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Modulation of the PI3K/Akt/mTOR signaling pathway by probiotics as a fruitful 
target for orchestrating the immune response
Amir Hossein Mohseni a, Vincenzo Casolaro b, Luis G. Bermúdez-Humarán c, Hossein Keyvanid, 
and Sedigheh Taghinezhad-S a

aDepartment of Microbiology, Faculty of Basic Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran; bDepartment of 
Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Baronissi, Salerno, Italy; cUniversité Paris-Saclay, INRAE, 
AgroParisTech, Micalis Institute, Jouy-en-Josas, France; dDepartment of Virology, Faculty of Medicine, Iran University of Medical Sciences, 
Tehran, Iran

ABSTRACT
The mammalian target of rapamycin (mTOR) and the phosphatidylinositol-3-kinase (PI3K)/protein 
kinase B or Akt (PKB/Akt) signaling pathways are considered as two but somewhat interconnected 
significant immune pathways which play complex roles in a variety of physiological processes as 
well as pathological conditions. Aberrant activation of PI3K/Akt/mTOR signaling pathways has been 
reported to be associated in a wide variety of human diseases. Over the past few years, growing 
evidence in in vitro and in vivo models suggest that this sophisticated and subtle cascade mediates 
the orchestration of the immune response in health and disease through exposure to probiotics. An 
expanding body of literature has highlighted the contribution of probiotics and PI3K/Akt/mTOR 
signaling pathways in gastrointestinal disorders, metabolic syndrome, skin diseases, allergy, salmo-
nella infection, and aging. However, longitudinal human studies are possibly required to verify 
more conclusively whether the investigational tools used to understand the regulation of these 
pathways might provide effective approaches in the prevention and treatment of various disorders. 
In this Review, we summarize the experimental evidence from recent peer-reviewed studies and 
provide a brief overview of the causal relationship between the effects of probiotics and their 
metabolites on the components of PI3K/Akt/mTOR signaling pathways and human disease.
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Introduction

Probiotics are live microorganisms which when 
administered in adequate amounts confer a health 
benefit on the host.1 Decades of research have 
clearly demonstrated the beneficial effects of pro-
biotics. These effects include improvement of gas-
trointestinal health and gut immunity, prevention 
of potential colonization by pathogenic bacteria 
and reducing the risk of certain type of cancers.2–5 

Most probiotic bacteria belong to the genus 
Lactobacillus, Bifidobacterium, Lactococcus, and 
Enterococcus spp., and these microorganisms offer 
valuable alternative approaches for future immu-
nomodulatory and cancer prevention therapies.6–9

Protein kinase B, also known as Akt (PKB/Akt), 
a serine/threonine protein kinase and a direct down-
stream effector of phosphoinositide 3-kinase (PI3K), 
is a key component of the PI3K/mechanistic target of 

rapamycin (mTOR)/Akt signaling network.10,11 

mTOR, the target molecule of rapamycin, is 
a serine/threonine kinase located downstream of 
the PI3K/Akt pathway.12 The mTOR signaling cas-
cade involves two multiprotein complexes with dif-
ferent functions, mTORC1 and mTORC2.13 This is 
highlighted in extensive studies showing that the 
mTOR signaling pathway has apparent regulatory 
impact on immune function and T-cell differentia-
tion by integrating various micro-environmental 
signals.14,15 Detailed investigations of the mTORC 
signaling pathway showed that activation of 
mTORC1 follows activation of PI3K, which in turn, 
by different interactions with pyruvate dehydrogen-
ase kinase 1 (PDK1), can phosphorylate and partially 
activate Akt at Threonine (Thr)-308.16 Moreover, 
subsequent phosphorylation of Akt at Serine (Ser)- 
473 by mTORC2 leads to its full activation and 
impact on regulation of stress resistance, glucose 
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metabolism, apoptosis, and cell proliferation 
through blocking of transcription factors forkhead 
box O1 (FOXO1)/3a.17,18 It has been demonstrated 
that up-regulation of Akt is followed by the activa-
tion of the lipid kinase PI3K via RAS guanosine 
triphosphate-binding proteins (GTPases).19 

Additionally, several evidences indicate that Akt 
can indirectly promote the activation of ribosomal 
S6 kinase (S6K) and eukaryotic translation initiation 
factor 4E (eIF4E)-binding protein 1 (4E-BP1) 
through direct phosphorylation of mTOR.11,20 

Studies in different models clarify the role of 
mTOR signaling pathway in the regulation of cell 
cycle via the PI3K/Akt/mTOR/S6K cascade.21,22 

Since the PI3K/Akt/mTOR signaling pathway is 
extensively reviewed elsewhere, additional compre-
hensive description may be found in other 
reviews.23–25 However, studies in the past few years 
have made progressively clear that the PI3K/Akt/ 
mTOR cascade can respond to different stimuli to 
regulate signaling pathways and essential processes 
of cellular biology, including crucial processes such 
as growth, survival, proliferation, and cell metabo-
lism that are dysregulated in different disorders.23,26 

Aberrant activation of the PI3K/Akt/mTOR network 
contributes to pathological conditions, including 
type 2 diabetes (T2D), nonalcoholic fatty liver dis-
ease (NAFLD), and cancer. Therefore, modulating 
the components of the PI3K/Akt/mTOR pathway 
has recently been proposed as a vital and potential 
therapeutic option for preventing and/or treating 
a quite diverse host of conditions whose chronic 
complications are important burdens in modern 
communities.17,27,28

