection but only a few studies have 
reported genetic parameters for measurements of this 
trait. Measures of LFE include (i) body energy balance 
[5]; (ii) ratio between the output and the input of energy 
efficiency of sows [6]; (iii) difference between the actual 
feed intake (FI) of the sow and that predicted from a phe-
notypic regression of FI on requirements for production 
and maintenance of body condition, i.e. residual feed 
intake (RFI) [4]; and (iv) RFI estimated from a genetic 
regression instead of the phenotypic regression defined 
before [7], which guarantees a null genetic correlation of 
RFI with the traits on which is the regression, and thus a 
null correlated response in these traits from selection on 
RFI [8]. These previous studies showed that LFE evalu-
ated by these measures is heritable, thus allowing effec-
tive direct selection if the level of its genetic variability is 
sufficiently high. However, several other more efficient 
strategies of selection are possible, such as the use of a 
selection index based on its component traits with opti-
mal economic weights, with or without inclusion of FI 
in the selection criteria (since FI records are expensive 
to obtain, especially with individually-housed sows), or 
selection performed under restricted feed intake condi-
tions, as has been experimentally performed in growing 
pigs [9].

In order to define an optimal selection strategy to 
improve LFE by genetic selection, knowledge about the 
variability and covariances among the target traits is 
required at both the genetic and environmental levels. 
Estimates of such parameters are usually obtained by 
implementing a multiple trait animal model (MTAM). 
However, a MTAM only describes associations among 
traits, without retrieving information about causal rela-
tionships. Associations can be due to common factors 
that directly affect two traits, or a causal relationship 
between the two traits, or a combination of these two. In 
the causal relationship case, effects that affect one trait 
can have an indirect effect on the other trait through 
a causal link that can exist from the first to the second 
trait. Association among traits due to direct and indirect 
effects cannot be distinguished with an MTAM because 

it does not consider causal relationships between traits. 
Knowledge about the causal structure allows the predic-
tion of the effect of external interventions for a trait on 
another trait (e.g., management practices such as feed 
restriction or cross-fostering) [10].

Structural equation models (SEM) [11] allow the rep-
resentation of causal mechanisms between variables, in 
which the magnitude of causal relationships are described 
by model parameters called structural coefficients. Given 
two traits, X and Y, the causal relationships can be simul-
taneous if X affects Y and Y affects X, or recursive when 
only X affects Y or only Y affects X. Structural equation 
models have been used in many fields such as economics 
[12], social statistics, and biology [13]. In the last years, 
SEM have been increasingly implemented in quantita-
tive genetics, following publication of the paper by Gia-
nola and Sorensen [11], who adapted these models to this 
field. Regarding feed efficiency in livestock, to the best 
of our knowledge, only Abdalla et al. [14] inferred causal 
structures among feed efficiency traits in a commercial 
turkey population and only Wu et  al. [15] implemented 
an SEM for FI and energy sinks in dairy cattle, assuming 
that energy sink traits affect FI and that there is no causal 
relationship between energy sinks. No studies are avail-
able on causal relationships for FE in pigs.

Components of LFE in sows have been described by 
Bergsma et al. [6]. The energy flows from inputs, i.e. feed 
intake and mobilization of energy and nutrients from 
body reserves, to outputs, i.e. milk yield for piglet growth 
and maintenance, deposition of nutrients (body weight 
and backfat gain), and maintenance of the sow’s physi-
ological functions. Mobilization and deposition of energy 
reserves and nutrients can be summarised in a trait 
named ‘energy and nutrient balance’, which quantifies 
if the energy intakes are lower or higher than the sow’s 
needs during lactation. This trait could be used in a selec-
tion index with FI to prevent potential negative effects 
on rebreeding performance due to a negative energy bal-
ance, as suggested by Young et al. [5].

The objectives of our study were: (i) to investigate the 
potential causal effects that underlie the complex rela-
tionships between the main traits involved in LFE in 
sows, and (ii) to propose a selection strategy, with or 
without the inclusion of FI records, to improve sow pro-
ductivity without impairing its body condition, as the lat-
ter is the main driver for future reproductive success.

Methods
Animals and data
The data used for this analysis cover the first 10 genera-
tions of an experiment of divergent selection for RFI in 
growing pigs. The detailed selection process is in Gilbert 
et al. [16]. Information from 1100 sows (527 and 573 from 
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the high and low RFI lines, respectively) was recorded on 
two farms from 2000 to 2015. From generations 1 to 4, 
only third-parity batches were inseminated with Piétrain 
boars, and starting from generation 5 only first-parity 
batches were inseminated with Piétrain boars. All other 
batches were inseminated with RFI boars from the own 
line. Details on how the lactation traits were recorded are 
in Gilbert et al. [4].

Sow weight was recorded at entrance to maternity in 
the farrowing house  (SWE) and at exit from maternity 
on weaning day  (SWW), with an average duration of far-
rowing to weaning of 28.15  days. Backfat thickness was 
measured at the same time  (BFTE and  BFTW, at entrance 
and weaning, respectively). Sow weight at farrowing 
 (SWF) was estimated as in Bergsma et  al. [6], using the 
formulas proposed by Noblet et al. [2]:

where TFWE is the total fetal weight, PWE is the placenta 
weight and IUFWE is the intra-uterine fluid weight at 
entrance to maternity, LWS is the litter weight at the start 
of lactation, and TFWS is the total fetal weight at birth. 
TFWE , PWE , and IUFWE were calculated as follows:

where dpregn is the number of days of pregnancy, ENgest 
is the net energy of total feed intake during gestation (MJ 
ME/d) and Nf  is the number of fetuses, assumed to be 
equal to the total number of piglets born (TB).

Daily sow weight balance ( dSWB ) and daily back fat 
thickness balance ( dBFTB ) were computed as follows:
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where DL is the number of days in lactation.
Sow metabolic body weight ( SMBW ) was computed as:

The total number of piglets born, dead or alive and 
the number of cross-fostered piglets (i.e., number of 
piglets transferred to another sow or adopted) were 
also recorded. Only records from litters in which cross-
fostering was carried out within 2  days after farrowing 
were included in the analysis. All piglets were weighed 
at farrowing and at weaning. This information was used 
to compute litter weight at farrowing, following cross-
fostering ( LWF ), and litter weight at weaning ( LWW ). 
Growth rate of the piglets during lactation was calcu-

lated to detect outliers. We considered a data point as an 
outlier when it was located outside the whiskers of the 
boxplot for the trait (i.e. outside 1.75 times the interquar-
tile range above the upper quartile or below the lower 
quartile ( Q1− 1.75× IQR or Q3+ 1.75× IQR ). Piglets 

with abnormal growth rates and litters with more than 
one piglet with an abnormal growth rate were removed. 
On day 21 and until weaning, creep feeding was avail-
able, but creep feed intake was not recorded. To avoid 
the effect of creep feeding on litter weight gain at lacta-
tion, litter weight at day 21  (LW21) was used instead of 
litter weight at weaning. Litters with an abnormal average 
piglet weight at day 21 were removed. Daily litter weight 
gain ( dLWG ) was computed as:

SMBW =
(

SWW + SWF

2

)0.75

.

dLWG

(

kg

day

)

=
LW21 − LWF

DL
,
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where DL is the average number of days the piglets of a 
litter are alive, and daily litter weight at day 21 ( LW21 ) 
was computed by summing the body weight gain of each 
piglet in the litter during the period it was alive (i.e. from 
birth to day 21 of life or to death, if death occurred before 
day 21).

