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Abstract
Key message A genomic prediction model successfully predicted grain Zn concentrations in 3000 gene bank accessions 
and this was verified experimentally with selected potential donors having high on-farm grain-Zn in Madagascar.
Abstract Increasing zinc (Zn) concentrations in edible parts of food crops, an approach termed Zn-biofortification, is a global 
breeding objective to alleviate micro-nutrient malnutrition. In particular, infants in countries like Madagascar are at risk of 
Zn deficiency because their dominant food source, rice, contains insufficient Zn. Biofortified rice varieties with increased 
grain Zn concentrations would offer a solution and our objective is to explore the genotypic variation present among rice 
gene bank accessions and to possibly identify underlying genetic factors through genomic prediction and genome-wide 
association studies (GWAS). A training set of 253 rice accessions was grown at two field sites in Madagascar to determine 
grain Zn concentrations and grain yield. A multi-locus GWAS analysis identified eight loci. Among these, QTN_11.3 had 
the largest effect and a rare allele increased grain Zn concentrations by 15%. A genomic prediction model was developed 
from the above training set to predict Zn concentrations of 3000 sequenced rice accessions. Predicted concentrations ranged 
from 17.1 to 40.2 ppm with a prediction accuracy of 0.51. An independent confirmation with 61 gene bank seed samples 
provided high correlations (r = 0.74) between measured and predicted values. Accessions from the aus sub-species had 
the highest predicted grain Zn concentrations and these were confirmed in additional field experiments, with one potential 
donor having more than twice the grain Zn compared to a local check variety. We conclude utilizing donors from the aus 
sub-species and employing genomic selection during the breeding process is the most promising approach to raise grain Zn 
concentrations in rice.

Introduction

Zinc (Zn) is an essential element for plants and humans 
alike, because Zn is a component of thousands of enzymes 
and a key regulator of gene expression and protein synthesis 
(Broadley et al. 2007; Galetti 2018). Zinc malnutrition is a 
global health problem that is particularly serious in infants 
where it impairs immune system function and delays infant 
development, causing stunting as the most visible symptom 
(Roohani et al. 2013; Galetti 2018). Alleviating human mal-
nutrition for Zn has been included as one of the top priori-
ties in the Sustainable Development Goals (SDG 2.2: End 
all forms of malnutrition). In 2003 the Consultative Group 
on International Agricultural Research (CGIAR) initiated a 
program to breed crops with higher concentrations of Zn, Fe 
and Pro-vitamin A carotenoids in the edible parts of a crop, 
an approach termed biofortification (Bouis and Saltzman 
2017). Biofortification of crops represents an alternative to 
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food fortification and while both approaches are important in 
alleviating malnutrition, it is believed that crop biofortifica-
tion is a very efficient tool to reach rural communities that 
are largely food self-sufficient (Virk et al. 2021). Programs 
to develop Zn biofortified rice varieties have been success-
ful in Asia (Swamy et al. 2016; Rao et al. 2020) and Latin 
America (Harvest Plus 2021) but concerted efforts to do so 
in Africa are still non-existing.

Madagascar remains a low-income country with a high 
level of malnutrition (The World Bank 2016; WFP 2010). 
In rural areas, 50% of children suffer from stunting and are 
underweight (Stewart et al. 2020), one of the highest rates 
in the world (UNICEF 2019). In the central highlands, the 
highest levels of stunting (60%) are found and recent surveys 
by JIRCAS and partners estimated that 80% of the popu-
lation consume inadequate amounts of Zn (Shiratori et al. 
2018). Rice is essential in Malagasy diets; it is eaten three 
times a day and represents 50 percent of the daily caloric 
intake with per capita consumption being above 120 kg 
annually. Rice, having such a pre-eminent position for food 
supply, is naturally a target for intervention. Consequently, 
Madagascar has the 3rd highest Biofortification Prioritiza-
tion Index (BPI) for Zn in rice for Africa and the 13th high-
est globally (Harvest Plus 2021).

Zn concentrations in polished rice are typically too low 
to supply a sufficiently high proportion of the daily required 
intake of Zn (Bouis and Welch 2010), thus where rice is the 
main staple and households cannot afford to diversify their 
meal by adding mineral-rich fruits, vegetables and meat, Zn 
deficiency is prevalent (Harvest Plus 2021). To overcome 
this deficiency, grain Zn concentration in rice needs to be 
increased by 50% or more to significantly alleviate Zn mal-
nutrition (Bouis and Welch 2010). Developing rice varieties 
with increased grain Zn concentrations therefore remains 
an important global objective (Rao et al. 2020) that offers a 
low-cost and long-lasting solution to the persisting problem 
of Zn malnutrition (Bouis et al. 2011).