Within the last decade, the fields of immunology 
and microbiology have turned out to be more 
entwined than previously thought. Up until now, 
considerable effort and an ever-growing number of 
in vitro and in vivo studies have been conducted to 
investigate the possible intriguing link between the 
effects of probiotics on the PI3K/Akt/mTOR signal-
ing network and their effects on different aspects of 
health and disease. Major efforts in recent years 
have been made to shed light on the mechanisms 
accounting for the interconnections between pro-
biotics metabolism and PI3K/Akt/mTOR signaling 
pathway (Table 1). For example, several findings 
document a possible relationship between the con-
sumption of probiotic strains and their derived 

metabolites, and the downregulation of mTOR sig-
naling, resulting in improvement of allergic 
responses.29 In line with this hypothesis, an impor-
tant in vivo study conducted by Jeong et al., looking 
at the effectiveness of Lactobacillus plantarum 
KY1032 in controlling lipidemia in rats, discovered 
that the oral consumption of this probiotic can 
result in concomitant reduction of Akt and 
mTOR phosphorylation.33 Similarly, the suppres-
sing effect of Lactobacillus rhamnosus GG (LGG) 
strain on the phosphorylation levels of Akt/mTOR 
and extracellular-signal regulated kinases1/2 
(ERK1/2) has been demonstrated in parallel with 
symptom improvement in animal models of 
obstructive sleep apnea (OSA).45 Keeping these 
results in mind, probiotic strains should be selected 
based on their ability to regulate PI3K/Akt/mTOR 
signaling intermediates for targeted therapy of dis-
eases in which activation of this pathway plays 
a role. In this Review, we wish to provide the 
Reader an exhaustive overview of how such studies 
have contributed to improve our understanding of 
the causal relationships between probiotics and the 
PI3K/Akt/mTOR signaling pathway (Figure 1). We 
herein summarize our current understanding of the 
modulatory effects of probiotics on the PI3K/Akt/ 
mTOR signaling pathway in specific disease models 
to help pave the way for novel therapeutic 
strategies.

Probiotics, autophagy, and apoptosis

Autophagy, or programmed cell death (PCD) type 
2, an evolutionarily conserved pathway, is 
a lysosome-mediated catabolic pathway and plays 
a critical role in degradation of the organelles and 
superfluous proteins that happens ubiquitously in 
all eukaryotic cells.68 It has recently been high-
lighted as an innate defense or vital homeostasis 
mechanism against bacterial pathogens and 
a variety of stimuli and metabolic stress conditions, 
including nutrient deprivation, which is fundamen-
tal for cytoplasmic recycling, cellular bioenergy 
homeostasis, cellular lipid metabolism, cell survival, 
and lifespan extension.69 Studies in animal models 
and in humans are starting to unravel the opposing 
link between autophagy and inflammation. Of note, 
the inflammatory response mediated by the nuclear 
factor kappa B (NF-κB) signaling cascade would 

e1886844-4 A. H. MOHSENI ET AL.



result in inhibition of autophagy, while, conversely, 
an inflammatory response would be attenuated 
after activation of autophagy.70 Within the past 
years, it has become increasingly clear that several 
key molecular and signaling pathways play a crucial 
role in regulating the balance of autophagy vs. non- 
apoptotic cell death. Among the most studies are 
the PI3K/Akt/mTOR signaling pathway, adenosine 
50-monophosphate (AMP)-activated protein 
kinase (AMPK), and mitogen-activated protein 
kinase (MAPK)/ERK signaling pathways, which 
have the capability to regulate autophagy at diverse 
steps of autophagosome formation.71,72 In cancer-
ous cells, in response to cellular stress induced by 
chemotherapeutics, mTOR has the potential to reg-
ulate the balance between autophagy and cell 
proliferation.73 Nevertheless, in the presence of 
growth factors or nutrients, autophagy would be 
down-regulated following the activation of 
TORC1 and TORC2 by PI3K-I (class I PI3Ks) and 
Akt, and the phosphorylation of their downstream 
molecules.74 In contrast, in the absence of nutrients 
and growth factors and/or the presence of other 
stressors, autophagy will be up-regulated due to 
the inhibition of Akt/mTOR activation.75 The 
observation that there is negative cross-regulation 
between autophagy and the PI3K/Akt/mTOR sig-
naling pathway can have interesting implications in 
the regulation of cellular lipid metabolism.76 Recent 

experimental evidence gathered from animal mod-
els characterized the effects of probiotics on PI3K/ 
Akt/mTOR signaling, autophagy, and indicators of 
inflammation. All in all, such studies highlighted 
a novel mechanism and a theoretical foundation for 
the inhibitory effects of probiotics on expression of 
the pro-inflammatory cytokines, IL-1β, IL-6, and 
TNF-α, and their association with reduced mTOR/ 
FOXO1/NF-κB activity and the promotion of 
autophagy processes in normal cellular lipid 
biosynthesis.77 These observations have been docu-
mented by both in vitro and in vivo studies which 
have probed that some strains of probiotics (e.g. 
Bacillus amyloliquefaciens SC06 and Bacillus liche-
niformis SC08) could improve oxidative stress by 
promoting the intestinal autophagy machinery sys-
tem following inhibition of the PI3K/Akt 
pathway.37