Only information from lactations longer than 26  days 
and shorter than 38  days was included in the analysis. 
The total feed intake of the sow (FI) was calculated as 
the sum of daily feed intake records available from far-
rowing until weaning. Feed intake data were missing for 
some days and only 27% of the lactations had complete 
records. The average number of days with missing intake 
records during lactation was 0.65 ± 3.03. Most missing 
days were 1 or 2 days after farrowing. Daily lactation feed 
intake (dLFI) was computed by dividing FI by the number 
of daily records available.

The traits dLFI, dSWB, dLWG, dBFTB, and SMBW 
were considered as the main components of LFE. After 
removing records with missing values for three or more 
of these traits, the dataset used for the analyses contained 
information on 1342 farrowings from 576 sows. The 
resulting numbers of records and descriptive statistics of 
the traits are in Table 1.

Statistical analyses
In order to assess the potential causal relationships 
between the main components of LFE, the following two-
step procedure was implemented in a Bayesian approach.

Step 1: Searching for recursive causal structures
With five traits involved (i.e., dLFI, dSWB, dLWG, dBFTB 
and SMBW), the number of possible causal structures 
was very large. Moreover, for some of these traits, no 
clear prior biological knowledge is available to establish 
the most likely causal structure of the system. Therefore, 
it was necessary to use algorithms that search for recur-
sive causal structures (i.e., with no simultaneous relation-
ships between traits) that are compatible with the joint 
distribution of the data. Because causal relationships 
can be masked by genetic covariances, such a search was 
performed on the joint distribution of the phenotypes 

conditional to unobservable genetic and permanent 
environmental effects, as proposed by Valente et al. [10]. 
Information on such a distribution is provided by the 
posterior covariance matrix of the phenotypes given the 
genetic and permanent environmental effects. Samples of 
this matrix correspond to samples of the residual covari-
ance matrix obtained by implementing a MTAM using 
Gibbs sampling. The model implemented for the five 
traits involved in LFE was:

where yi is a (5 ×  1) vector of phenotypic data corre-
sponding to individual i ; b is the vector of the systematic 
environmental effects, including the effects of farm (with 
2 levels), parity order (with 5 levels: 1, 2, 3, 4, > 4), and 
a 2-degree polynomial of litter size at day 21  (LS21) as 
covariates. The model for dLWG included the additional 
systematic effect of sire breed (with 2 levels, Piétrain or 
RFI lines). ai , pi , cgi and ei are (5 × 1) vectors of additive 
genetic effects, permanent environmental effects associ-
ated with the sow, contemporary group effects, and resid-
ual effects, respectively, all associated with individual i . 
Xi is the incidence matrix relating individual records to 
systematic effects.

The joint distribution assumed for ai , pi , cgi , and ei was:

where G0 , P0 , B0, and R0 are the additive genetic, perma-
nent environmental, contemporary group, and residual 
(5 × 5) covariance matrices, respectively.

The model for n sows is described by:

and the joint distribution for vectors a , p , cg, and e is:

yi = Xib+ ai + pi + cgi + ei,
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Table 1 Number of records, number of sows, mean standard deviation (SD), minimum (Min), and maximum (Max) of the traits 
investigated

Trait Abbreviation Records Sows Mean SD Min Max

Daily lactation feed intake dLFI (kg/day) 1230 540 4.87 1.08 1.03 8.39

Daily sow weight balance dSWB (kg/day) 1307 574 − 0.49 0.69 − 2.72 1.82

Daily litter weight gain dLWG (kg/day) 767 440 2.36 0.52 0.70 4.35

Daily back fat thickness balance dBFTB (mm/day) 718 398 − 1.49 0.96 − 4.68 1.35

Sow metabolic body weight SMBW  (kg0.75) 1307 574 60.58 5.77 42.77 79.14
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where y , b , a , p , cg, and e are vectors of phenotypic 
records, systematic effects, additive genetic effects, per-
manent effects, contemporary group effects, and residual 
effects, respectively, sorted by trait and animal within 
trait, and X , Z1 , Z2, and Z3 are known incidence matri-
ces relating data to levels of systematic, additive genetic, 
permanent and contemporary group environmental 
effects, respectively, In is the identity matrix of dimen-
sion n , ⊗ denotes the Kronecker product, and the co-var-
iance matrices for the additive genetic effects, permanent 
effects, contemporary group effects, and residual effects 
are, respectively, G = G0 ⊗ A , P = P0 ⊗ In , B = B0 ⊗ In 
and R = R0 ⊗ In.

The joint posterior distribution of all unknowns in the 
model is:

where p
(

b, a,p, cg,G0,P0,B0,R0

)

 is equal to:

We assumed standard prior distributions for all the 
unknowns, as reported in Sorensen and Gianola [17].

The inductive causation (IC) algorithm was applied to 
samples of the residual covariance matrix using a pro-
gram written in R [18] by Valente and Rosa [19]. This 
algorithm performs a series of statistical decisions based 
on partial correlations between pairs of traits in a three-
step procedure, as described in Valente et  al. [10]. For 
each partial correlation, the highest posterior density 
(HPD) interval with some specified probability content 
was computed. If the HPD interval contains 0, the cor-
relation was declared null. Otherwise, the two variables 
involved were declared as conditionally dependent. In 
this study, we applied HPD content magnitudes of 70, 
80, 90, and 95%, and compared the causal structures 
obtained with each of them. The output of the IC algo-
rithm is typically a directed acyclic graph (DAG), which 
consists of a set of variables (symbolized by nodes) con-
nected by directed edges (symbolized by arrows), which 
represent direct causal relationships.

Step 2: Fitting a SEM
Once the recursive causal structure was established, a 
SEM with that specific structure was fitted. The SEM for 
the n sows is described by:

where � is a (5 ×  5) matrix with 0  s on the diagonal 
and with structural coefficients ( � ) for the off-diagonal 

p
(

b, a,p, cg,G0,P0,B0,R0|y
)

∝ p
(

y|b, a,p, cg,G0,P0,B0,R0

)

p
(

b, a,p, cg,G0,P0,B0,R0

)

,

p(b)p(a|G0)p(G0)p(p|P0)p(P0)
(

cg|B0

)

p(B0)(e|R0)p(R0).

y = (�⊗ In)y + XbS + Z1aS + Z2pS + Z3cgS + eS,

elements. Each non-null entry of the matrix expresses the 
magnitude of the causal effect of the trait corresponding 
to its column on the trait corresponding to its row. The 
other terms of the SEM were the same as those described 
for the above MTAM. However, to distinguish the terms 
of the MTAM from those of the SEM, the latter will be 
denoted with the sub-index s . The residual (co)variance 
matrix in SEM was constructed as diagonal to achieve 
identifiability of all model parameters for any acyclic 
structure, following Wu et al.[20].

