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Hans Törnblom2, Muriel Derrien1† and Magnus Simrén2,5*†

Abstract

Background: While several studies have documented associations between dietary habits and microbiota
composition and function in healthy individuals, no study explored these associations in patients with irritable
bowel syndrome (IBS), and especially with symptoms.

Methods: Here, we used a novel approach that combined data from a 4-day food diary, integrated into a food
tree, together with gut microbiota (shotgun metagenomic) for individuals with IBS (N = 149) and healthy controls
(N = 52). Paired microbiota and food-based trees allowed us to detect new associations between subspecies and
diet. Combining co-inertia analysis and linear regression models, exhaled gas levels and symptom severity could be
predicted from metagenomic and dietary data.

Results: We showed that individuals with severe IBS are characterized by a higher intake of poorer-quality food
items during their main meals. Our analysis suggested that covariations between gut microbiota at subspecies level
and diet could be explained with IBS symptom severity, exhaled gas, glycan metabolism, and meat/plant ratio. We
provided evidence that IBS severity is associated with altered gut microbiota hydrogen function in correlation with
microbiota enzymes involved in animal carbohydrate metabolism.

Conclusions: Our study provides an unprecedented resolution of diet-microbiota-symptom interactions and
ultimately guides new interventional studies that aim to identify gut microbiome-based nutritional
recommendations for the management of gastrointestinal symptoms.

Trial registration: This trial was registered on the ClinicalTrials.gov, with the registration number NCT01252550, on
3rd December 2010.
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Background
Irritable bowel syndrome (IBS) is one of the most com-
mon gastrointestinal disorders, affecting between 5 and
18% of the population, depending on geographical re-
gion [1, 2]. However, the effectiveness of treatment op-
tions for this common disorder is limited, and IBS is
associated with profound reductions in health-related
quality of life and huge societal costs [3]. Most individ-
uals with IBS report the triggering or worsening of
symptoms following food intake [4]. Therefore, the
interest in the IBS symptoms’ dietary management has
increased, particularly over the last decade. Recent clin-
ical studies have shed light on the importance of specific
food items in exacerbating gastrointestinal (GI) symp-
toms. However, the optimal dietary recommendations
for individuals with IBS remains uncertain [4]. Diet, par-
ticularly long-term eating habits, is known to be one of
the drivers of microbiota variation. Detailed tracking of
covariations between the gut microbiota and diet dem-
onstrated insight into the clearly personalized responses
to variation in dietary intake [5, 6].
In population-based cohorts, significant associations

have been found between dietary factors and interindi-
vidual distances in microbiota composition [7–11].
Culture-based studies have shown that strains from a
given species may share metabolic activities but may also
display differences [12, 13]. Consistent with this finding,
recent metagenomics-based studies using strain-level
profiling tools have revealed functional variation within
species associated with dietary habits [14–16].
Carbohydrates are among the food components that

can exacerbate symptoms, particularly those that are in-
completely absorbed in the small intestine, which lead to
gas accumulation, including hydrogen and methane,
when microbial fermentation occurs in the colon [17].
These carbohydrates include, among others, short-chain
fermentable carbohydrates (fermentable oligosaccha-
rides, disaccharides, monosaccharides, and polyols
(FODMAP) [18], and the metabolism of these may vary
based on gut microbiota capacity to encode enzymes for
metabolizing food glycans (CAZy or carbohydrate-active
enzymes).
We previously showed that the gut microbiota is asso-

ciated with symptom severity in IBS and identified a mi-
crobial signature for IBS severity that was not associated
with the intake of macronutrients [19]. Although consid-
ered to be associated with symptom generation in indi-
viduals with IBS, details about how the combination of
diet and gut microbiota affects symptoms remain un-
known [19–21]. Therefore, in this study, we investigated
the relation between digestive symptoms and extensive
datasets of diet and the gut microbiota of individuals
with IBS, with a focus on those with severe symptoms,
further referred to as severe IBS, making use of a whole-

metagenomics sequencing approach and categorized
dietary intake based on a 4-day food diary.
First, using a diet index, we showed that individuals

with severe IBS symptoms are characterized by a higher
intake of food items of poorer quality during their main
meals. Then, combining co-inertia analysis and linear re-
gression analysis suggested that gut microbial hydrogen
metabolism and dietary profile are associated with IBS
symptom severity. Additionally, our study further sug-
gests that specific hydrogenases were associated with gut
microbiota function in terms of the CAZy involved in
animal carbohydrate metabolism.