Aging is a multi-factorial deleterious process that 
accounts for increased morbidity and mortality in 
elderly and is accentuated in certain disease states, espe-
cially in people living with HIV (PLWH). Increasing 
evidence indicates that the gathering of damaged cellular 
components related to the aging process, due to the 
accumulation of reactive oxygen species (ROS), contri-
butes to dysregulated autophagy. Remarkably, increased 
activity of the PI3K/Akt axis, together with inhibition of 
autophagy, are a causative node in several diseases attrib-
uted to the aging process, including type 2 diabetes 

Figure 1. Schematic representation of the complex crosstalk between probiotics and the PI3K/AKT/mTOR signaling network, whereby 
extracellular and intracellular signals converge to orchestrate canonical upstream and downstream pathways to modulate a wide 
range of biological processes involved in various disorders. A detailed description of these interactions is provided in the text. Right: 
Up-regulation of PI3K/AKT/mTOR signaling cascade by probiotics. Left: Down-regulation of hyperactivated PI3K/AKT/mTOR signaling 
pathway by probiotics. Arrows indicate positive regulation (activation/stimulation), bar-headed lines indicate negative regulation 
(inhibition). The abbreviations shown in the figure can be found in the main text. (Figure was designed by https://biorender.com).
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mellitus (T2DM), neurodegeneration, cancer, and heart 
disease. During aging, skeletal muscle mass could be 
reduced due to alterations in the activity of 
autophagy.78,79 In this context, studies have documented 
the unique role of probiotics-induced mTORC signaling 
in cytoskeletal organization. In fact, increased skeletal 
muscle mass has been demonstrated in rats adminis-
tered heat-killed Bifidobacterium breve B-3, possibly 
mediated by increased phosphorylation of Akt/mTOR 
signaling intermediates along with AMPK.57 It is well 
known that cellular senescence plays an essential role in 
the aging process. In recent years, it has been demon-
strated that the PI3K/Akt/mTOR cascade critically reg-
ulates various processes associated with cell senescence 
during aging, and can be successfully engaged to extend 
the longevity in aged mice and humans by improving 
immune function.80 Striking results from animal models 
support the pro-longevity effects of probiotics. For 
example, administration of the secretory metabolites of 
Lactobacillus fermentum in mice models of senescence 
can effectively attenuate the development and progres-
sion of senescence by decreasing senescence markers 
such as p21WAF1, p53, p38MAPK, ROS, cyclooxygen-
ase-2 (COX-2), inducible nitric oxide synthase (iNOS), 
and senescence-associated-β-galactosidase (SA-β-gal), 
by inhibiting NF-κB activation and the DNA damage 
response, and by down-regulating the phosphorylation 
of PI3K/Akt/mTOR signaling intermediates.39 Similar 
results were seen in aged Fischer 344 rats administered 
Lactobacillus plantarum KY1032, Lactobacillus curvatus 
HY7601, and Lactobacillus pentosus var. plantarum C29, 
in which these probiotics caused inhibition of the phos-
phorylation and activation of Akt/mTOR/NF-κB path-
way intermediates and expression of p53, p16, and 
COX-2, and returned alternation of age reduced spon-
taneous in aged rats.33,67 Additional approaches will be 
essential to elucidate the interactions of probiotics with 
the PI3K/Akt/mTOR signaling pathway in the regula-
tion of aging processes.

Apoptosis is another important form of PCD. 
A numbers of excellent studies have shown that the 
intrinsic and extrinsic apoptosis pathways play vital 
roles in tumor regression and are in turn regulated by 
the PI3K/Akt, p38 MAPK, c-Jun N-terminal kinase 
(JNK), and AMPK pathways.81,82 It has been shown 
that Lactobacillus rhamnosus GG and its metabolites 
could prevent cytokine-induced apoptosis in human or 
mouse intestinal epithelial cells by down-regulating the 
activation of p38 MAPK and up-regulating the PI3K/ 

Akt cascade.42 Both live and dead cells of 
Bifidobacterium animalis subsp. lactis BI-04 strain can 
retard Benzo(a)pyrene (BaP)-induced apoptosis of the 
colonic epithelial cells by up-regulating the PI3K/Akt 
signaling pathway and down-regulating p53 gene 
expression.56 In light of these findings, some researchers 
have hypothesized that the induction of apoptosis in the 
SW480 cell line could occur in the presence of heat- 
killed preparations of Saccharomyces cerevisiae through 
enhanced expression of BAX, cleaved caspase-3, and 
cleaved caspase-9 and reduced expression of p-Akt1, 
Bcl-XL, pro-caspase 3 and 9, which are involved in the 
Akt/NF-κB signaling pathway.36 Therefore, by targeting 
apoptosis and survival-related signaling pathways these 
probiotics may offer important therapeutic options for 
cancer management.