As shown by Gianola and Sorensen [11], the model in 
the previous equation can be rewritten as:

and is named the “reduced model”, where I5n is a 
(5n× 5n ) identity matrix. The reduced model is 
equivalent to a MTAM, considering that the vectors 
b∗ = [I5n − (�⊗ In)]

−1bS , a∗ = [I5n − (�⊗ In)]
−1aS , 

p∗ = [I5n − (�⊗ In)]
−1pS , cg∗ = [I5n − (�⊗ In)]

−1cgS , 
and e∗ = [I5n − (�⊗ In)]

−1eS correspond to the total 
(i.e., direct effects plus indirect effects mediated by other 
traits that have causal effects on the traits) systematic, 
genetic, permanent environmental, contemporary group, 
and residual effects obtained from the MTAM. Therefore, 
the covariance matrices G∗

0 = [I5 −�]−1G0,S[I5 −�]
′−1 , 

P
∗
0
= [I5 −�]−1

P0,S[I5 −�]
′−1 , B

∗
0
= [I5 −�]−1

B0,S[I5 −�]
′−1 , 

and R∗
0 = [I5 −�]−1R0,S[I5 −�]

′−1 are those of the 
total additive genetic effects ( G∗

0 ), total permanent 
environmental effects ( P∗

0 ), total contemporary group 
effects ( B∗

0 ), and total residuals ( R∗
0 ). Prior distribu-

tions of SEM were the same as those for the MTAM but 
p
(

R0,S

)

∼
∏5

j=1 P(σ
2
j ) and p(�) ∼ k(constant).

All analyses were performed with the Gibbs sampling 
algorithm using the Gibbsf90 software [21]. Single sam-
pling processes of 2,000,000 iterations were run for all 
models, discarding the first 300,000 iterations based on 
visual inspection of trace plots of each chain and saving 1 of 
every 100 samples. Checking for convergence of the sam-
pling process after 300,000 iterations according to Geweke’s 
criterion [22] was performed using the”boa” R package 
[23]. Posterior marginal inferences of variance components 
were performed with the Postgibbsf90 software [21].

Selection strategies
All proposed genetic selection strategies were based on 
selection indices including only sow’s phenotypes with 
or without constraints and for which the objective was 

y = [I5n − (�⊗ In)]
−1XbS

+ [I5n − (�⊗ In)]
−1Z1aS

+ [I5n − (�⊗ In)]
−1Z2pS

+ [I5n − (�⊗ In)]
−1Z3cgS

+ [I5n − (�⊗ In)]
−1eS,
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always to increase dLWG, either by reducing or keeping 
dLFI constant, and either by increasing or keeping dSWB 
constant. Since there is no published information on eco-
nomic weights of the analyzed traits, the selection index 
coefficients were computed for different combinations of 
three arbitrary values (0, 1, 2) for economic values, with 
the appropriate sign according to the selection objective. 
Different selection strategies were defined based on the 
traits that were recorded on the nucleus farm (Table 2). 
For dLFI, strategies with or without recording of this 
trait and inclusion in the selection criterion were con-
sidered. An additional selection strategy that consisted 
in restricted feeding (i.e., the amount of food provided to 
the sow was kept constant over the lactation) for all sows 
was also considered. In this case, the genetic and phe-
notypic variances of dLFI were set equal to zero in the 
genetic and phenotypic matrices of the “reduced model” 
in order to remove the contribution of dLFI to FE, such 
that the variation in feed efficiency depended only on 
variation in dSWB, dBFTB, and dLWG, which are easier 
to measure than dLFI. Keeping the amount of feed pro-
vided to all the sows constant has an impact on the causal 
structure because then indirect effects of dLFI no longer 
contribute to variation in the other traits. Knowledge of 
causal relationships between the traits allows predicting 
the effect on selection response when this external inter-
vention is applied, without the need to perform a new 
experiment and data analysis to estimate variance com-
ponents under those environmental conditions.

Let y′ =
{

y1, y2, . . . , ym
}

 denote the vector of the set of 
m traits to be improved, with economic values 
a′ = {a1, a2, . . . , am} . Then, the selection objective is 
defined as H = a′y . Let x′ = {x1, x2, . . . , xk} be the vector 
of records corresponding to the set of k traits measured 
on each sow to predict breeding values. The selection 
index is I = b′x , with coefficients computed as 
b = P−1Ga . In this expression, P is the total (i.e. obtained 
from the “reduced model”) phenotypic covariance matrix 
between the traits included in the selection criterion of 
dimension ( k × k ), G is the total genetic covariance 
matrix between the traits in the selection criterion and 
the traits in the selection of dimension ( k ×m ), and b 

and a are as defined before. Response to selection based 
on the selection criterion I for a trait yj in the selection 
objective is CRj = iI

b
′
Gj√
b
′
Pb

 , where Gj is the j th column of 

matrix G that includes the genetic covariances of the 
traits in I with trait yj and iI is the selection intensity on 
the index.

When the correlated response of a particular trait ( yr ) 
is constrained to zero, i.e. the selection criterion results 
in zero genetic change for a particular trait, the coef-
ficients of the selection index were computed following 
Brascamp [24]:

where Gr is the r th column of the matrix G that includes 
the genetic covariances of the traits in I with trait yr and 
all other terms are as defined before.

In all selection indices, economic weights were 
assumed to be equal to − 2, − 1 or 0 for dLFI, + 2, + 1 or 
0 for dSWB, and + 2 or + 1 for dLWG. The intensity of 
selection was set equal to 1.3.

Results
Recursive causal structure
High posterior density intervals of 70, 80, 90, and 95% 
probability were used for decisions in the IC algorithm to 
assess causal relationships among the five analyzed traits. 
In the first three cases, the same edges were obtained 
but no direction was established. However, when 95% 
HPD intervals  (HPD95%) were used, a DAG was returned 
with the same edges as obtained for the other HPD, but 
in this case, the edge between dLFI and dLWG disap-
peared (Fig.  1). This last causal structure indicated that 
dLFI and dLWG affected dSWB, measured by structural 
coefficients denoted by �dSWB←dLFI and �dSWB←dLWG , 
respectively, and that, in turn, dSWB had an effect on 
dBFTB and on SMBW, denoted by �dBFTB←dSWB and 
�SMBW←dSWB , respectively.