Rice grain Zn concentrations are strongly affected by fac-
tors such as genotype and environment, with soil proper-
ties being the main source of environmental variation. For 
a given genotype, grain Zn concentrations may vary by a 
factor 2–3 depending on soil type and related Zn bio-avail-
ability for plant uptake (Wissuwa et al. 2008; Goloran et al. 
2019; Rao et al. 2020). Low Zn bio-availability in paddy 
soils is commonly associated with alkalinity (high soil pH 
and excess bicarbonate) and very low soil redox potentials 
(Johnson-Beebout et al. 2016). Both factors trigger the for-
mation of Zn-complexes with soil constituents and in conse-
quence the soluble Zn fraction that is removed by the plant 
will be replenished too slowly to assure high Zn uptake rates 
(Broadley et al. 2007). The effect of a decreasing soil redox 
potential after flooding tends to cause Zn bio-availability to 
be lowest toward the end of the cropping season and thus 

reduces Zn uptake during the reproductive phase when Zn 
taken up may be directly transported to reproductive organs. 
For this reason, basal Zn fertilizer application has often very 
limited effects on increasing grain Zn concentrations (John-
son-Beebout et al. 2016) and it would explain the observa-
tion that grain Zn concentrations tend to be lower during 
the rainy season compared to the dry season (Goloran et al. 
2019).

The genotypic variation in grain Zn concentrations is 
similar in magnitude to the environmental variation with 
2–3 fold differences having been detected repeatedly (Nor-
ton et al. 2014; Swamy et al. 2018; Zhang et al. 2018). Since 
grain Zn concentrations are influenced at many levels, start-
ing with Zn uptake by the root, followed by transport and 
reallocation of Zn within the plant, to Zn loading into the 
grain (Swamy et al. 2016), it is likely the genotypic differ-
ences at each of these levels exist. Which of these factors 
contribute most to genotypic differences in grain Zn concen-
trations remains uncertain. Some high-Zn genotypes appear 
to rely mostly on Zn remobilization, whereas others maintain 
high Zn uptake rates during grain filling (Johnson-Beebout 
et al. 2016). At the same time, increased root uptake does 
not necessarily result in enhanced Zn accumulation in rice 
grains, suggesting Zn loading into the endosperm to be the 
main limiting step for which genotypic differences fortu-
nately exist (Jiang et al. 2008).

Nicotianamine (NA) is a ubiquitous chelator of metal 
cations, such as  Fe2+ and  Zn2+. Biosynthetic precursor of 
phytosiderophore secretion from roots, NA is responsible 
for Fe internal metal transport and maintenance of metal 
homeostasis. In rice, three NA synthase genes were identi-
fied (OsNAS1, OsNAS2 and OsNAS3) that have been largely 
studied to demonstrate their role in increased bioavailable Fe 
levels in rice grains (Higuchi et al. 2001; Inoue et al. 2003). 
Through transgenic approaches overexpressing the OsNAS 
gene, it has been possible to significantly increase both grain 
Fe and Zn concentration, indicating Zn transport processes 
to be of additional importance (Johnson et al. 2011).

The genetic control of grain Zn concentration in rice has 
been widely studied, using bi-parental mapping populations 
(reviewed in Swamy et al. 2016), diversity panels (Norton 
et al. 2014; Zhang et al. 2018) or double-haploid (DH) 
derived biparental populations (Swamy et al. 2018). Con-
sistently, these studies reported a large number of genetic 
regions controlling Zn concentration, each with relatively 
minor effects. This may be expected given that grain Zn 
concentrations are likely the result of multiple interacting 
physiological processes. For Zn uptake alone, it has been 
shown that at least two distinct processes, root proliferation 
and rhizosphere Zn mobilization, are causative of genotypic 
differences in plant Zn uptake (Mori et al. 2016). While none 
of the identified loci appear to be currently used in marker-
assisted breeding, loci on chromosomes 7, 11 and 12 have 
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been identified consistently (Swamy et al. 2016). Of these, 
the QTL on chromosome 7 co-localizes with OsNAS3 and 
may therefore be of particular interest (Cu et al. 2021).