Material and methods
Subject recruitment and study design
Adult patients aged 18–65 years fulfilling the Rome III cri-
teria for IBS [22] were prospectively included at a second-
ary/tertiary care outpatient clinic (Sahlgrenska University
Hospital, Sweden). The diagnosis was based on a typical
clinical presentation and additional investigations, if con-
sidered necessary by the gastroenterologist (HT or MS).
Exclusion criteria included the use of probiotics or antibi-
otics during the study period or within the month preced-
ing inclusion, another diagnosis that could explain the GI
symptoms, severe psychiatric disease as the dominant clin-
ical problem, other severe diseases, and a history of drug
or alcohol abuse. Patients with severe heart disease, kidney
disease, or neurological disease, as well as other GI dis-
eases that could explain the symptoms, were not included.
The healthy control group was recruited through adver-
tisements and checked by interview and with a question-
naire to exclude chronic diseases and any current GI
symptoms. The healthy controls completed a checklist
consisting of the presence and severity of ten different GI
symptoms (no, mild, moderate, severe, very severe) the
previous week. To qualify as healthy control, no more
than one symptom of maximum mild severity was
allowed. The food diary was performed approximately
10–14 days before the stool sample collection. A bowel
habit diary based on the Bristol Stool Form Scale was
completed for 14 days before the stool collection to allow
IBS subtyping according to the ROME III criteria [22].
Breath tests were done approximately 10–14 days after
the stool sample collection. Concomitant medication was
also recorded and previously reported [19].
All participants gave written informed consent for par-

ticipation after receiving verbal and written information
about the study. The Regional Ethical Review Board at
the University of Gothenburg approved the study before
the start of the inclusion period.

Subject characterization
Demographic information and body mass index were
obtained for all subjects. Individuals with IBS reported
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their current use of medications and completed ques-
tionnaires to characterize their symptom severity and
bowel habits: the IBS Severity Scoring System (IBS-SSS)
[23], a 4-day food diary, and a 2-week stool diary based
on the Bristol stool form scale. IBS severity was assessed
with validated cutoff scores for the IBS-SSS (mild IBS:
IBS-SSS < 175, moderate IBS: IBS-SSS = 175–300, severe
IBS: IBS-SSS > 300). Oral–anal transit time (radiopaque
marker study) [24] and exhaled H2 and CH4 levels after
an overnight fast (i.e., with no substrate intake preceding
the test) were also determined for individuals with IBS.
Exhaled CH4 and H2 levels were determined after an
overnight fast (i.e., not after the intake of any substrate)
and after the subjects had received thorough instructions
to avoid a diet rich in fiber and poorly absorbed carbo-
hydrates the day before the test. Exhaled H2 and CH4

levels were determined in parts per million in end-
expiratory breath samples collected in a system used for
the sampling and storage of alveolar air (GaSampler Sys-
tem; QuinTron Instrument Company, Milwaukee, WI)
immediately analyzed in a gas chromatograph (Quin-
Tron Breath Tracker; QuinTron Instrument Company).

Dietary intake
All subjects completed a paper-based diet record, in
which all foods and drinks consumed during four con-
secutive days (Wednesday–Saturday) were reported.
Oral and written instructions were given to the patients
on how to record their dietary intake, and patients were
told to keep to their regular diet during the recording
days. The type of food and the time at which it was con-
sumed were noted, with quantification in grams, accord-
ing to the use of household utensils (e.g., tablespoons) or
the number of slices, for example. Cooking methods and
the contents of food labels were noted where applicable.
All diet records were entered into a special version of
Dietist XP 3.1 software (Kostdata.se, Stockholm,
Sweden), which calculates the energy and nutrient com-
position of foods. The software was linked to a Swedish
Food Composition Database provided by the National
Food Agency in Sweden (https://www.livsmedelsverket.
se/) and to a Swedish database with FODMAP content,
developed in-house [25]. This database contained
information about fructose, fructan, lactose, galacto-
oligosaccharide (GOS), and polyol content (g/100g) from
published sources [26]. All diet records were entered
into the software by a trained dietician. Excess fructose
levels were calculated from data for fructose and total
monosaccharide content from diet records. Glucose and
fructose are the dominant monosaccharides in foods. If
glucose content was higher than fructose, then the
excess fructose variable was assigned a value of 0 (for
each separate meal). For the reported intake of

FODMAPs, outliers were defined as values exceeding
the mean ± 4 SD.
Nutrient intakes were first summarized for each meal,

and then per day, and were finally determined as the
mean intake for all 4 days. A cutoff value was set for en-
ergy intake, and subjects reporting energy intake levels
below 800 kcal/day or exceeding 4500 kcal/day were ex-
cluded to remove reports corresponding to an implaus-
ible habitual intake. No subjects exceeded these limits.

FSA-NPS diet index
The FSA-NPS (British Food Standards Agency Nutrient
Profiling System) [27] score was calculated for all foods
and beverages, as follows: points (0–10) are allocated for
the content per 100 g in total sugars (g), saturated fatty
acids (g), sodium (mg), and energy (kJ) and can be
balanced by opposite points (0–5) allocated for dietary
fiber (g), proteins (g), and fruits/vegetables/legumes/nuts
(percent). The grids for point attribution were as de-
scribed by Deschasaux et al. [28]. The FSA-NPS score
for each food/beverage is based on a unique discrete-
continuous scale ranging theoretically from − 15 (most
healthy) to + 40 (least healthy). Besides, each food item
was assigned to one of five groups: from A (high quality)
to E (low quality) for a FSA-NPS score below 1, 2, 5, 9,
and 40 for A, B, C, D and E, respectively, for drinks, and
below 0, 3, 10, 18 and 40 for A, B, C, D and E, respect-
ively, for all other foods. The overall diet index, FSA-
NPS DI, was calculated as the energy-weighted mean of
the FSA-NPS scores of all foods and beverages con-
sumed, as described by Deschasaux et al. [28].