The causal structure returned by the IC algorithm 
based on  HPD95% intervals was implemented in the SEM 
because all directions were found in this case. Posterior 
means and  HPD95% of the structural coefficients are in 
Table 3. Since  HPD95% regions did not include 0, all struc-
tural coefficients were statistically different from 0. Daily 
lactation feed intake had a positive effect on dSWB. Thus, 
an increase of 1 kg/day in dLFI on average produces an 
increase of 0.12  kg/day on dSWB. However, dLWG had 
an unfavorable but small effect on dSWB, decreasing 
its value by 0.03  kg/day for every 1  kg/day increase in 
dLWG. Daily sow weight balance, in turn, had a favorable 
effect on both dBFTB and SMBW, increasing the value 

b = P−1

[

I−Gr

(

G
′
rP

−1Gr

)−1
G

′
rP

−1

]

Ga,

Table 2 Scheme of the different selection strategies

Strategy dLFI dSWB dBFTB dLWG

Strategy 1 Recorded Recorded Not recorded Recorded

Strategy 2 Not recorded Recorded Not recorded Recorded

Strategy 3 Restricted Recorded Not Recorded Recorded

Strategy 4 Recorded Not recorded Recorded Recorded

Strategy 5 Not recorded Not recorded Recorded Recorded

Strategy 6 Restricted Not recorded Recorded Recorded
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of dBFTB by 0.07  mm/day and decreasing SMBW by 
1.22 kg for each kg/day increase in dSWB.

Quality of fit
The deviance information criterion (DIC) [25] was used 
to check the fit of the models. The value of this parameter 
was 2508.77 for the MTAM and 2422.83 for the SEM, 
which clearly suggested that the SEM was more appro-
priate for these data. Posterior distributions of all vari-
ance components for all traits from the “reduced model” 
were quite similar to the posterior distributions obtained 
from the MTAM, and not statistically different from each 
other for any component (results not shown).

Variance components and heritabilities
Means and standard deviations (SD) of posterior mar-
ginal distributions of variance components obtained 
from the MTAM and SEM are in Tables 4 and 5, respec-
tively. In the SEM, variance components reflect the direct 
effects of the genetic and environmental factors on a 
trait, while in the MTAM, they correspond to the total 
effects, i.e., the direct plus indirect effects mediated by 
other traits that have causal effects. The results from both 
models indicate that the analyzed traits show moderate 
to high heritabilities, with posterior means (posterior 
SD) ranging from 0.16 (0.03) for dSWB to 0.41 (0.05) for 
SMBW in the MTAM (total heritability), and from 0.12 
(0.03) for dBFTB to 0.36 (0.06) for SMBW in the SEM 
(direct heritability). Estimates of variance components 
for dLFI and dLWG should not be statistically differ-
ent between the MTAM and SEM models because they 
are not phenotypically affected by any other trait. How-
ever, unexpectedly the posterior means of the variance 
of permanent environmental effects of the sow differed 
between the two models. Nonetheless, the direct and 

Fig. 1 Causal structure between daily lactation feed intake (dLFI), 
daily sow weight balance (dSWB), daily litter weight gain (dLWG), 
daily back fat thickness balance (dBFTB) and sow metabolic body 
weight (SMBW) based on the inductive causation algorithm with 
statistical decisions made using highest posterior density intervals 
with 95% probability content. �i←j denotes a structural coefficient 
and represents the effect of trait j on trait i

Table 3 Posterior means and 95% highest posterior density  (HPD95%) intervals of structural coefficients pertaining to the structural 
equation model that results from implementation of the inductive causation algorithm based on  HPD95% intervals

a �i←j denotes a structural coefficient which represents the effect of trait j on trait i. dLFI = daily lactation feed intake (kg/day); dSWB (daily sow weight balance (kg/
day); dLWG = daily litter weight gain (kg/day); dBFT = daily back fat thickness (mm/day); SMBW = sow metabolic body weight
b Standardized structural coefficient was calculated as �i←j

sd(j)
sd(i)

Structural  coefficienta Posterior mean  [HPD95%] Standardized posterior  meanb

�dSWB←dLFI 0.12 [0.08,0.15] 0.30 [0.22,0.39]

�dSWB←dLWG − 0.03 [− 0.05,− 0.004] − 0.05 [− 0.09,− 0.008]

�dBFTB←dSWB 0.70 [0.55,0.87] 0.47 [0.37,0.58]

�SMBW←dSWB − 1.22 [− 1.59,− 0.87] − 0.07 [− 0.09,− 0.05]

Table 4 Posterior means (posterior SD) of variance components 
for the traits involved in lactation feed efficiency based on the 
multiple trait animal model

dLFI = daily lactation feed intake (kg/day); dSWB = daily sow weight balance (kg/
day); dLWG = daily litter weight gain (kg/day); dBFTB = daily back fat thickness 
balance (mm/10); SMBW = sow metabolic body weight  (kg0.75)

σ
2
a = additive variance; σ2cg = contemporary group variance; σ2p = permanent 

variance; σ2e = residual variance; h2 = heritability

Parameter dLFI dSWB dLWG dBFTB SMBW

σ
2
a

0.16 (0.02) 0.06 (0.01) 0.04 (0.008) 0.16 (0.03) 8.18 (1.49)

σ
2
cg

0.28 (0.03) 0.10 (0.01) 0.03 (0.006) 0.21 (0.05) 3.70 (0.58)

σ
2
p

0.03 (0.01) 0.05 (0.01) 0.02 (0.006) 0.08 (0.03) 4.99 (0.90)

σ
2
e

0.26 (0.01) 0.17 (0.009) 0.05 (0.004) 0.41 (0.03) 3.74 (0.23)

h2 0.21 (0.03) 0.16 (0.03) 0.27 (0.05) 0.18 (0.04) 0.41 (0.05)
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total heritabilities were not statistically different between 
the two models for these two traits.

For dSWB and dBFTB, the posterior means of the 
residual variances were statistically lower  (HPD95% inter-
vals do not overlap) in the SEM compared to the MTAM. 
Likewise, the posterior mean of the additive genetic vari-
ance for dBFTB was statistically lower in the SEM than in 
the MTAM. All these results suggest a relevant contribu-
tion of indirect effects to the variances of these traits.

Associations between traits
Posterior means  (HPD95%) of residual correlations from 
the MTAM are in Table  6. The signs of these correla-
tions coincide with the signs of the structural coeffi-
cients. Residual correlations between traits connected by 

a causal relationship were all statistically different from 0, 
i.e. the  HPD95% intervals did not include 0. All others cor-
relations were not statistically different from 0, except for 
the correlation between dLFI and dBFTB.

Posterior means  (HPD95%) of the genetic correla-
tions obtained from the MTAM and SEM models are 
in Table  7. Estimates of genetic correlations for traits 
that were not directly connected in the DAG were simi-
lar for the two models, e.g. the correlations between 
dLFI and dLWG (0.46 [0.23,0.67] and 0.41 [0.18,0.65] 
for MTAM and SEM, respectively). Conversely, large 
differences were found for the other traits, e.g. the cor-
relations between dLFI and dBFTB (0.46 [0.20,0.70] and 
0.25 [− 0.13,0.61] for the MTAM and SEM, respectively), 
dLFI and SMBW (0.39 [0.14,0.64] and 0.21 [− 0.09,0.53]), 
and for the correlation between dSWB and dBFTB (0.69 
[0.46,0.89] and 0.31 [−  0.09,0.72]). However, since the 
 HPD95% were very large, these estimates were not statisti-
cally different from each other.