Ample evidence indicates a critical role for vascular 
events resulting in impaired blood flow and blood 
vessel damage in the brain in the development of 
vascular dementia (VaD). VaD is implicated in beha-
vioral deterioration, progressive cognitive, memory 
and learning deficits, associated with neurodegenera-
tion and neural lesions. Conclusive findings linking 
neuronal apoptosis to a low ratio of Bcl-2/BAX have 
been obtained in studies of hippocampal lesions in rat 
models of VaD. Conversely, it has been shown that 
the up-regulation of PI3K/Akt pathway can rescue 
neurons from apoptosis activated in cerebral ische-
mia-reperfusion (IR) injury.83,84 Recent studies high-
light the potential role of Akt/mTOR signaling in the 
prevention of vascular cognitive damage by probio-
tics. These observations indicate that probiotics such 
as Clostridium butyricum may prevent VaD by 
increasing the levels of Bcl-2, BDN, and Akt phos-
phorylation and decreasing the levels of BAX, leading 
to reduced neuronal apoptosis and improvement of 
cognitive function in bilateral common carotid artery 
occlusion (BCCAO)-induced VaD. Taken together, 
the aforementioned data strongly point to the mod-
ulation of apoptosis, via the regulation of Bcl-2/BAX 
ratio, as a possible therapeutic target in VaD.52

Probiotics and their surface components

Emerging studies have demonstrated that the anti- 
inflammatory immune mechanisms and anti- 
tumoral effects of probiotic are closely associated 
with their surface components. This has prompted 
investigators to look at the key components of the 
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cell surface of probiotics such as lipoteichoic acid 
(LTA), surface-layer protein (Slp), and exopolysac-
charides (EPS).85 LTA, an amphiphilic negatively 
charged glycolipid, is an immune-stimulatory com-
ponent of the cell wall of probiotics that promotes 
the attachment of probiotics to host cells, coloniza-
tion, and invasion.46 At present, there are conflict-
ing findings in the sparse literature on the role of 
LTA in the regulation of inflammation. In some of 
these studies, LTA appears to play an important 
role in severe inflammatory responses and the 
pathogenesis of septic shock by stimulating the 
production of cytokines, such as IL-6 and TNF-α, 
via toll-like receptors (TLRs) such as TLR2.46,86 The 
stimulatory role of LTA in the development of 
septic shock is supported by in vivo evidence in 
a mouse model in which oral administration of 
Lactobacillus acidophilus strain NCFM deficient in 
LTA (NCK2025), compared to administration of 
the wild-type parental strain (NCK56), can down- 
regulate the phosphorylation of Akt1, p38 and cyto-
solic group IV PLA2 in colonic epithelial cells and 
dendritic cells, but significantly augment phosphor-
ylation of ERK1/2, which highlights the overall 
immunosuppressive effect of NCK2025 in T-cell- 
induced colitis.46 However, in apparent conflict 
with these findings, data strongly suggest that 
LTA can play a major role in the generation of anti- 
inflammatory cytokines, such as IL-10, and in 
maintaining intestinal cell homeostasis through up- 
regulation of ERK1/2 signaling.32,87 These oppos-
ing effects are important caveats when trying to 
envisage and/or interpret the aftereffects of probio-
tics treatment. As of today, the functional proper-
ties of LTA are under intensive scrutiny in in vivo 
studies to fully elucidate its overall effects on innate 
immunity. It has long been known that inflamma-
tion can be promoted by macrophages through the 
production of different cytokines, concomitant 
with the uptake and eradication of pathogens.46,88 

Regarding this issue, it is becoming increasingly 
clear that probiotics can sustain the immune 
response by promoting autophagy in pathogen- 
loaded macrophages. It is generally accepted that 
Enterococcus faecalis LTA can stimulate macro-
phages autophagy in vitro via hindering the phos-
phorylation of mTOR and Akt.38 The molecular 
mechanism underlying the anti-tumoral properties 
of Slp derived from Lactobacillus acidophilus 

NCFM were reported in HCT116 cells. These data 
support the notion that Slp can induce autophagic 
cell death following inhibition of cell proliferation 
by controlling the JNK and mTOR signaling path-
ways via reducing the phosphorylation levels of 4E- 
BP1, p70, and S6, and by up-regulating the expres-
sion of p53 and p21, and generation of ROS.47 It has 
been established that, in addition to Lactobacillus, 
Kluyveromyces marxianus and Pichia kudriavzevii 
fulfill the major criteria for probiotics definition. Of 
note, also the EPSs of these strains can induce 
apoptosis and may treat CRC by interfering with 
the mTOR, Janus Kinase 1 (JAK-1), and Akt-1 
pathways.48