The complex nature of a trait like grain Zn concentration, 
which depends on multiple physiological mechanisms, each 
potentially controlled by multiple underlying genes, may 
necessitate a genome-wide rather than a single marker selec-
tion approach. Genomic Prediction (GP; Meuwissen et al. 
2001) for mineral content has already proven efficient in 
maize and wheat where the predictive ability (PA) for grain 
Zn content was between 0.43 and 0.73 in maize (Mageto 
et al. 2020) and between 0.33 and 0.69 for wheat (Velu et al. 
2016) depending on the population and environment chosen. 
A similar PA of 0.51 was achieved for grain Zn concentra-
tion improvements in a rice synthetic population managed 
through recurrent selection when multi-site data were con-
sidered for the calibration model (Baertschi et al. 2021).

Given that environmental factors strongly affect grain Zn 
concentrations, it is of interest to determine to what extent 
GP can be employed in target environments that are less 
homogenous compared to the well-managed trials conducted 
on research stations. While the polygenic nature of grain 
Zn may favor a GP approach, it is possible that main effect 
single loci are more stable across environments and therefore 
possess greater predictive power in less controlled environ-
ments. We have grown a set of 253 rice gene bank accessions 
sampled from the 3 K genome project (Mansueto et al. 2017) 
in two farmer’s fields in Madagascar and determined the 
variation for grain Zn concentrations and grain yield. Using 
this dataset, the objectives of this study were to:

 (i) Conduct genome-wide association studies (GWAS) 
in an attempt to detect alleles associated with high 
grain Zn concentrations,

 (ii) Develop a GP model for grain Zn concentrations 
based on above training set and employ this model 
to predict grain Zn concentrations among the 3000 
sequenced rice accessions available at the IRRI gene 
bank,

 (iii) Identify potential donors with high grain Zn con-
centrations and confirm their suitability through 
confirmatory experiments.

Materials and methods

Field phenotyping

Field experiments were conducted at two sites in the cen-
tral highlands of Madagascar, Anjiro (elevation 950 m, 
18°54′01.7 ′′S 47°58′12.4 ′′E) and Ankazomiriotra (1150 m, 
19°40′07.9 ′′S 46°33′53.9 ′′E). The experiments were car-
ried out in farmers' fields under flooded lowland conditions 

during the 2017–18 rainy season with sowing in November, 
transplanting in late November to December and harvests in 
April to May. Following the typical farmer’s practice in the 
region, chemical fertilizer was not applied and neither did 
fields receive organic manure. At each site, 523 accessions 
selected from the set of 3 K sequenced accessions available 
at IRRI were grown with two replications in a randomized 
complete block design. Several sub-sets selected to represent 
extreme variation for grain yield, maturity or plant height 
existed within these 523 accessions, (Tanaka et al. 2021) and 
only those considered adapted to our field sites were used in 
the present study (see below).

At both sites, accessions were transplanted in 2-row 
micro-plots of 2 m length with spacing of 20 cm between 
and within rows (22 single plant hills per plot). Heading 
date (HD) was recorded at 50% heading for each accession. 
During harvest, five representative plants per plot were 
cut, panicles were separated from straw, placed in paper 
bags to avoid contamination by soil or dust, and taken to 
the laboratory where they were air-dried for a week before 
total panicle dry weight was determined. Grain yield (GY) 
was estimated from the panicle weight of these five plants, 
assuming a realized density of 22 hills per  m2 and expressed 
in kg per ha. Straw weight (SWT) was determined on the 
same five harvested plants, first as fresh weight which was 
then adjusted for moisture content after oven-drying a sub-
sample for 48 h at 70 °C.

Grain processing and grain Zn analysis

Grain Zn concentrations were determined for a subset of 
253 accessions from the 523 grown at field sites. All acces-
sions considered poorly adapted to experimental sites were 
omitted, which included accessions with very early or late 
maturity and all accessions with low GY or that had lodged 
and had been contaminated by soil. A focus on well-adapted 
accessions was meant to prevent the potential confounding 
effect of high grain Zn being the result of poor grain yield 
and very low harvest index. A random sub-sample of the 
harvested grain from ten panicles per plot was dehulled to 
obtain brown rice and these whole grain samples were sent 
to Flinders University, Australia for further analysis.

For inductively coupled plasma mass spectrometry (ICP-
MS) analysis, 0.3 g of whole rice seed, which had been oven-
dried at 80 °C for 4 h to remove remaining moisture, was 
acid-digested in a closed tube as described in Wheal et al. 
(2011). Elemental concentrations of samples were measured 
using ICP-MS (8900; Agilent, Santa Clara, CA) according to 
the method of Palmer et al. (2014). The grain Zn concentra-
tion is given in μg  g−1 on a dry weight basis. In each of 10 
digestion batches, a blank and a certified reference material 
(CRM; NIST 1568b rice flour) were added for quality assur-
ance. Samples with Al present at > 5 μg  g−1 were considered 
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to have unacceptable levels of purported soil contamination 
(Yasmin et al. 2014), thus they were eliminated from the 
dataset.