Hierarchical food tree and UniFrac analysis
We used the hierarchical format of the Swedish Food
Composition Database to categorize foods into a hier-
archical tree, the food tree. Food items, their associated
nutrients, and their corresponding hierarchical levels
were downloaded from the Swedish Food Composition
Database (https://www.livsmedelsverket.se/). These hier-
archical levels corresponded to levels 3 and 4 in the food
tree. We then grouped level 2 into five large categories:
animal-based, plant-based, alcohol, fats, and others.
Level 1 is the root of the food tree. We then divided
level 4 into 85 subcategories, constituting level 5 in the
food tree, as follows:

1) For each level 4 category, we extracted the nutrient
content for each food.

2) We fitted a Dirichlet multinomial mixture (DMM)
model based on nutrient content for each level 4
category.

3) The number of Dirichlet components that resulted
in the minimum Laplace approximation has been
selected.
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4) Each DMM component was used to assign food
items to a subcategory in level 5 of the food tree.

The hierarchical structure of the food tree is shown in
Supplementary Table S1. We used the food tree to cal-
culate unweighted UniFrac metrics between food diaries.
For instance, items from the “cheese” food category

(level 3 in the food tree) are classified as “animal prod-
uct” (level 1) and “dairy product” (level 2), and have
been classified into three food-nutrient subcategories
(level 4): high-fat cheese, low-fat cheese, and whey-based
cheese. All downstream analyses were performed at the
food-nutrient level (corresponding to level 4 in Table
S1).

Fecal sample collection and DNA extraction
Fecal samples from 138 subjects were collected in RNA
Later solution (Ambion, Courtaboeuf, France). Fecal
DNA was extracted by mechanical lysis (Fastprep®
FP120) (ThermoSavant, Illkirch, France) followed by
phenol/chloroform-based extraction, as previously de-
scribed [19]. A barcoded fragment library was prepared
for each sample, and DNA sequencing data were gener-
ated with SOLiD 5500xl sequencers (Applied Biosys-
tems, Life Technologies, Villebon-sur-Yvette, France),
resulting in a mean of 38 (SD 14) million sequences of
35-base single-end reads. High-quality reads were gener-
ated, with a quality score cutoff > 20. Reads with a posi-
tive match to human, plant, cow, or SOLiD adaptor
sequences were removed. Filtered high-quality reads
were mapped onto the MetaHIT 3.9 million gene catalog
with METEOR software. The read alignments were per-
formed in color space with Bowtie software (version
1.1.0), with a maximum of three mismatches and a selec-
tion of the best hit. Uniquely mapped reads (reads map-
ping to a single gene from the catalog) were attributed
to the corresponding genes and used to construct a raw
gene count matrix. If multiple alignments were found,
counts were divided equally between the aligned genes.

Metagenomics species pangenome analysis
Metagenomics species pangenomes (MSPs) are co-
abundant gene groups that can be considered part of
complete microbial species pangenomes. MSP gene con-
tent was extracted from a previous publication by Plaza-
Onate et al. [29]. MSP gene content was subdivided into
core and accessory genes. Gene annotations (KEGG
orthology and CAZy family) were extracted from the
paper by Li et al. [30]. Thus, MSP relative abundance
was calculated for each sample, based on the median
core gene abundance. Samples were attributed to an
MSP subspecies based on accessory gene clustering, as
follows:

1) Median read coverage and the 2.5 and 97.5%
quantiles were calculated for each sample and MSP.
An MSP was considered to be detected in the
sample if it had a median coverage of more than 2.

2) Each accessory gene within the MSP with a read
coverage between the 2.5 and 97.5% quantiles was
considered to be detected. Below the 2.5% quantile,
genes were considered to be absent, and above the
97.5% quantile, genes were considered to be present
in multiple copies or to be conserved genes that
might bias the estimation of coverage. A presence/
absence binary gene matrix was therefore obtained
for each MSP.

3) A Jaccard index between samples was calculated
from the MSP binary matrix

4) Clustering was performed, with a partition around
medoids over 100 bootstraps achieved with the
clusterboot function of the fpc package (bootstrap
method option “subset”). The number of clusters
(i.e., MSP subspecies) was estimated based on mean
silhouette width.

Gut microbiome hydrogenase and CAZy analysis
Hydrogenase amino acid sequences were extracted from
a previous study [31] and aligned, with BlastX software
(version 2.7.1+), with 3.9 million gene catalogs. Best hits
with an identity of more than 60% over a stretch of more
than 40 amino acids were considered for downstream
analysis.