Probiotics and Gastrointestinal (GI) disorders

Disruption in barrier function and alterations in tight 
junctions (TJ) structure are linked to the development of 
chronic inflammation. These changes may lead to var-
ious complications, including immune cell infiltration, 
expression of inflammatory cytokines, translocation of 
bacteria, and finally stimulation of systemic inflamma-
tory responses.89 Several findings also suggest that 
mechanisms controlling cell apoptosis and proliferation, 
that is, epithelial turnover, are deeply implicated in pre-
serving intestinal integrity, whereby an augmented rate 
of apoptosis in epithelial cells is associated with injury of 
the intestinal mucosa.43,90,91 This is highlighted in exten-
sive studies showing that an impairment of epithelial 
barrier function and reduced synthesis of TJ-associated 
proteins were subsequent to p-S6K and p-mTOR down- 
regulation in response to reduced Akt and p-Akt protein 
expression in dextran sulfate sodium (DSS)-treated 
mice.20,40 Studies conducted over the last few years 
have contributed to our understanding of the causal 
association between the activation of the PI3K/Akt/ 
mTOR signaling pathway, the induction of TJ- 
associated proteins and promotion of intestinal epithelial 
barrier function. Given the potential connection between 
gut microbiota and GI inflammatory disorders, several 
authors have been prompted to investigate the proper-
ties of beneficial microbes in experimental models of 
inflammation to identify new possible approaches to 
manage these conditions. It was long believed that 
Lactobacillus strains have the ability to prevent many 
human diseases and cancer development, and enhance 
the production of anti-inflammatory cytokines involved 
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in innate immunity through the modulation of the 
PI3K/Akt/mTOR pathway, given its involvement in 
various cellular processes, such as apoptosis, inflamma-
tory responses, and tumor angiogenesis.63 Subsequent 
studies revealed that epithelial barrier function both in 
in vitro and in vivo could be markedly improved by 
pretreatment with such probiotics as Bifidobacterium 
bifidum, Lactobacillus reuteri, and LGG and its proteins 
(p75 and p40).43,51,92 Similar results were seen in mice 
models, where ingestion of LGG and Lactobacillus reu-
teri ZJ617, by reducing autophagy and apoptosis via the 
activation of the mTOR cascades, and therefore improv-
ing TJ integrity, hinder lipopolysaccharides (LPS)- 
stimulated intestinal barrier dysfunction.43 This view is 
also supported to a certain extent in studies showing that 
Clostridium butyricum can contribute to improving the 
intestinal barrier function in a mouse model of DSS- 
induced colitis. The above findings provided a basis to 
further explore the underlying mechanism of these ben-
eficial properties of Clostridium butyricum, which was 
found to increase the expression of TJ-associated pro-
teins and diminish intestinal mucosal permeability via 
the up-regulation of the Akt/mTOR axis and the phos-
phorylation of their downstream signaling molecules 
such as p70S6k.20 Accumulating in vitro and in vivo 
evidence indicates that such probiotic strains as 
Lactobacillus fermentum L930BB, Lactobacillus paragas-
seri K7, Bifidobacterium animalis subsp. animalis 
(IM386), and Lactobacillus plantarum WCFS1, via the 
up-regulation of protein kinase C (PKC) and PI3K/Akt 
anti-apoptotic pathways, can regulate the actin cytoske-
leton and TJ structure to ensure reconstitution of the 
intestinal epithelial barrier.34,40 Most importantly, the 
PI3K/Akt/mTOR network complex, via cooperation 
with TLR-delivered signals and NF-κB, plays fundamen-
tal roles in the development of inflammatory responses. 
In this context, it is documented that Lactobacillus gas-
seri JM1 could improve inflammation in Caco-2 cells 
treated with LPS by up-regulation of TLR2 and nucleo-
tide-binding oligomerization domain containing 2 
(NOD2)-mediated PI3K/Akt network.54

Dysregulation and hyperactivation of the PI3K/ 
Akt/mTOR signaling network are closely associated 
with cell proliferation, resistance to apoptosis, and 
metastasis formation, and ultimately contribute to 
the progression of inflammatory bowel disease 
(IBD), colorectal cancer (CRC), and gastric 
cancer.93,94 Additional studies have addressed how 
the PI3K/Akt/mTOR signaling pathway can mediate 

control of colon and gastric cancer development by 
probiotics. In keeping with this, studies in murine 
models have demonstrated that Lactobacillus casei 
Zhang (LCZ) and VSL#3 could prevent and treat 
ulcerative colitis by decreasing the production of 
host inflammatory cytokines, inhibiting the hyperac-
tivation of the PI3K/Akt/NF-κB pathways and the 
phosphorylation of signal transducer and activator 
of transcription 3 (STAT3).63,95 Well-designed studies 
in murine models have also shown that administra-
tion of Leuconostoc mesenteroides and Lactobacillus 
salivarius Ren could significantly induce cell apoptosis 
in colon cancer cell lines and block colon cancer 
progression. The proposed mechanisms underlying 
the anti-tumoral effects of these strains included inac-
tivation of the NF-κB and Akt signaling cascades and 
their downstream molecules (cyclin D1 and COX-2), 
down-regulation of anti-apoptotic protein like Bcl-XL 
and Bcl-2, and up-regulation of MAPK1, caspase 3 
and 8, and BAX.64,65 In light of these findings, it is 
worth mentioning that Lactobacillus paracasei such as 
species X12 can block the G1 phase of human color-
ectal adenocarcinoma cell cycle by down-regulating 
the mTOR/4E-BP1 signaling pathway through the 
up-regulation of p27 and the down-regulation of 
cyclin E1.

61 Similarly reduced phosphorylation of 
PI3K/Akt/NF-κB signaling intermediates by probio-
tics was later confirmed in gastric cancer cells by 
Hwang and colleagues. They showed that 
Lactobacillus casei extracts can up-regulate apoptosis 
in gastric cancer cells and prevent gastric cancer by 
down-regulating the phosphorylation of PI3K/Akt/ 
NF-κB signaling components.60 As shown in new 
report, Lactobacillus plantarum can inhibit both 
Helicobacter pylori colonization and a gastric cancer 
cell line (AGS) through the up-regulation of PTEN, 
BAX, TLR4, and the down-regulation of Akt genes.30 

Hence, blocking the hyperactivation of the PI3K/Akt/ 
mTOR signaling pathway has emerged as a plausible 
therapeutic target for CRC and gastric cancers 
because of its involvement in cell growth and prolif-
eration. However, the mechanisms of action involved 
in the beneficial effects of probiotics mediated 
through the PI3K/Akt/mTOR signaling pathway in 
GI disorders are not fully elucidated in relevant 
human models. Thus, determining the exact mechan-
isms of action is not only crucial to determining the 
pathogenesis of GI disorders, but would also provide 
a new basis for emerging therapies. To this end, 
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prospective clinical trials should be launched to better 
characterize patients diagnosed with GI disorders.