Estimates of correlations for permanent environmen-
tal and contemporary group effects between traits are in 
Additional file  1: Tables S1 and S2. As with the genetic 
correlations, posterior means of correlations for perma-
nent environmental and contemporary group effects did 
not differ much between the two models for traits that 
were not connected in the DAG, but differences were 
larger for the other traits. However,  HPD95% intervals 
were relatively large in all cases, precluding any claim of 
statistical difference.

Estimated marginal posterior distributions of total 
( σ∗a,x,y) , direct ( σa,x,y ), and indirect genetic associations 
between traits that were related by a causal association 
are described in the following. In Fig. 2, additive genetic 
associations between dLFI and dSWB are represented. 
The total additive genetic association in the “reduced 
model” between dLFI and dSWB was calculated as 
follows:

where σa,dLFI,dSWB represents the association between the 
additive genetic effects that directly affect both dLFI and 
dSWB (pleiotropic effects), while σ2a,dLFI × �dSWB←dLFI 
and σa,dLFI,dLWG × �dSWB←dLWG represent the genetic 
associations due to indirect effects of dLFI on dSWB 
and of dLWG on dSWB. Posterior distributions of the 
total additive genetic covariance ( σ∗a,dLFI,dSWB ) and the 
direct additive genetic covariance ( σa,dLFI,dSWB ) dif-
fered slightly from each other because of the small 
contribution of the terms σ

2
a,dLFI × �dSWB←dLFI and 

σa,dLFI,dLWG × �dSWB←dLWG.

σ
∗
a,dLFI,dSWB = σ

2
a,dLFI × �dSWB←dLFI

+σa,dLFI,dSWB + σa,dLFI,dLWG

× �dSWB←dLWG,

Table 5 Posterior means (posterior SD) of variance components 
for the traits involved in lactation feed efficiency based on the 
structural equation model

dLFI = daily lactation feed intake (kg/day); dSWB (daily sow weight balance (kg/
day); dLWG = daily litter weight gain (kg/day); dBFTB = daily back fat thickness 
balance (mm/day); SMBW = sow metabolic body weight  (kg0.75)

σ
2
a = additive variance; σ2cg = contemporary group variance; σ2p = permanent 

variance; σ2e = residual variance; h2 = heritability

Parameter dLFI dSWB dLWG dBFTB SMBW

σ
2
a

0.14 (0.03) 0.07 (0.02) 0.05 (0.009) 0.07 (0.02) 7.12 (1.40)

σ
2
cg

0.28 (0.04) 0.12 (0.02) 0.03 (0.006) 0.17 (0.04) 3.33 (0.53)

σ
2
p

0.07 (0.02) 0.04 (0.01) 0.008 (0.005) 0.08 (0.03) 6.01 (0.97)

σ
2
e

0.25 (0.01) 0.14 (0.008) 0.05 (0.004) 0.29 (0.02) 3.46 (0.21)

h2 0.19 (0.04) 0.20 (0.04) 0.35 (0.05) 0.12 (0.03) 0.36 (0.06)

Table 6 Posterior means of residual correlations and 95% 
highest posterior density  (HPD95%) intervals among the traits 
involved in lactation feed efficiency based on the multiple trait 
animal model (MTAM)

dLFI = daily lactation feed intake (kg/day); dSWB (daily sow weight balance (kg/
day); dLWG = daily litter weight gain (kg/day); dBFTB = daily back fat thickness 
balance (mm/day); SMBW = sow metabolic body weight  (kg0.75)

Trait Trait Residual correlation

Posterior mean HPD95%

dLFI dSWB 0.48 [0.42, 0.54]

dLWG 0.11 [− 0.009, 0.22]

dBFTB 0.25 [0.15, 0.34]

SMBW − 0.21 [− 0.29, 0.13]

dSWB dLWG − 0.24 [− 0.35, − 0.13]

dBFTB 0.52 [0.43, 0.60]

SMBW − 0.28 [− 0.35, − 0.20]

dLWG dBFTB − 0.13 [− 0.27, 0.01]

SMBW 0.04 [− 0.08, 0.16]

dBFTB SMBW − 0.14 [− 0.40, 0.14]
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Table 7 Posterior means of genetic correlations and 95% highest posterior density  (HPD95%) intervals among traits based on the 
multiple trait animal model (MTAM) and on the structural equation model (SEM)

MTAM = multiple trait animal model; SEM = structural equation model

dLFI = daily lactation feed intake (kg/day); dSWB (daily sow weight balance (kg/day); dLWG = daily litter weight gain (kg/day); dBFTB = daily back fat thickness balance 
(mm/day); SMBW = sow metabolic body weight  (kg0.75)

Trait Trait MTAM SEM

Posterior mean HPD95% Posterior mean HPD95%

dLFI dSWB 0.51 [0.23, 0.78] 0.42 [0.15, 0.68]

dLWG 0.46 [0.23, 0.67] 0.41 [0.18, 0.65]

dBFTB 0.46 [0.20, 0.70] 0.25 [− 0.13, 0.61]

SMBW 0.39 [0.14, 0.64] 0.21 [− 0.09, 0.53]

dSWB dLWG − 0.37 [− 0.70, − 0.06] − 0.55 [− 0.76, − 0.31]

dBFTB 0.69 [0.46, 0.89] 0.31 [− 0.09, 0.72]

SMBW − 0.28 [− 0.58, 0.02] − 0.34 [− 0.65, − 0.04]

dLWG dBFTB − 0.46 [− 0.71, − 0.14] − 0.46 [− 0.74, − 0.15]

SMBW 0.41 [0.14, 0.66] 0.44 [0.18, 0.68]

dBFTB SMBW − 0.14 [− 0.40, 0.14] − 0.06 [− 0.42, 0.31]

Fig. 2 Additive genetic association between daily lactation feed intake (dLFI) and daily sow weight balance (dSWB). a Total ( σ∗ ) and direct additive 
( σ ) genetic association and b indirect additive genetic association
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Similarly, in Fig.  3, the additive genetic associations 
between dLWG and dSWB are represented. Here, the 
total association was calculated as:

where σa,dLWG,dSWB represents the direct additive 
genetic association between dLWG and dSWB, and 
σa,dLFI,dLWG × �dSWB←dLFI and σ2a,dLWG × �dSWB←dLWG 
are the genetic associations due to indirect effects. For 
these two traits, the total and direct additive genetic 
covariances were very similar due to the almost null con-
tribution of the indirect effects.