Statistical analysis for phenotypic values

Given the experimental design, the following linear model 
was fitted for each trait:

where yijk is the phenotypic value (i.e., observed Zn concen-
tration) of i-th genotype evaluated at the k-th block in j-th 
site, � is an intercept, gi is the genotypic value of i-th geno-
type, sij is the interaction effect between the i-th genotype 
and the j-th site, �j is the effect of j-th site, �jk is the effect 
of k-th block in the j-th site, and eijk is the residual. The 
interaction effects sij and the block effects �jk were modeled 
as random effects, and the other model terms were mod-
eled as fixed effects. This model was implemented in lmer 
function in the lme4 package. To test the statistical signifi-
cance between two sites, site effect ( �j ) for each trait was 
tested based on the type-III analysis of variance with Sat-
terthwaite's method using the anova function in the lmerTest 
package (Kuznetsova et al. 2017). The estimated values (best 
linear unbiased estimates; BLUEs) of gi were used in the 
subsequent association mapping and the genomic predic-
tion analyses.

Heritability was calculated based on the same linear 
model but treating the genotypic values gi as random effects. 
Using the estimated variance components of the genotypic 
values ( sij ), genotype-by-site interaction effects ( �2

s
 ) and 

residuals ( �2
e
 ), a broad-sense heritability ( H2 ) was calcu-

lated as follows (Holland et al. 2003);

where nblock is the number of blocks per site, nsite is the num-
ber of sites (i.e., nblock = nsite = 2 given our experimental 
design).

Phenotypic correlation among sites and traits was calcu-
lated based on the Pearson’ correlation after averaging the 
observed phenotypic values over the two blocks for each 
accession (if an accession did not have an observed value in 
one of the two blocks, the available phenotypic value was 
used instead of the average).

Genomic data and Genome‑Wide Association (GWA) 
analysis

The 404 K core SNPs dataset was downloaded from the 
IRRI SNP-Seek website (https:// snp- seek. irri. org/_ downl 

yijk = � + gi + sij + �j + �jk + eijk

H2
=

�2
g

�2
g
+

�2
s

nsite
+

�2
e

nblock×nsite

oad. zul). SNP having more than 5% missing data or a 
minor allele frequency below 2.5% were removed, retain-
ing 186,229 SNPs for 3,024 accessions. Remaining miss-
ing states were imputed using Beagle v.4.1 (21Jan17.6 cc; 
Browning and Browning 2016).

Without further filtering, GWA analysis was performed 
on the 253 accessions with the BLUE values for grain 
Zn concentrations and the 186 k genotype matrix using 
the multi-locus random-SNP-effect mixed linear model 
(mrMLM) software package, which includes the mrMLM, 
FASTmrMLM, FASTmrEMMA, pkWmEB, pLARmEB, 
ISIS EM-BLASSO methods (https:// cran.r- proje ct. org/ web/ 
packa ges/ mrMLM/ index. html). A kinship matrix was calcu-
lated by mrMLM by default using the method of Kang et al. 
(2008) and default values were used for the parameters in 
all methods. To account for additional population structure 
a set of principal components (PC) was calculated using 
TASSEL (v5.2.75). PCs explaining more than 5% of the 
variation were included in the GWA analysis by indicating 
the type of population structure (PopStrType) = “PCA.” An 
output of Quantitative Trait Nucleotides (QTN) exceeding 
a threshold LOD value > 3 at each of the six multi-locus 
models was generated as the last step of the analysis and 
visualized in a combined Manhattan plot. QTN exceeding 
this LOD threshold in at least three of the six models were 
considered significant and evaluated further.

The allele effect at each locus was determined by calculat-
ing the average phenotypic values of all accessions carrying 
either allele and a box-plot graph was generated using an 
in-house R script. A graphical representation of subset of 
SNPs surrounding the significant QTNs was generated by 
the Haploview 4.2 software (Barret et al. 2005). Linkage dis-
equilibrium (LD) blocks were then identified and manually 
delignated based on the recombination rate, which is dis-
played using the standard color scheme: D’/LOD (wherein 
red color reveals linkage disequilibrium between two genetic 
markers, D' = 1 and LOD > 2).