Probiotics and Metabolic syndrome

The metabolic syndrome (MetS) is defined by the 
coexistence of risk factors such as increased abdom-
inal fat, obesity, high blood sugar, high blood pres-
sure, and hyperlipidemia that predispose to the 
development of T2D, cardiovascular disease 
(CVD), and NAFLD.96 As indicated earlier, over- 
activation of the mTOR pathway is associated with 
the process of autophagy, leading to several meta-
bolic disorders.17 Given the possible connection 
between probiotics and MetS, many authors have 
also been encouraged to investigate the effects of 
probiotics on PI3K/Akt signaling and MetS develop-
ment in murine models. The following paragraphs 
provide an overview of the probiotics investigated in 
studies of the PI3K/Akt/mTOR signaling pathway 
and of their effects on MetS progression.

Type 2 diabetes (T2D)

T2D is characterized by disordered glucose meta-
bolism as a result of insulin resistance. Attachment 
of insulin to insulin receptor substrate 2 (IRS-2) 
results in phosphorylation of PI3K and Akt, which 
improves glucose metabolism by phosphorylating 
glycogen synthase kinase 3 beta (GSK-3β). 
Conversely, blocking the activity of the PI3K/Akt 
signaling pathway following the inhibition of IRS-2 
phosphorylation may cause high glucose concen-
trations because of the hyperphosphorylation of 
GSK-3β.97 A mounting body of evidence indicates 
that this dysfunction could be reversed in the pre-
sence of probiotic microorganisms. For example, 
oral administration of Lactobacillus paracasei 
TD062 to diabetic mice could ameliorate the insu-
lin response and glucose homeostasis via decreas-
ing the levels of GSK-3β and elevating those of IRS- 
2, PI3K and Akt, thus preventing the development 
of T2DM.62

Two significant factors contributing to lipogen-
esis and insulin resistance are life-span determinant 
p66Shc (a 66 kDa proto-oncogene Src homologous- 
collagen homolog (Shc) adaptor protein) and the 
mTOR/S6K cascades. Data so far collected indicate 
that dysregulation in insulin signaling pathway, 

insulin resistance in muscle and liver tissues and 
lipid accumulation occurs following aberrant up- 
regulation of mTOR signaling. In particular, over- 
activation of mTORC1 and mTORC2 results in 
insulin resistance and gluconeogenesis suppression 
by up-regulation of S6K1 and Akt signaling, respec-
tively. These events are followed by deposition of 
extra fat in the liver, hindering insulin signaling, 
and activation of glycolysis.98,99 In vivo studies 
observed that Bifidobacterium spp. such as 
Bifidobacterium lactis Bb-12 can reduce blood glu-
cose levels by up-regulating the expressions of pro-
teins involving in the insulin signaling pathway like 
insulin receptor substrate 1 and insulin receptor 
beta, down-regulating the excess activation of the 
mTOR and p66Shc pathways, and increasing the 
expression of certain adipokines, nuclear factor- 
kappa B inhibitor alpha (IκBα), and IκB kinase 
alpha (IKKα).55,100

It has been known for long time that the pan-
creas is the only tissue that secretes insulin and has 
a significant role in regulating glucose metabolism. 
Recent in vivo findings reveal that protection of the 
pancreas from β-cell apoptosis is mediated by pro-
biotics via induction of the PI3K/Akt signaling 
pathway. These data are consistent with the results 
of an in vivo study by Wang et al., in which pro-
biotics could protect β-cells against apoptosis by 
up-regulating the expression of anti-apoptotic pro-
teins and the PI3K/Akt signaling cascade, and 
down-regulating the expression of inflammatory 
factors and pro-apoptotic proteins.101 In line with 
this concept, a recent in vitro study by Huang et al. 
looked at the relation between surface components 
of probiotics and the Akt/mTOR pathway and its 
inverse association during diabetes onset. Their 
findings suggest that EPS of Lactobacillus plan-
tarum H31 exerts anti-diabetic effects and plays 
an overall important role in glucose metabolism 
by up-regulating the expression of Akt-2, AMPK, 
and human glucose transporter 4 (GLUT-4), by 
interfering with the pancreas α-amylase activity.35

Cardio vascular disease (CVD)

Several pathways have been implicated in orchestrat-
ing the cellular response in CVD. Findings reveal that 
molecules involved in insulin-like growth hormone 
(IGF-I)-related survival pathways, including IGF-1 
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receptor (IGF-IR), IGF-I, p-Akt and p-PI3K, regulate 
cardiac survival pathways.102 A substantial amount of 
evidence indicates that an important mechanism in 
the development of obesity-related heart disease in 
high-fat diet-fed rats is the dysregulation of anti- 
apoptotic along with cardiac IGF-I/PI3K/Akt- 
dependent survival cascades.103 Collectively, previous 
studies have provided strong evidence showing that 
probiotic supplementation can enhance the activity of 
survival pathways in obese hearts, suggesting an inter-
play between IGF1/PI3K/Akt cell survival pathways 
and some strains of probiotics in the regulation of 
cardiovascular homeostasis. Along the same line, the 
in vivo effects of probiotics on CVD were investigated 
by Lin et al. and Wang et al., who found that oral 
administration of multi-strain probiotic groups can 
decrease cardiac apoptosis by up-regulating the IGF- 
I/PI3K/Akt survival pathway.103,104 In parallel studies, 
it was also reported that high expression of Fas ligand 
and its receptor Fas are linked to the progression of 
cardiomyocyte apoptosis. Accordingly, in vivo studies 
documented that heat-killed Lactobacillus reuteri 
GMNL-263 has similar effects on the reduction of 
cardiomyocyte apoptosis through down-regulating 
Fas ligand and up-regulating the IGF1R/PI3K/Akt 
cell survival pathway, thus recovering the myocardial 
disarray.50