The additive genetic associations between dSWB and 
dBFTB and between dSWB and SMBW are represented 
in Figs.  4 and 5, respectively. In these associations, 
multiple components contributed to the total genetic 
covariance. The total genetic association in the “reduced 
model” between dSWB and dBFTB was calculated as 
follows:

σ
∗
a,dSWB,dLWG = σa,dLFI,dLWG × �dSWB←dLFI

+ σa,dLWG,dSWB + σ
2
a,dLWG

× �dSWB←dLWG,

where Direct Effect = σa,dSWB,dLWG, with

Component 1 =
(

σ
2
a,dLFI×�dSWB←dLFI + σa,dLFI,dSWB

+σa,dLFI,dLWG × �dSWB←dLWG

)

× �dBFTB←dSWB × �dSWB←dLFI,

 

Component 2 =
(

σa,dLFI,dSWB×�dSWB←dLFI + σ
2
a,dSWB

+σa,dSWB,dLWG×�dSWB←dLWG

)

× �dBFTB←dSWB,

 

Component 3 =
(

σa,dLFI,dLWG×�dSWB←dLFI + σa,dSWB,dLWG

+σ
2
a,dLWG×�dSWB←dLWG

)

× �dBFTB←dSWB × �dSWB←dLWG,

 

Component 4 = σa,dLFI,dBFTB×�dSWB←dLFI, 
Component 5 = σa,dLWG,dBFTB×�dSWB←dLWG , where the 
direct effect ( σa,dSWB,dBFTB ) represents the direct additive 

σ
∗
a,dSWB,dBFTB =Direct Effect + Component1

+ Component2+ Component3

+ Component4 + Component5,

Fig. 3 Additive genetic association between daily litter weight gain (dLWG) and daily sow weight balance (dSWB). a Total ( σ∗ ) and direct additive 
( σ ) genetic association and b indirect additive genetic association
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genetic association between dSWB and dBFTB, and the 
remaining terms correspond to the contribution of differ-
ent indirect effects to this covariance. The most important 
indirect effect was the second term of the equation (Com-
ponent 2), which caused an important difference between 
total and direct genetic associations, while the other terms 
were almost negligible.

Total genetic association between dSWB and SMBW 
was calculated as:

where Direct Effect = σa,dSWB,SMBW,

with Component 1 =
(

σ
2
a,dLFI × �dSWB←dLFI + σa,dLFI,dSWB

+σa,dLFI,dLWG × �dSWB←dLWG

)

×�SMBW←dSWB × �dSWB←dLFI,

 

σ
∗
a,dSWB,SMBW =Direct Effect + Component 1

+ Component 2+ Component 3

+ Component 4 + Component 5,

Component 2 =
(

σa,dLFI,dSWB × �dSWB←dLFI + σ
2
a,dSWB

+σa,dSWB,dLWG × �dSWB←dLWG

)

× �SMBW←dSWB,

 

Component 3 =
(

σa,dLFI,dLWG × �dSWB←dLFI + σa,dSWB,dLWG

+σ
2
a,dLWG × �dSWB←dLWG

)

× �SMBW←dSWB × �dSWB←dLWG,

 

Component 4 = σa,dLFI,SMBW × �dSWB←dLFI, 
Component 5 = �dSWB←dLWG × σa,dLWG,SMBW , where 
the direct effect (σa,dSWB,SMBW ) indicates the direct additive 
genetic association between dSWB and SMBW and the 
remaining terms correspond to the contribution of different 
indirect effects to this covariance. Posterior distributions of the 
total additive genetic covariance and of the direct additive 
genetic covariance were very similar to each other for these two 
traits because all indirect effects were small. The most impor-
tant indirect contribution was the second term (Component 2).

Fig. 4 Additive genetic association between daily sow weight balance (dSWB) and daily back fat thickness balance (dBFTB). a Total ( σ∗ ) and direct 
additive ( σ ) genetic association and b indirect additive genetic association.  

Component 1 :
(

�dSWB←dLFI × σ
2
a,dLFI + σa,dLFI,dSWB + �dSWB←dLWG × σa,dLFI,dLWG

)

×�dBFTB←dSWB×�dSWB←dLFI,
 

Component 2 :
(

�dSWB←dLFI × σa,dLFI,dSWB + σ
2
a,dSWB + �dSWB←dLWG × σa,dSWB,dLWG

)

× �dBFTB←dSWB, 

Component 3 :
(

�dSWB←dLFI × σa,dLFI,dLWG + σa,dSWB,dLWG + �dSWB←dLWG × σ
2
a,dLWG

)

×�dBFTB←dSWB×�dSWB←dLWG,

Component 4 : �dSWB←dLFI × σa,dLFI,dBFTB,Component 5 : �dSWB←dLWG × σa,dLWG,dBFTB
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Responses to selection
Additional file  1: Table  S3 shows the posterior mean 
(posterior SD) of the correlated response for each trait of 
the selection objective (i.e. dLFI, dSWB and dLWG) for 
each unit of increase in the selection index correspond-
ing to different selection strategies. The objectives were 
to decrease or keep dLFI constant, to increase or keep 
dSWB constant, and to increase dLWG. Three selec-
tion strategies were considered: (i) selection based on 
an index in which the selection criterion included the 
measurements of dLFI, dBFTB, and dLWG; (ii) selec-
tion based on the previous index but with no information 
about dLFI, and (iii) selection based on information on 
dBFTB and dLWG when the same amount of feed was 
given to all sows during lactation (mimicking the effect 
of an external intervention that modifies the relationship 
between traits). Additional file 1: Table S4 shows results 

for the same selection strategies when information on 
dSWB was used instead of that on dBFTB. For all three 
selection strategies and regardless of whether dSWB or 
dBFTB was in the selection criterion, responses followed 
a similar pattern and, for the same economic weights, 
responses were the same. Table  8 shows responses to 
selection for the third strategy, i.e. when all the sows 
were fed the same amount of feed and measurements of 
dBFTB and dLWG were used. With this strategy, when 
the selection index was constrained so that there was no 
change in dSWB (economic weight of dSWB equal to 0), 
dLWG decreased by 0.09 kg/day and dLFI decreased by 
0.15 kg/day. When response in dLFI was constrained to 
zero (economic weight of dLFI equal to 0) and dSWB had 
an economic weight twice that of dLWG, then dLWG 
decreased by 0.13 kg/day but dSWB increased by 0.14 kg/
day.

Fig. 5 Additive genetic association between daily sow weight balance (dSWB) and sow metabolic body weight (SMBW). a Total ( σ∗ ) and direct 
additive ( σ ) genetic association and b indirect additive genetic association. 

Component 1 :
(

σ
2
a,dLFI × �dSWB←dLFI + σa,dLFI,dSWB + σa,dLFI,dLWG × �dSWB←dLWG

)

×�SMBW←dSWB×�dSWB←dLFI, 

Component 2 :
(

σa,dLFI,dSWB × �dSWB←dLFI + σ
2
a,dSWB + σa,dSWB,dLWG × �dSWB←dLWG

)

× �SMBW←dSWB, 

Component 3 :
(

σa,dLFI,dLWG × �dSWB←dLFI + σa,dSWB,dLWG + σ
2
a,dLWG × �dSWB←dLWG

)

×�SMBW←dSWB×�dSWB←dLWG,
 

Component 4 : σa,dLFI,SMBW × �dSWB←dLFI, Component 5 : �dSWB←dLWG × σa,dLWG,SMBW
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Discussion
Although several studies have reported genetic and phe-
notypic relationships between components of lactation 
feed efficiency [7], to our knowledge, there is no study on 
the phenotypic causal relationships between these com-
ponents. We investigated the causal structure among five 
traits that are involved in LFE and estimated the magni-
tude of the putative causal effects in this causal structure 
using data from a population of pigs selected for RFI dur-
ing growth. The causal structure between components 
of FE was previously studied by Wu et  al. [15] in dairy 
cattle, but they defined the causal structure by assuming 
that energy sinks affect FI and that there are no causal 
relationships between energy sinks. This model means a 
causal interpretation of RFI by phenotypic recursiveness 
between FI and energy sinks, which allows the estima-
tion of breeding values and genetic parameters for RFI 
directly (i.e. with no previous estimation of RFI).