Statistical analysis
All statistical analyses were performed with R software
(version 3.4.1). UniFrac distances between food diaries
were calculated with the phyloseq R package, using the
food tree as input. Jensen Shannon divergence (JSD) be-
tween metagenomes aggregated at MSP subspecies level
was calculated according to a tutorial published by Aru-
mugam et al. [32] implemented into BiotypeR R package
(available on github tapj/BiotypeR). PERMANOVA ana-
lysis was performed with the vegan R package (Adonis,
version 2.5). Principal coordinate analysis (PCoA), co-
inertia analysis, and linear discriminant analysis were
performed with the ade4 R package (version 1.5). To
note, PCoAs on microbiota and diet distances were
computed using all available samples, while co-inertia
analysis was computed on common sub-samples from
PCoAs components. Spearman correlation analysis was
used to project features onto PCoA axes. Principal com-
ponent linear regression analysis was used to train
models to predict clinical, microbiome, and diet features
(e.g., exhaled gas metabolism, symptom severity, meat/
plant ratio) with the co-inertia axes. Spearman’s correl-
ation analysis was performed on relative abundance data
for genes aggregated at the CAZy family and
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hydrogenase levels. A network was generated for correla-
tions with an absolute rho value above 0.4. Data were vi-
sualized with cowplot, ggraph, and ggplot2. p values
were adjusted for multiple testing by Benjamini–Hoch-
berg false-discovery rate correction when specified.
Otherwise, p values are given at a 5% nominal level.

Results
Dietary habits of the study population using a food item-
based tree
We investigated the association of GI symptom severity
and patterns with diet and the gut metagenome in 52
healthy controls and 149 individuals with IBS (Table 1).
The IBS symptoms were severe, according to the IBS Se-
verity Scoring System (IBS-SSS) [23], in 65 of the 149 in-
dividuals with IBS. A 4-day food diary was obtained
from 142 subjects (26 healthy controls and 49 individ-
uals with severe IBS). Dietary macronutrients and micro-
nutrients identified as consumed differentially between
individuals with IBS and healthy controls or between pa-
tients with severe IBS symptoms and other individuals
(healthy or non-severe, i.e., mild/moderate IBS symp-
toms) did not remain significant after correction for
multiple testing (Fig. S1 and S2). This suggests that diet-
ary data, aggregated at the micro- and macronutrients
levels, differ neither between individuals with IBS and
healthy controls nor between IBS patients with different
levels of symptom severity.
Next, we assembled a food item tree, similar to that

used by Johnson et al. [5], clustering food items based
on nutritional content rather than the food item itself
(see Material and methods section, “Hierarchical food
tree and UniFrac analysis”). Participants consumed 966
different food items in total, which were aggregated into
three hierarchical levels, based on the National Swedish
food database, to build a hierarchical tree. A fourth level
based on nutrient composition was also added, resulting

in 85 food-nutrient groups (Fig. 1a and Table S1). The
unweighted UniFrac distance between individuals was
calculated using the four hierarchical levels of dietary
data and subjected to principal coordinate analysis
(PCoA) (Fig. 1b). Based on Spearman’s correlation coef-
ficient, the four hierarchical food levels, including food-
nutrient groups, could be projected onto principal co-
ordinate axes 1 and 2 (PCoA1 and PCoA2). PCoA1
(7.9% of total variance) was associated with separating
individuals according to their consumption of meat-
based and plant-based food items (Fig. 1b). Further,
PCoA2 (6.1% of total variance) separated individuals
based on their consumption of unprocessed food items,
such as fish and eggs, and processed food items, such as
candy and fried potato products. Following the integra-
tion of selected clinical variables into the analysis,
PCoA1, which was driven by meat-based and plant-
based food items, was associated with sex (Fig. 1c,
Mann–Whitney test, p < 0.05). PCoA2 tended to be as-
sociated with IBS severity, indicating that unprocessed
and processed foods were associated with IBS symptom
severity (Fig. 1d, Mann-Whitney test, p = 0.06). A meat-
to-plant ratio was calculated for each subject, based on
the aggregation of food items into these two categories
(Table S2). PCoA1 was significantly associated with the
meat/plant ratio (Fig. 1e, rho = − 0.62, p < 0.05), sug-
gesting that the proportion of meat-based food relative
to plant-based food was the major driver of dietary vari-
ation between subjects in our cohort.
According to the British Food Standards Agency

Nutrient Profiling System (FSA-NSP), we then assessed
diet quality by performing nutrient profiling for each
food item and calculating an individual FSA-NPS Diet-
ary Index (DI) score. A higher FSA-NPS DI reflects a
lower nutritional quality of the foods consumed by the
individual (“less healthy”). The median FSA-NPS DI was
13.75 (IQR 12.06–14.96) for healthy controls and 12.53

Table 1 Characteristics of the study cohort

Healthy controls Individuals with IBS

N 52 149

Female 32 (62%) 105 (70%)

Age (year) 28 [26–37] 31 [25–43]

BMI (kg/m2) 22.4 [20.65–24.50] 22.39 [20.64–24.95]

Mild IBS symptoms (IBS-SSS) N/A 24 (16%)

Moderate IBS symptoms (IBS-SSS) N/A 50 (34%)

Severe IBS symptoms (IBS-SSS) N/A 65 (44%)

Gut metagenomic profile only 26 (50%) 33 (22%)

Dietary profile only 16 (31%) 47 (32%)

Gut metagenomic and dietary profiles 10 (19%) 69 (46%)