Genomic prediction

Genomic prediction was performed with the GBLUP model 
(Bernardo 1994) using the rrBLUP package (Endelman 
2011):

where � is the Zn BLUE values, 1 is a vector of ones, μ is 
the grand mean, � is the design matrix, � is the vector of 
genotypic values, � is the vector of residuals, 0 is a vector of 
zeros, � is a genomic relationship matrix, σ2

u
 is genetic vari-

ance, � is an identify matrix, and �2
e
 is the residual variance. 

The genotypic values and residuals are assumed to follow a 

� = 1μ + �� + �, � ∼ MVN
(

0,�σ
2

u

)

, � ∼ MVN
(

0, �σ2
e

)

https://snp-seek.irri.org/_download.zul
https://snp-seek.irri.org/_download.zul
https://cran.r-project.org/web/packages/mrMLM/index.html
https://cran.r-project.org/web/packages/mrMLM/index.html
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multivariate normal distribution (MVN). The genomic rela-
tionship matrix was calculated by using the A.mat function 
in rrBLUP package, as described in Tanaka et al. (2021).

By using the above GBLUP model, Zn concentrations of 
the all 3 K accessions were predicted with three slightly dif-
ferent training sets: (1) all phenotyped accessions (n = 253), 
(2) all phenotyped accessions excluding IRIS_313_9368, 
which had extremely high Zn concentrations and may there-
fore be highly influential (n = 252) and (3) excluding the six 
members of the aus subspecies (n = 247). In addition, tenfold 
cross-validation was repeated 10 times to evaluate the predic-
tion accuracy within the phenotyped accessions. Prediction 
accuracy was evaluated by taking correlation between the 
BLUE values ( g ) and the predicted genotypic values from the 
GBLUP model ( u).

Confirmatory experiments

Two subsequent experiments were conducted to confirm 
results obtained with the training set. To independently con-
firm the reliability of the GP model, 61 additional accessions 
from the 3 K set available at IRRI were selected for the deter-
mination of grain Zn concentrations. These accessions were 
selected based on their predicted grain Zn concentrations being 
either high (n = 19), intermediate (n = 24) or low (n = 18). 
Accessions had not been grown in Madagascar but seed pro-
duced at IRRI and distributed to JIRCAS was used directly 
for the determination of grain Zn concentrations. After acid-
digestion of 0.25 g dehulled seed, elemental concentrations in 
samples were measured using ICP Emissions Spectrometer 
ICPE- 9000 (Shimadzu, Kyoto, Japan).

A further experiment was conducted to investigate whether 
the high grain Zn concentrations identified in potential high-
Zn donor accessions were repeatable and stable across sev-
eral field sites in Madagascar. Three high-Zn accessions of 
the training set (IRIS313-9368, IRIS313-10,114 and CX158) 
were grown in a multi-location trial together with local (X265) 
and international (IR64) check varieties. The experiments were 
conducted in Anjiro, Ankazo and Behenji (elevation 1428 m, 
19°14′44.92′′S 47°28′45.38′′E) villages in the central high-
lands of Madagascar during the 2018–19 rainy season, using 
five farmer’s fields with two fertilizer treatments (zero input 
versus fertilization with NPK) and three replications. Plot sizes 
were 2  m2. Grain samples were processed as for the training 
set and sent to Flinders University for the determination of 
elemental concentrations as outlined above.

Results

Phenotypic variation

The average grain Zn concentrations (Zn) for the 253 
tested accessions ranged from 16.6 to 48.4 µg  g−1 at the 
Anjiro site and from 14.2 to 35.6 µg  g−1 at the Ankazo 
site (Fig. 1) and highest values at both sites were detected 
in accession IRIS_313_9368. In addition to having wider 
variation, the Anjiro site average of 25.4 µg  g−1 was sig-
nificantly higher (p < 0.01) compared to Ankazo with 
21.6 µg  g−1. Despite these differences, grain Zn concentra-
tions at both sites had a tighter correlation (r = 0.65) com-
pared to other traits with the exception of days to heading 
(r = 0.86). The average GY was 4.4 t  ha−1at Anjiro and 4.2 
t  ha−1 at Ankazo and respective SWT means were 29.7 and 
28.2 g  plant−1 (Fig. 1). Neither trait differed significantly 
between sites.