Structural equation models describe the causal rela-
tionships that are present in a biological system, but it 
requires the specification of a potential causal structure 
underlying it. The IC algorithm is one of many avail-
able strategies to search for a network structure that is 
compatible with the joint probability distribution of the 
traits considered. However, the IC algorithm requires 
the assumption that there are no simultaneous relation-
ships (i.e., feedbacks) between the traits. In an IC search, 
unobserved correlated genetic or environmental effects 

that are usually present for livestock production traits 
could be confounded with causal relationships. To avoid 
this problem, we implemented the IC algorithm on the 
joint distribution of phenotypes conditional to unobserv-
able genetic and environmental effects, as proposed by 
Valente et al. [10], using a Bayesian approach. However, 
for some sets of traits, it may not be possible to find the 
edges and the causal directions using only information 
from the data. In this situation, biological prior knowl-
edge can be incorporated to complete the causal struc-
ture specification. Thus, for example, Chitakasempornkul 
et  al. [26] incorporated temporal information to fully 
orient the network that had an unresolved connection 
between two traits based on the IC algorithm. However, 
this extra information could be subjective and does not 
guarantee causality. The causal structure that is returned 
by the IC algorithm can also change depending on the 
HPD interval used [27]. In our analysis, the data-driven 
IC algorithm yielded a fully directed acyclic graph using 
 HPD95% intervals. When 70, 80, and 90% HPD intervals 
were used, the IC algorithm returned the same structure 
but with an additional edge between dLFI and dLWG, 
but without directions. Therefore, we assumed the causal 
structure returned by the IC algorithm using  HPD95% 
intervals as the causal structure for the SEM analysis. 
The resulting estimates indicated that an increase in dLFI 
would increase dSWB, while an increase in dLWG would 
decrease dSWB and, in turn, an increase in dSWB would 
increase dBFTB while decreasing SMBW (Fig. 1).

After implementing the SEM, the sign of the structural 
coefficients agreed with the sign of the residual correla-
tions obtained with the MTAM. Estimates of the struc-
tural coefficients express the strength of each causal 
link between traits, which is essential to quantify the 
component of every element of the variance–covariance 
matrices that results from indirect sources of (co)varia-
tion. Estimates of variances and of ratios of variances, 
such as heritability, based on a SEM (direct effects) or a 
MTAM (total effects) are expected to be the same for the 
upstream traits (i.e., traits that are not affected by other 
traits in the causal network). In our study, this princi-
ple was fulfilled for dLFI but not for dLWG because of 
the unexpected difference in estimates of the variance 
of permanent environmental effects, which was equal to 
0.008 (0.005) based on the SEM and 0.02 (0.006) based 
on the MTAM. This difference could be due to the con-
straint imposed on the residual covariance which is 
set to zero in the SEM but not in the MTAM. For traits 
that are affected by other traits in the causal network, 
indirect effects may contribute to variances and ratios 
of variances, resulting in differences between estimates 
based on the MTAM and estimates based on the SEM. 
In our study, dBFTB was the most affected trait with 

Table 8 Responses to selection for traits in the selection 
objective when selection is based on daily backfat thickness 
and daily litter weight gain records, and sows are fed the same 
amount of feed

dLFI = daily lactation feed intake (kg/day); dSWB (daily sow weight balance (kg/
day); dLWG = daily litter weight gain (kg/day); dBFTB = daily back fat thickness 
balance (mm/day); SMBW = sow metabolic body weight  (kg0.75)

Economic weight Correlated response

dLFI dSWB dLWG dLFI dSWB dLWG

− 2 1 2 − 0.11 (0.05) − 0.11 (0.05) 0.03 (0.06)

− 2 2 1 − 0.13 (0.04) 0.09 (0.04) − 0.17 (0.03)

− 2 1 1 − 0.16 (0.04) 0.01 (0.05) − 0.11 (0.05)

− 2 2 2 − 0.15 (0.04) 0.03 (0.06) − 0.12 (0.06)

− 1 1 2 0.05 (0.05) − 0.14 (0.04) 0.17 (0.03)

− 1 2 1 − 0.06 (0.05) 0.14 (0.04) − 0.17 (0.03)

− 1 1 1 − 0.15 (0.04) 0.03 (0.06) − 0.12 (0.06)

− 1 2 2 0.10 (0.08) 0.06 (0.10) 0.02 (0.12)

0 1 2 0 − 0.14 (0.04) 0.13 (0.03)

0 2 1 0 0.14 (0.04) − 0.13 (0.03)

0 1 1 0 0.07 (0.13) − 0.06 (0.13)

− 1 0 2 0.12 (0.09) 0 0.08 (0.05)

− 2 0 1 − 0.15 (0.04) 0 − 0.09 (0.03)

− 1 0 1 − 0.15 (0.04) 0 − 0.09 (0.03)
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the posterior mean (posterior SD) of the total additive 
genetic variance being 0.16 (0.03), while the additive 
genetic variance of direct effects was 0.07 (0.02), which 
resulted in relevant (although not statistically different) 
differences between estimates of total and direct herit-
ability for this trait (0.18 (0.04) and 0.12 (0.03), respec-
tively). Therefore, the total genetic effects for this trait 
were largely due to indirect effects that originated from 
the upstream traits, mainly dSWB.

Knowing which proportion of the relationship between 
two traits is due to direct and indirect effects is impor-
tant to design new selection strategies based on external 
interventions for a trait without the need to perform an 
experiment to obtain covariance estimates with those 
interventions. Such external interventions are those that 
can change or block a causal relationship between traits 
(e.g. the practice of cesarians removes the effect of gesta-
tion length or fetus weight on calving difficulty) or that 
control the phenotypic value of one trait, e.g. by holding 
it constant (e.g. cross-fostering, or feed restriction to a 
fixed amount of feed), as was the case for one of our pro-
posed selection strategies.

In the specific case of the relationship between dLFI 
and dSWB, the causal structure indicates that dLFI 
positively affects dSWB, with an increase in dSWB 
of 0.12  kg/day for every 1  kg/day increase in dLFI. 
The mainly contribution of indirect effects corre-
spond to the term σ2a,dLFI × �dSWB←dLFI since the term 
σa,dLFI,dLWG × �dSWB←dLWG had almost no contribution 
(Fig. 3).

The causal effect of dLWG on dSWB was negative and 
the lowest in magnitude compared to all other causal 
effects among the analyzed traits. For every 1  kg/day 
increase in dLWG, dSWB is expected to decrease by 
0.03  kg/day. Piles et  al. [7] also found a negative resid-
ual correlation between dLWG and dSWB in a Duroc 
population of pigs. This negative effect can be explained 
by the sow needing to mobilize body reserves to meet 
the increased milk demands of the piglets as a result 
of increased growth. Selection to increase dLWG is 
expected to result in a negative correlated response in 
dSWB since the total genetic correlation between dLWG 
and dSWB is low to moderate and negative (posterior 
mean − 0.37).