BMI, body mass index; IBS-SSS, IBS Severity Scoring System; N/A, not applicable; dasta are shown as n (percentage) or median [interquartile range]. IBS-SSS was not
available for 10 IBS patients
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(IQR 11.33–13.91) for individuals with IBS (Mann–
Whitney test, p > 0.05). While food tree PCoA2 tended
to be associated with IBS symptom severity (see above),
food tree PCoA2 was also associated with a lower overall
dietary quality (Fig. 1f rho = 0.24, p < 0.05), indicating
an association between IBS symptom severity and food
quality (i.e., less “healthy food” in patients with more se-
vere IBS symptoms). This led us to examine a potential
direct link between IBS symptom severity and food qual-
ity during meals. With the FSA-NPS, food items could
be classified into five groups (from high-quality A to
low-quality E, see Methods). Individuals with severe IBS
symptoms consumed a higher amount of lower-quality
food items during their main meals than healthy con-
trols and individuals with milder IBS symptoms (Fig. 1g,
Mann–Whitney, p < 0.05 for high and low food qual-
ities). The median ratio between high-quality and low-
quality foods during the main meals was 5.8 for healthy
controls and 2.7 for individuals with severe IBS, while
there was no difference when snacks were included in
the analysis (2.5- and 2.0-fold for healthy controls and
individuals with severe IBS, respectively).
Finally, based on the PCoA results, we investigated

whether FODMAPs (fermentable oligo-, di-, and mono-
saccharides and polyols) were associated with diet qual-
ity based on the hierarchical food tree. GOS and fructan

intakes were positively associated with PCoA1 (rho =
0.28 and rho = 0.33 respectively, p < 0.05), suggesting
that subjects who consumed high levels of plant-based
food items had a diet enriched in GOS and fructans.
Polyol intake was associated with PCoA2 (rho = − 0.31,
p < 0.05), indicating that subjects who consumed high
levels of processed foods and lower-quality food items
had a diet enriched in polyols. The intake of lactose and
fructose was not associated with PCoA1 or PCoA2, sug-
gesting that their consumption was not a major driver of
the overall variation in dietary intake or symptom gener-
ation in our study.

Dietary profile associations with gut microbiota
composition and function
As diet is a major driver of microbiota composition and
function, we investigated whether differences, previously
observed in dietary profile between study individuals,
were associated with gut microbiota composition and
functions. We have previously shown that enterotypes,
assessed by 16S rRNA gene sequencing, could be sepa-
rated into three microbiota communities based on
Dirichlet multinomial mixture (DMM) modeling [19].
Enterotypes were not associated with dietary distance
(PERMANOVA, p > 0.05), nor with meat/plant ratio (p
> 0.05) or diet quality (FSA-NPS DI, p > 0.05),

Fig. 1 Quantity and quality assessment for dietary profiles and analyses of associations with gastrointestinal symptom severity. a Food item-based
hierarchical tree based on the National Swedish food database and nutrient-based clustering. b Principal coordinate analysis of unweighted
UniFrac distance between the dietary profiles of individuals. Food levels were projected onto the two first coordinates (PCoA1 and PCoA2) based
on Spearman’s correlation analyses (see Supp Table 1 for the terminology of food level 4). Colors indicate the sex of the individual and the shape
of the point indicates health status. c PCoA1 as a function of sex (p < 0.05). d PCoA2 as a function of IBS symptom severity (p = 0.06). e Log2
meat/plant ratio as a function of PCoA1 (rho = − 0.62, p < 0.05). The color gradient extends from red (all meat) to green (all plant-based foods). f
FSA-NPS diet index as a function of PCoA2 (rho = 0.24, p < 0.05). g Prevalence of food items per meal as a function of FSA-NPS food quality and
health status. Class A corresponds to high-quality food, whereas class E corresponds to low-quality food (p < 0.05)
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suggesting that the variation of diet within this cohort
was not associated with that of global microbiota struc-
tures (see Supplementary Tables S2 and S3).
Next, whole-metagenomic sequencing was performed

in 138 individuals (102 individuals with IBS and 36
healthy controls), and among these subjects, both diet
and metagenomics profiling were available in 79 subjects
(Table 1). Metagenomic reads (with an average of 14
million reads per sample) were mapped onto a catalog of
Metagenomic Species Pangenomes (MSPs) [29], yielding
a total of 1661 MSPs. Based on per-individual genetic
content, 166 of them were further divided into 523 sub-
species, corresponding to a mean of 75.3% of the meta-
genome read mass. The remaining 1495 MSPs were not
assigned to MSP subspecies (MSP_unassigned). We then
used the taxonomic tree to investigate the effect on each
node’s dietary profile variation, from phylum to subspe-
cies level (PERMANOVA test). Each microbial lineage
with at least one node with an effect size of more than
2% was selected with no filter applied on statistical sig-
nificance (Fig. 2a). Depending on taxonomic lineage,
dietary variation was either better explained at the
species (i.e., MSPs) or subspecies level (Fig. 2b). For ex-
ample, the MSP assigned to Eubacterium rectale was less

associated with diet than its two subspecies. In particu-
lar, the relative abundance of the E. rectale subspecies
with flagellin-encoding genes (Fig. 2c) correlated with a
diet enriched in meat-based products (rho = 0.23, p =
0.05) and with vitamin B12 intake (rho = 0.31, p < 0.05).