Correlations between the two sites were low for GY 
(r = 0.15; p < 0.05) and slightly higher for SWT (r = 0.28; 
p < 0.001). However, at each site GY was positively corre-
lated to SWT (r = 0.55 and r = 0.61 for Anjiro and Ankazo, 
respectively; p < 0.001 for both). Accessions showed large 
variation for HD, ranging from 60 to 127 days at Ankazo 
and from 64 to 129 days at Anjiro. The similar range and 
high correlation of r = 0.86 indicated that site effects were 
very small for HD. Late heading was associated with 
increased SWT at both sites but the effect of late heading 
on GY was site-specific, with a low but significantly posi-
tive effect at Anjiro (r = 0.32; p < 0.001) compared to a 
non-significant (negative) effect (r =  − 0.11; ns) in Ankazo 
(Fig. 1).

Interestingly, Zn concentrations showed weak correla-
tions with other traits, except for a low and negative corre-
lation with GY in Anjiro (r =  − 0.33; p < 0.001). Further-
more, the broad-sense heritability for Zn concentrations 
across sites was high  (H2 = 0.79; Fig. S1), implying that 
genotype by site interaction effects for Zn concentrations 
were small. For that reason, the association mapping and 
GP were conducted with the across-site BLUE values to 
analyze the common genetic control across two sites.

The 253 accessions tested belonged primarily to the 
indica sub-species of rice, the second biggest group were 
japonica accessions while other sub-populations were rep-
resented by only 6–10 individuals (Fig. 2a). The focus on 
mostly indica accessions was due to the preference for 
indica-type varieties by lowland rice growers and con-
sumers in Madagascar. The aus sub-species group had the 
highest average grain Zn concentration (33.5 µg  g−1), com-
pared with an average of 25.1 µg  g−1 for the indica group 
and 28.4 µg  g−1 for the japonica group.
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Genome‑wide associations for grain Zn 
concentrations

A multi-locus GWAS approach considering results from 
six multi-locus analysis methods was employed to iden-
tify genetic associations with grain Zn concentrations and 
associations were considered significant when the estimated 
LOD surpassed the threshold of 3.0 in at least three methods. 
Based on these criteria, eight loci associated with grain Zn 
concentrations were detected on chromosomes 2, 4, 8, 10, 
11 and 12 (Table 1). The full list of all QTN with a LOD > 3 
in any of the six methods is shown in Table S1 and the cor-
responding Manhattan plots in Fig. S2.

The strongest peak identified in terms of maximum LOD 
value (16.4), number of approaches identifying the locus (5) 
and consistently high QTN effect estimates (1.69–3.69 µg 
Zn  g−1) was QTN_11.3 at 28,757,650 bp on chromosome 
11 (Table 1; Table S1). The minor allele frequency (MAF) 

at this locus was 4.4% and the R2 was 15.4. The remaining 
seven loci had comparatively minor effects with R2 estimates 
of 2.1–5.9 and maximum QTN effect estimates between 0.9 
and 1.9 µg Zn  g−1 (Table 1).

At each QTN we investigated to what extent the minor 
allele and the allele increasing grain Zn concentrations was 
associated with different rice sub-populations (Fig. 3). For 
QTN_2.1 allelic variation was detected in all sub-species 
except for japonica but differences were only significant in 
the indica group. QTN_8.1 had allelic variation within the 
aus and indica groups but mean differences were not sig-
nificant. QTN_11.2 allelic variants existed within all sub-
species and the minor allele significantly increased grain Zn 
in the aus and indica groups. For the strongest QTN_11.3, 
the minor allele was associated with higher grain Zn concen-
trations in the aus, indica and japonica sub-species (Fig. 3). 
At QTN on chromosomes 10 and 12 allelic variation was 
only detected within the indica group and the minor allele 

Fig. 1  Repartition and correlation of zinc concentration (Zn), grain yield (GY), shoot weight (SWT) and heading date (HD) at sites Ankazomiri-
otra (AZ) and Anjiro (AJ)
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increased grain Zn (Fig. S3). In only one case (chromo-
some 11: 27,604,708), the minor allele was associated with 
reduced grain Zn and the allelic difference was only pro-
nounced in the aus and japonica groups where it reduced 
grain Zn by 24 and 19%, respectively.

For the most influential locus QTN_11.3, we delimited 
the linkage block surrounding significant QTNs. Strong 
linkage that would define a clear block was not detected 
but similarities between SNP genotypes were suggestive 

of a linkage block extending from 28.681 to 28.798 Mbp 
(Fig. S4). This region contained 26 gene models of which 
18 were functionally annotated (Table S2). One gene fam-
ily was strongly overrepresented at this locus as 11 genes 
were annotated as glucosyl hydrolases or, more specifi-
cally, as either class III chitinase homologs or xylanase 
inhibitors. In addition, two “thaumatin family domain 
containing proteins” and two Zinc finger proteins were 
annotated in the target region.