Nonalcoholic fatty liver disease (NAFLD)

One of the hepatic manifestations of MetS is NAFLD, 
a spectrum of diseases such as nonalcoholic steatohe-
patitis (NASH), cirrhosis, hepatocellular carcinoma 
(HCC), and steatosis, characterized by inflammation, 
increased risk for liver carcinogenesis and fibrosis, 
and hepatocyte damage/death.105,106 Emerging lines 
of evidence have shown that modulation of autophagy 
and NF-κB-mediated inflammatory responses are 
important mechanisms in the pathogenesis of 
NAFLD.107 It has been found that both Lactobacillus 
rhamnosus and its metabolites, along with bone mar-
row mesenchymal stem cells (BMMSCs), by decreas-
ing autophagy and inflammation through down- 
regulation of the PI3K/mTOR/NF-κB pathways, 
have the potential to mitigate alcoholic hepatitis and 
alleviate its symptoms in in vivo.41

Some findings imply that high-fructose diets can 
enhance the prevalence of NAFLD, lipid accumula-
tion, expression of fatty acid synthase (FASN), 

hepatic weight, but inhibit the expression and 
phosphorylation of IRS-1/Akt/endothelial nitric 
oxide synthase (eNOS) signaling intermediates in 
the liver. On the other hand, these events could be 
reversed following Lactobacillus plantarum supple-
mentation in high-fructose-fed rats, revealing 
a possible beneficial effect of probiotics on renal 
and hepatic dysfunction and the prevention of 
NAFLD.31 In this respect, Clostridium butyricum 
MIYAIRI 588 has been used as a butyrate- 
producing probiotic in NAFLD rats subject to cho-
line-deficient/L-amino acid-defined (CDAA)-diet. 
In this study Clostridium butyricum MIYAIRI 588 
could indeed prevent NAFLD progression by redu-
cing the deposition of hepatic lipid and significantly 
decreasing the content of triglycerides, reversing 
insulin resistance, and hepatic inflammatory 
indexes. This preventing effect is a result of sub-
stantially elevated levels of expression of proteins 
contributing to lipolysis or lipogenesis, along with 
Akt and hepatic AMPK.53 In line with this notion, 
an in vivo study documented a reversing effect of 
Lactobacillus johnsonii N6.2 supplementation on 
the hyperactivation of mTORC1-activating phos-
phorylation of pAkt in high-fat diet-fed regime 
and the reduction of metabolic syndrome- 
associated changes.59

Probiotics and other disorders

With increasing challenges to human health, probio-
tics have attracted much attention for their capability 
to modulate the TLR/PI3K/Akt signaling pathway 
and ameliorate pharyngitis.66 TLRs as pattern- 
recognition receptors (PRRs) can activate innate 
immunity via sensing invasion of microbial patho-
gens. Among TLRs, TLR2 orchestrates innate 
immune and inflammatory responses by recruiting 
macrophages and modulating PI3K/Akt pathway- 
dependent autophagy, respectively, when encounter-
ing pathogens such as Staphylococcus aureus.108 

Activation of TLR/PI3K/Akt pathway contributes 
to the activation of the downstream NF-κB signaling 
cascade, thereby stimulating the expression of pro- 
inflammatory mediators and the development of 
inflammatory diseases such as pharyngitis.109 

Recent in vitro and in vivo studies recognized that 
probiotic Lactobacillus salivarius AR809 could 
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attenuate the inflammatory response produced by 
S. aureus by elevating autophagic protein level and 
blocking the TLR/PI3K/Akt/mTOR/NF-κB signal-
ing network.66 A substantial amount of evidence 
demonstrates that administration of probiotics such 
as Bifidobacterium animalis subsp. lactis DSM10140 
and/or LGG in Caco-2 cells can differentially affect 
the IL-8 response to Salmonella based on the time of 
administration, in that administration of these pro-
biotics before Salmonella infection can enhance the 
activation of the PI3K/Akt signaling pathway, while 
it inhibits PI3K/Akt pathway activation after 
Salmonella infection.44 As in many other cases, this 
information is not highly predictive of the overall 
effect of probiotics and provides an incomplete pic-
ture of how they regulate the PI3K/Akt pathway in 
Salmonella infection. Thus, further experimental 
studies are required to elucidate this point.