Association of microbiota function and dietary variation
with clinical parameters and gas metabolism
As dietary variation was better explained at the species
(i.e., MSPs) or subspecies level MSP, we further com-
bined microbiota profile variation (JSD distance at
subspecies and MSP_unassigned) with dietary profile
variation. Using a co-inertia approach on PCoA compo-
nents, we explored the complex association between gut
microbiota, diet, and multiple explanatory variables in
79 subjects for whom both dietary and microbiota data-
sets were available (training set, co-inertia RV coefficient
= 0.59). Individuals with only one of these datasets
(microbiota or diet, Table 1) constituted the test set (N
= 122). All 201 study subjects (training and test sets)
were projected onto the same hyperspace based on their
gut microbiota and dietary profiles (Fig. 3a). We then in-
vestigated how this common projection of gut micro-
biota and diet was associated with clinical parameters.

Fig. 2 Dietary profile associations with gut microbial lineage and functions. a taxonomic tree of the microbial lineage with nodes corresponding
to effect sizes of more than 2% (R2 assessed by PERMANOVA). The color code indicates the taxonomic family of the MSP taxonomic family. b
Effect size of dietary variation (R2 assessed by PERMANOVA) as a function of taxonomic level. Red lines correspond to lineages for which effect
size was greater at subspecies level. Yellow dot accounts for Eubacterium rectale subspecies 1. c Presence/absence heatmap showing the genes
detected within each Eubacterium rectale subspecies with a specific focus on flagellin-encoded genes. Genes are represented as rows and
samples as columns

Tap et al. Microbiome            (2021) 9:74 Page 7 of 13



The relation of microbiota and dietary profiles to gas
metabolism and clinical parameters was investigated by
extracting the first co-inertia coordinates from both the
training and test sets. Then, we correlated them with
variables, including BMI, age, IBS symptoms severity
score, exhaled gas metabolism (H2 and CH4), microbiota
gene richness, and dietary variables (meat/plant ratio,
diet quality) (Fig. 3b). The first seven coordinates (axis
A1 to axis A7, Fig. 3c), accounting for 50% of covari-
ation, were retained. Consistently for both the training
and test sets, the meat/plant ratio was associated with
axis A1, whereas microbial gene richness, diet quality,
and exhaled CH4 were associated with axis A2 (Table
S3). This suggests that the meat/plant ratio was the main
tested factor explaining microbiota and dietary covaria-
tions independently of gene richness, diet quality, and
exhaled CH4. Although weaker, consistent correlation
directions for axis A1, in both the test and training set,
were detected for exhaled H2 and IBS symptom severity.
Since CH4 metabolism is dependent on H2 metabolism,
the ratio of exhaled H2 to exhaled CH4 for each subject
was calculated. This ratio was consistently correlated
with axis 4 in both the food and microbiota in the train-
ing sets and microbiota in the test set, suggesting that

H2/CH4 metabolism can be explained by metagenomic
and dietary profile variations.
For the prediction of each clinical variable, we used a

machine learning approach by constructing regression
models from the first five co-inertia coordinates (40% of
the variance) extracted from the microbiota and dietary
datasets. Co-inertia models trained on microbiota and
validated on dietary data were assessed for robustness by
regression analysis (Fig. 3c). For example, using a model
fitted on the microbiota training set, H2/CH4 ratio could
be predicted from the microbiota test set (Pearson r =
0.53, p < 0.05). Similarly, using a model fitted on the
microbiota training set, the meat/plant ratio could be
predicted from the dietary test set (r = 0.69, p < 0.05).
Using another model fitted on the dietary training set,
IBS symptom severity could be predicted from the diet-
ary test set (r = 0.28, p < 0.05).

Carbohydrate-associated enzymes and hydrogenases
encoded by metagenomes are associated with IBS
symptom severity
As carbohydrates belong to the food items that can
exacerbate symptoms related to gas accumulation, we
further explored the relationship between CAZy and

Fig. 3 Co-inertia analysis associates microbiota profiles with dietary profiles, together with gas metabolism and symptom severity. a Co-inertia
scatter plot with the training set (n = 79) including both metagenomic and dietary data, and the test set (n = 122) for which only dietary or
metagenomics data were available. Individual coordinates for the test set were computed from their PCoA coordinates with the co-inertia model.
Colors indicate the data source (diet or metagenomic). b Heatmap of Spearman’s correlations between the first seven co-inertia axes and clinical,
gas metabolism, gene richness and dietary data. The color indicates the strength of the correlation. Black squares indicate missing data. v,
validation set; t, training set; m, microbiota; f, food. c Scatter plots of the relation between predicted (linear regression) and observed data for H2/
CH4 ratio (r = 0.53, p < 0.05), meat/plant ratio (r = 0.69, p < 0.05) and symptom severity (r = 0.28, p < 0.05) (based on the first 5 co-inertia
components). The color indicates the validation set source, whereas the shape of the points indicates the training set source (dietary or
metagenomic). IBS symptom severity groups (healthy, mild, moderate, and severe) were coded from 1 to 4, respectively
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hydrogenases. Metagenomes were clustered according
to DMM models based on the relative abundance of
CAZy. Using the minimum Laplace approximation,
study subjects could be divided into three distinct
CAZy clusters (CAZotype) that were significantly as-
sociated with enterotypes (chi2, p < 0.05, Fig. S4),
suggesting a link between carbohydrate metabolism
and enterotypes. In contrast to enterotypes, CAZo-
types were associated with the diet profile variation
(PERMANOVA test, p < 0.01).
We further investigated potential links between CAZy