Fig. 2  Variation in grain Zn 
concentrations in accessions 
from five rice sub-populations: 
a measured data of the training 
set (n = 253); b predicted values 
of the entire 3 K set using the 
full training set (n = 253); c 
predicted values of the entire 
3 K set using a training set 
excluding six aus accessions 
(n = 247)

Table 1  Associations for grain Zn concentrations detected (with LOD > 3.0) in at least three of the six multi-locus approaches employed. For R2 
and QTN effects, highest estimates by any of the significant approaches are shown

QTN Chromosome Position mrMLM FASTmrMLM FASTm-
rEMMA

pkWmEB pLARmEB ISIS EM-
BLASSO

R2 MAF (%) QTN effect
(µg Zn  g−1)

2.1 2 18,697,369 5.1 3.2 4.9 3.2 5.5 45.9 1.2
4.1 4 20,025,747 7.8 3.7 4.2 5.9 20.6 1.2
8.1 8 26,505,039 7.5 6.5 6.7 5.6 3.0 10.7 1.9
10.1 10 14,217,374 4.4 3.6 7.6 4.1 3.9 3.5 5.5 1.5
11.1 11 26,546,816 4.3 6.2 8.6 6.2 4.9 13.0 1.2
11.2 11 27,604,708 6.0 3.2 7.4 3.2 15.6 − 1.4
11.3 11 28,757,650 15.2 10.4 13.6 16.4 3.6 15.4 4.4 3.7
12.1 12 7,184,806 3.1 4.8 3.9 2.1 9.7 0.9
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Genomic prediction for grain Zn concentrations

Utilizing the same GWAS dataset as a training set, a GP 
model was developed to predict grain Zn concentrations of 
the entire set of 3 K accessions. The full model including 
all 253 training accessions predicted grain Zn concentra-
tions to range from 17.1 µg Zn  g−1 to as high as 40.2 µg Zn 
 g−1 (Fig. 2b). Differences between subpopulations were pro-
nounced, with the aus group having highest predicted values 
and an average of 30.3 µg Zn  g−1. The second highest aver-
age was predicted for the japonica group (26.7 µg Zn  g−1) 
and the lowest for the indica group (23.2 µg Zn  g−1). In fact, 
only members of the aus sub-species were found among the 
top 20 predicted accessions (Table S3) and IRIS_313_9368, 
which had the highest grain Zn concentrations in the training 
set (42.0 µg Zn  g−1), was also the highest predicted acces-
sion (40.2 µg Zn  g−1).

The training set contained only six aus accessions, among 
which IRIS_313_9368 may have been highly influential. 
To test to what extent the small number of aus accessions 
may have skewed predictions, two additional GP models 

were tested, a 2nd model excluding IRIS_313_9368 and 
a 3rd model excluding all six aus. Predicted values of the 
3rd model are shown in comparison to the full model in 
Fig. 4. Excluding aus from the training set did not have 
major effects on predicted values for the four non-aus sub-
populations, but strongly decreased the predicted grain Zn 
concentrations of the 201 aus accessions among the 3 K set. 
Their average decreased from 30.3 to only 24.3 µg Zn  g−1, 
which was lower than the predicted average of the japonica 
group (26.6 µg Zn  g−1) using the same training set (Fig. 2c). 
Only excluding IRIS_313_9368 did not have comparably 
strong effects, though the predicted Zn concentrations in aus 
accessions decreased from the full model (Fig. S5).

Tenfold cross-validation was performed to evaluate 
the accuracy of predictions for the full model and the one 
excluding aus accessions. When using all phenotyped acces-
sions, average prediction accuracy of the ten replications 
was r = 0.51 with the standard deviation (SD) of 0.02. This 
dropped slightly to r = 0.49 (SD = 0.01) for the 2nd model 
and to r = 0.48 (SD = 0.01) for the 3rd model with aus 
excluded.