Previous studies have demonstrated the influence of 
lactation feed intake on litter weight gain. Eissen et  al. 
[28] showed that litter weight gain increased as feed 
intake of the sows increased. Moreover, Hawe et al. [29] 
estimated the effect of increasing sow feed intake on 
piglet growth and showed that better sow feeding dur-
ing lactation can increase milk yields and piglet wean-
ing weights. In our analyses using the IC algorithm, we 

observed a non-directed edge between dLFI and dLWG, 
which disappeared when  HPD95% were used instead of 
HPD intervals with smaller levels of probability con-
tent. Given the published information regarding the 
effect of dLFI on dLWG, and given our results using 70, 
80, and 90% HPD intervals, we implemented a SEM that 
also included the corresponding structural coefficient 
between dLFI and dLWG. We found that this did not 
affect estimates of variance components of the model, 
which were very close to those obtained with the model 
that did not include this structural coefficient (results not 
shown), and that the estimate of the structural coefficient 
indicated a positive but small effect of dLFI on dLWG 
(0.03 kg/day for each 1 kg/day increase in dLFI).

Based on the posterior means of the structural coefficients, 
the most important causal effect was a negative effect of 
dSWB on SMBW. The estimate of the corresponding struc-
tural coefficient ( �SMBW←dSWB ) indicated that for each kg/
day increase in dSWB, SMBW is expected to decrease by 
+ 1.22 kg/day. Abdalla et al. [14] also found an edge between 
body weight gain and metabolic mid-weight in turkeys, but 
in contrast to our results, the latter trait had a positive effect 
on the former in their analyses, which means that increasing 
energy for maintenance would lead to an increase in weight. 
However it should be noted that this study has important 
differences with ours, not only regarding the species and the 
set of analyzed traits but also the method of analysis, which 
might explain this difference. According to our results, selec-
tion for increased dSWB is expected to reduce requirements 
for maintenance given the low to moderate total genetic cor-
relation between those traits (− 0.28). Many indirect effects 
contribute to this covariance but the most important were 
those involved in the term 
(

σa,dLFI,dSWB × �dSWB←dLFI + σ
2
a,dSWB

+ σa,dSWB,dLWG × �dSWB←dLWG

)

×�SMBW←dSWB
 , for which the structural coefficient 

�SMBW←dSWB was the most relevant (− 1.22). The remain-
ing indirect effects were very small and hardly contributed to 
the total genetic covariance.

Daily backfat thickness balance is a component of 
dSWB, since it is a measure for a specific tissue among all 
those that compose the body. This trait is easier to meas-
ure on a nucleus farm than dSWB because it can be done 
in situ. Therefore, it is interesting to determine if it can be 
used as a good marker of the body condition of a sow for 
selection instead of dSWB. The IC algorithm found an 
effect of dSWB on dBFTB and the structural coefficient 
estimated for this causal relationship in the SEM indi-
cated that an increase of 1 kg/day in dSWB is expected to 
increase dBFTB by 0.070  mm/day. Our results showed 
that dSWB and dBFTB are highly correlated, with the 
posterior mean of the total genetic correlation being 
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equal to 0.69. However, the direct genetic correlation was 
0.31, which indicates that indirect effects exerted by the 
other traits are quite relevant in this relationship. Many 
indirect effects contributed to this correlation but the 
most important was 

(

�dSWB←dLFI × σa,dLFI,dSWB + σ
2
a,dSWB

+�dSWB←dLWG × σa,dSWB,dLWG

)

× �dBFTB←dSWB
.

Measurement of individual feed intake is expensive and 
labor-intensive even when electronic feeders are used. 
Given the close relationship between dLFI and dSWB, it 
is relevant to assess whether a measure of dSWB provides 
enough information on dLFI to allow effective selection 
for components of LFE without LFI recording. Likewise, 
since dBFTB is easier to record than dSWB and both 
traits are strongly correlated, assessing whether dBFTB 
could replace dSWB in the selection index, is relevant. 
Correlated responses to selection in the targeted traits 
were little affected by whether measurements of dBFTB 
or dSWB were included, which indicates that dBFTB 
could replace dSWB in a selection criterion. Responses 
to selection following the former two strategies showed 
that selection without phenotypic information on dLFI 
is possible since correlated responses were little affected 
by the lack of dLFI data. However, given the covariance 
structure for all traits involved in LFE, it is unlikely that a 
reduction in dLFI while increasing sow productivity and 
no decline in sow body condition can be achieved. Piles 
et al. [7] found that selection for restricted RFI (i.e., RFI 
estimated from genetic regression of FI on production 
traits instead of from phenotypic regression [8]) is not 
expected to be effective because of the low genetic varia-
tion of this trait. Restricted residual feed intake is equiva-
lent to a restricted selection index in which production 
traits (in our case, dSWB or dBFT and dLWG) are held 
constant. This definition of FE guarantees null genetic 
correlations of RFI with production traits and thus null 
correlated responses in these traits when selecting for 
RFI.

Providing the same amount of feed to all sows during 
lactation would remove a source of individual variation 
in LFE. In this case, variation in efficiency would be due 
to variation in the other traits, which are easier to meas-
ure than LFI. This strategy was successfully implemented 
in growing pigs by Nguyen et  al. [9] for improving feed 
efficiency during growth but, in that selection experi-
ment, animals were fed a fixed but restricted ration of 
approximately 80% of averaged ad  libitum intake over 
6 weeks, which provided the conditions to better observe 
differences in FE among individuals. In our study, by 
keeping the amount of feed provided to all the sows con-
stant and including only dSWB or dBFTB and dLWG in 
the selection criterion, the same pattern of responses was 
obtained as with selection strategies in which this man-
agement practice was not implemented. In addition, the 

magnitudes of the responses in each trait of the selection 
objective for the same economic weights were not signifi-
cantly different from each other. Therefore, this manage-
ment strategy does not seem to offer an advantage over 
the others and is not recommended.

Conclusions
Knowing the causal relationships among traits involved 
in LFE allows predicting the outcome of external inter-
ventions in a trait and how it is expected to affect 
responses to selection in a breeding program. For the first 
time, we have deciphered the causal structure among the 
main components of LFE and estimated the magnitude of 
their associations in a pig population. The results indicate 
that dLFI and dLWG affect dSWB, which, in turn, affects 
dBFTB and SMBW. Indirect effects are particularly rele-
vant for the genetic variance of dBFTB and SMBW, which 
are indirectly affected by all other traits through dSWB. 
The contribution of indirect effects to the total genetic 
covariance between traits is most important in the rela-
tionship between dSWB and dBFTB. Responses to selec-
tion in the objective traits were, however, little affected 
by the different selection strategies evaluated, including 
not recording LFI or imposing the external management 
practice of restricted feeding, and no strategy offered a 
clear advantage over the others. In addition, it appears 
difficult to reduce dLFI while increasing sow productivity 
without impairing sow body condition.
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