and hydrogenases, encoded by gut metagenomes, and
symptom severity. CAZy were subdivided into broad
substrate categories (plant cell wall carbohydrates, ani-
mal carbohydrates, peptidoglycan, and others (starch/
glycogen, sucrose/fructans, fungal carbohydrates, and
dextran) [33], whereas hydrogenases were classified ac-
cording to their active metal site [31]. A network based
on Spearman’s correlation between the CAZy family and
hydrogenases was constructed (Fig. 4a). Network ana-
lysis showed that a specific hydrogenase involved in
hydrogenotrophy, [FeFe] group A3, was associated with
eight different CAZy families involved in the metabolism
of animal carbohydrates (mucin- or meat-derived) (Fig.
4a). One plant-based CAZy family, a carbohydrate-

binding module known to target the terminal fructoside
residue of fructans, was also associated with [FeFe] A3
hydrogenase. Hydrogenase from the [FeFe] group B was
associated with seven plant-based CAZy families, includ-
ing enzymes involved in starch and xylose metabolism.
This suggests that the abundance of [FeFe] hydrogenase
in gut metagenomes is associated with the metabolism
of dietary and host glycans. Finally, we assessed the rela-
tion between the relative abundance of [FeFe] hydroge-
nases and IBS symptom severity. A linear discriminant
analysis showed that [FeFe] A3 hydrogenase was a
strong predictor of IBS symptom severity (Fig. 4b). In-
deed, [FeFe] A3 hydrogenase presented higher relative
abundance in individuals with severe IBS compared with
healthy controls (Fig. 4c). Overall, these findings indicate
a link between carbohydrate metabolism and symptom
generation in IBS.

Discussion
In this study, we have demonstrated that individuals
with severe IBS are characterized by a higher intake of
food items with lower overall quality during their main
meals. Our study further provides evidence that IBS se-
verity is associated with altered gut microbiota hydrogen
function in correlation with CAZy involved in animal

Fig. 4 Association between hydrogen levels, glycan metabolism and GI symptom severity. a Network of associations between CAZy family and
hydrogenase group. An edge represents absolute Spearman’s correlation coefficients above 0.4. All kept associations were positive. The node
shape indicates CAZy family (circle) and hydrogenase (triangle). The color code indicates the known glycan substrates of the CAZy family. b
Linear discriminant analysis (LDA) scores for prediction of IBS severe vs control as a function of gut metagenomic hydrogenase [FeFe] group. c
Relative abundance of gut metagenome hydrogenase [FeFe] A3 as a function of health status
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carbohydrate metabolism. A combination of co-inertia
analysis and linear regression analysis also suggested that
covariations between gut microbiota and diet were asso-
ciated with IBS symptom severity, exhaled gas, glycan
metabolism, and meat/plant ratio.
Dietary components are often analyzed separately with-

out taking nutritional similarity or relatedness into consid-
eration. In our study, we could not identify an association
between macronutrient [19] and gut microbiota compos-
ition. However, the recently developed approach to struc-
ture food items into a hierarchical tree [5, 15], similar to
that used for microbiota phylogenetic tree analysis, may
facilitate the detection of associations that are otherwise
difficult to identify, e.g., for nutrients that are not well cap-
tured, particularly those known to modulate the micro-
biota, including fiber and polyphenols [5, 34]. We took
advantage of this approach to decipher diet–gut micro-
biota interactions in the context of IBS. We modified it,
using nutrient intake derived from a 4-day food diary ra-
ther than food items themselves, making it possible to
separate closely related food items with differences in only
a few nutrients. Based on the food item tree analysis, the
meat/plant ratio was the variable that most strongly dis-
criminated against among subjects within the study co-
hort. Furthermore, we have also shown that the overall
quality of dietary intake based on FSA-NSP profiling did
not differ significantly among IBS subjects or between in-
dividuals with severe IBS and healthy controls [28].
However, individuals with severe IBS consumed a higher

proportion of food items that can be considered as low
quality (“less healthy”) as part of their main meals. This
suggests that the quality of food in the main meals, and
not only the overall diet, is relevant when studying symp-
toms. Given the intricate relation between dietary habits,
potential self-restriction, and symptoms in IBS, it is diffi-
cult to disentangle these factors. However, as our cohort
was naïve to current IBS dietary recommendations such
as low FODMAP diet, self-restriction is not a plausible ex-
planation for these associations. For example, in our study,
galactooligosaccharides and fructan intakes were not asso-
ciated with reports of more severe symptoms in IBS.
Based on the current finding that the individuals with

severe IBS symptoms differed from the other subjects in
terms of dietary habits, together with our previous iden-
tification of a specific gut microbial signature associated
with severe IBS symptoms [19], we further explored the
association between dietary habits and gut microbiota
composition and function. In this study, we did not find
a direct relation between diet profiles and variation in
the gut microbiota composition, using 16S rRNA gene
analysis. This might be due to a combination of low
sample size and low variability in dietary habits (intra-
population), in contrast to other studies that included
larger populations [7].