Mucosal delivery of probiotics has been the subject of 
growing interest due to its proven therapeutic effects in 
inflammatory and allergic disorders.110 Development of 
food hypersensitivity reactions occurs due to production 
of food protein-specific immunoglobulin E (IgE) and 
stimulation of basophils or mast cells, as a result of the 
activation of imbalanced, T helper 2 (Th2)-biased 
immune responses.111 Extensive studies have been con-
ducted to support the efficacy of probiotic microorgan-
isms in decreasing food allergy symptoms via the 
regulation of mTOR and Treg cells. An in vivo study 
showed that consumption of Bacillus coagulans 09.712 
up-regulates the transcription factor forkhead box P3 
(Foxp3) and down-regulates the phosphorylation of Akt, 
4E-BP1, STAT3, serum/glucocorticoid regulated kinase 
1 (SGK1) and p70S6K by inhibiting mTOR. Hence, the 
induction of the anti-inflammatory cytokine IL-10 and 
of CD4+Foxp3+ regulatory T cells (Tregs), and, conver-
sely, the inhibition of T helper 17 (Th17) and Th2- 
predominant can cause the alleviation of food allergic 
inflammation.29 This notion is further confirmed in 
studies showing that Bifidobacterium breve (BbC50sn), 
by regulating p38MAPK, ERK, and PI3K/Akt signaling 
pathways, can exert beneficial effects on allergic and 
inflammatory disorders depending on its interaction 
with monocyte-derived dendritic cells (DCs), leading 
to DC-induced IL-10 production and DC maturation, 
activation, and survival.58 Whereas most similar studies 
are concordant on the beneficial effects of probiotics on 
alleviation of allergic disorders, further research efforts 
are required to answer critical questions on the 

mechanisms underlying definite aspects of human- 
probiotic relations to fully understand the therapeutic 
potential of probiotics in allergic and inflammatory 
disorders.

The process of melanin synthesis called melanogen-
esis contributes significantly to protection of the skin 
from UV radiation. Extreme accumulation of melanin 
causes hyperpigmentation disorders.112 Topical depig-
mentation agents have long been employed in the treat-
ment and/or prevention of these disorders. Notably, it is 
well documented that the PI3K/Akt signaling cascade in 
cutaneous stem cells is critically involved in hyperpig-
mentation disorders and can control their apoptosis and 
proliferation both in human and murine models.113 As 
a result, this pathway has been considered a suitable 
target in several types of skin disorders. Studies in 
B16F10 mouse melanoma cells have provided evidence 
to suggest that LTA isolated from Lactobacillus plan-
tarum can prevent melanogenesis by inhibiting the 
expression of melanogenic enzymes and cellular activity 
of tyrosinase, while activating the PI3K/Akt pathway and 
ERK.32 A very recent study has demonstrated that expo-
sure of a cell-free extract of Enterococcus faecium L-15 to 
mouse skin-derived precursor cells (SKPs) could result 
in improvement of self-renewal and proliferation of 
SKPs by activation of the PI3K/Akt signaling pathway. 
Therapies with mesenchymal stem cells (MSCs) have 
been confirmed to accelerate wound healing of skin and 
mucosa due to increased tissue regeneration rates.6 

However, a microecological imbalance can impair the 
function of MSCs, leading to retarded wound healing. 
Recent in vivo investigations indicate that Lactobacillus 
reuteri extracts can accelerate the wound healing process 
in the oral mucosa by stimulating the functions of 
gingiva MSCs (GMSCs). Mechanisms accounting for 
these effects include the enhancement of active-β- 
catenin and transforming growth factor β1 (TGFβ1) 
expression and of PI3K/Akt pathway 
phosphorylation.49 Additional work and more clinical 
evidence are needed to fully understand whether the 
effects of probiotics on hyperpigmentation disorders 
are mediated by an underlying regulation of the PI3K/ 
Akt signaling cascade.

Conclusion

The PI3K/Akt/mTOR signaling pathway is one of the 
most important signal transduction pathways that 
have many biological functions and drives numerous 
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cellular and physiological processes in the body. 
Extensive research has provided a better knowledge 
of the molecular mechanisms controlling the PI3K/ 
Akt/mTOR signaling cascades. As reviewed herein, 
a vast body of evidence demonstrates that aberrant 
activation and/or dysregulation in the major compo-
nents of the PI3K/Akt/mTOR signaling pathways are 
identifiable in different diseases, including most, if not 
all, human cancers. The last decade has witnessed 
much progress in our knowledge of the properties of 
lactic acid bacteria (LAB) as probiotic candidates,7,114 

which include their modulatory functions on specific 
targets of the PI3K/Akt/mTOR signaling pathway, 
and their promising effects on infection control. 
Driven by earlier evidence of their effects on the 
PI3K/AKT/mTOR axis, research focused on elucidat-
ing the molecular mechanisms of various probiotics 
and their derived metabolites has rapidly gained 
momentum. Most current efforts are directed toward 
the characterization of innovative approaches to target 
this important pathway in the attempt to develop 
promising and selective treatment options. In this 
review, we extensively discussed a number of in vitro 
and in vivo studies conducted with several strains of 
probiotics to understand their mechanisms of action 
on the PI3K/Akt/mTOR network in several disease 
models. However, despite intensive efforts by many 
researchers, nearly all of the studies conducted to date 
have been conducted in vitro or in animal models. 
Thus, definitive evidence for their beneficial effects in 
human disease is still lacking, and more research 
needs to be carried out in human subjects and clinical 
samples. Such studies, and in particular those concen-
trating on probiotic strains with documented effects 
on components of the PI3K/Akt/mTOR pathway, 
would be likely to provide more conclusive outcomes 
and support further exploration for new therapeutic 
candidates for the treatment of various, highly preva-
lent disorders.
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