Using a new approach combining shotgun metagenomic
microbiota and food trees, we identified the most associ-
ated taxa associated with the dietary variation. Analyses of
the gut microbiota beyond the species level revealed asso-
ciations that were not detected in analyses at the species
level, and for example, Eubacterium rectale subspecies
harboring flagellin-encoding genes were associated with a
predominantly meat-based diet. This complements a pre-
vious study that reported that two of the three E. rectale
subspecies consistently harbored an accessory pro-
inflammatory flagellum operon associated with lower gut
microbiota community diversity, higher host BMI, and
higher fasting blood insulin levels [35]. Future studies with
a larger sample size would enable a better characterization
of the association between different subspecies of E.
rectale and the dietary profile [36, 37].
We further explored the possible relationship be-

tween functional variation in gut microbiota, diet, and
symptoms. So far, most IBS studies focused on symp-
toms associated with specific dietary ingredients and
independently of gut microbiota. Using a combination
of principal component analysis and linear regression,
we could predict diet’s main variation factor (meat/
plant ratio) based on the gut microbiota profiles of a
given individual. Several studies did not observe
differences between animal- and plant-based foods in
relation to gut microbiota composition based on ad-
herence to omnivorous, vegan, or vegetarian diets
(reviewed in [38]). This is potentially due to the lack
of precision of dietary pattern adherence and/or to
gut microbiota resolution [39]. In this study, we were
able to accurately infer the meat/plant ratio from the
food diaries. Additionally, this approach provides ele-
ments to support the hypothesis that the dietary pro-
files and the gut microbiota are associated with IBS
symptom severity and exhaled gas, resulting from mi-
crobial fermentation of dietary ingredients.
As carbohydrates are among the food items that may

trigger gas accumulation and symptoms, we further ex-
plored the relation between CAZy and hydrogenases. In
this study, the abundance of hydrogenases associated
with IBS symptom severity was positively correlated with
a higher abundance of CAZy involved in the metabolism
of dietary and host animal glycans. In addition to carbo-
hydrate metabolism, gases, including hydrogen, are of
considerable interest in the context of gut disorders [40].
Hydrogen (H2) is formed in large volumes in the colon
as an end-product of carbohydrate fermentation [41–
43]. Recent metagenomics studies have identified three
types of hydrogenases involved in H2 metabolism [31,
44]. Interestingly, we found that individuals with severe
IBS symptoms had a higher abundance of a specific type
of hydrogenases involved in the metabolism of H2. This
is in agreement with our previous finding that
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individuals with IBS with high exhaled H2 levels had a
distinctive ratio of active gut microbiota members inde-
pendent of gastrointestinal symptom pattern or severity
[45]. In this study, we confirmed the important role of
hydrogen metabolism and provided novel insight regard-
ing the identification of specific hydrogenases of rele-
vance for symptom generation in IBS. We suggest that
analysis of hydrogenases should be included in future
IBS and overall diet–microbiota studies.
This study has some limitations. While we provide

a detailed and novel approach that combines both
diet and gut microbiota, the sample size is limited,
and we do not have longitudinal data. Hence, con-
firmation in larger, ideally population-based, rather
than clinical cohorts is needed, ideally with longitu-
dinal follow-up. Another potential limitation is our
diet assessment tool, as it does not accurately deter-
mine gut microbiota accessible carbohydrates. Future
dietary questionnaires should be optimized to capture
relevant food-based microbiota modulators [5, 34].
Also, food diaries were collected 10–14 days before
the stool sampling, but 3 to 4 days of dietary records
are enough to be a representative [46]. Besides, fur-
ther improvement of food tree configurations such as
optimization of distance metrics used is desirable.
Nevertheless, this study expands our knowledge of
microbiota–diet association and provides new insight
into the altered function of the gut microbiota in in-
dividuals with severe IBS symptoms, potentially as a
consequence of interactions with dietary habits.

Conclusions
In this study, we have demonstrated that individuals
with severe IBS symptoms have a higher consump-
tion of low-quality food products during their main
meals and an enrichment of gut microbiota function
towards a specific type of hydrogen metabolism asso-
ciated with animal carbohydrate metabolism, de-
tected using metagenomics. Those specific microbial
metabolic pathways and metabolites should be tar-
geted in future studies as markers for dietary/micro-
biota-targeted therapies for IBS. Our findings can
potentially guide new interventional studies that aim
to identify gut microbiome-based nutritional recom-
mendations for the management of gastrointestinal
symptoms.
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