Fig. 3  Grain Zn concentrations for the two allelic groups in the five sub-populations for QTN_2.1, QTN_8.1, QTN_11.2 and QTN_11.3. Num-
bers above bars indicate the number of accessions in the respective group
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For an additional and independent confirmation of pre-
diction results, grain Zn concentrations were determined 
in a different subset of accessions selected from the 3 K 
set. These belonged to the aus (n = 30), indica (n = 24) and 
japonica (n = 7) subpopulations (Table S4). Seeds analyzed 
had been imported directly from the IRRI genebank and 
were thus not grown in Madagascar (though there was a 
small overlap with accessions in the field in Madagascar, 
n = 11). The correlation between measured and predicted 
values was r = 0.74 (Fig. 5) and correlations with the 2nd 
model (r = 0.66) or 3rd model (r = 0.35) were lower (data 
not shown). Predicted mean values separated the aus group 
(average 31.3 µg Zn  g−1) from the indica (23.6 µg  g−1) and 
japonica (25.1 µg  g−1) groups and measured means were 
within 1.0 µg Zn  g−1 of predicted group means (31.7, 23.4 
and 24.2 µg Zn  g−1, respectively). For the main locus identi-
fied on chromosome 11 in GWAS (QTN_11.3), the positive 
minor allele was present in 12 of the 61 accessions. The 
allelic effect appeared to be significant with an average Zn 
concentration of 32.4 µg Zn  g−1 for the minor compared to 
26.3 µg Zn  g−1 for the major allele (Table S5); however, all 
accessions with the minor allele belonged to the aus group 
and within that sub-species, allelic groups did not differ 
(32.4 vs. 31.1 µg Zn  g−1).

The second confirmatory experiment was conducted 
with potential high-Zn donors at five field sites and with 
two fertilizer treatments in Madagascar. The ANOVA indi-
cated that genotypic differences were the dominant source 
of variation in this dataset (Fig. 6) and potential high-Zn 

donor IRIS313-9368 (aus) was consistently superior to other 
accessions, irrespective of sites and fertilizer treatments. 
With an average of 42.5 µg Zn  g−1, it surpassed its predicted 
grain Zn concentration of 40.2 µg Zn  g−1. Furthermore, it 
had almost twice the Zn concentration of IR64 (21.7 µg  g−1) 
and more than twice compared to the Malagasy check X265 
(18.6 µg  g−1). Other tested accessions were the top predicted 

Fig. 4  Predicted grain Zn 
concentrations of the entire 3 K 
set of accessions available at the 
IRRI gene bank based on two 
different training sets. Predic-
tions shown on the x-axis are 
based on the entire set of 253 
accessions tested in Madagas-
car, whereas predictions on the 
y-axis are based on only 247 
accessions with all six members 
of the aus sub-population 
omitted
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indica CX158 and IRIS313-10,114 and while CX158 failed 
to reach its predicted value of 32.0 µg Zn  g−1, IRIS313-
10,114 matched its predicted value of 30.5 µg  g−1 to within 
1% and was consistently superior to the check varieties, irre-
spective of site or fertilizer effects (Fig. 6). As in the training 
set, plants had higher average grain Zn concentrations at 
both field sites in Anjiro (28.6–29.6 µg Zn  g−1) compared to 
Ankazo village (26.5 µg Zn  g−1), with Behenji (25.0–25.9 µg 
Zn  g−1) being lowest. Applying NPK fertilizer had a small 
positive effect, increasing average grain Zn concentrations 
from 26.6 to 27.7 µg Zn  g−1) but this effect was only signifi-
cant in two of the five sites (data not shown).

Discussion

Experiments were conducted with a diverse set of gene bank 
accessions and more than twofold variation in grain Zn con-
centrations were detected. Other traits such as GY or HD 
also varied considerably, but correlations between this vari-
ation and grain Zn concentrations were low (Fig. 1). Large 
differences in GY could have affected grain Zn concentra-
tions, due to a possible dilution of Zn in the greater grain 
biomass of higher-yielding accessions and of the reverse 
effect in very low-yielding accessions. While excluding 
high-yielding varieties was no option because such material 
should be the target of any breeding program, we had omit-
ted accessions with extremely low yield at any of the two 
sites as we considered these to be not sufficiently adapted to 
local conditions to provide reliable data. Possibly as a result 
of this precaution the correlation between GY and grain Zn 

concentrations remained very weak (r = − 0.27; Fig. S1) and 
likely did not affect outcomes of the GWAS and GS stud-
ies. In addition, the heritability for grain Zn concentrations 
 (H2 = 0.79) was larger than for GY  (H2 = 0.40). High herita-
bility (> 0.70) for grain Zn has also been reported elsewhere 
(Swamy et al. 2016, 2018; Baertschi et al. 2021).

A rather high heritability and good correlations for grain 
Zn concentrations between different sites did, however, not 
mean site effects were absent. Grain Zn concentrations dif-
fered significantly and consistently between sites, with sam-
ples from Anjiro village (25.4 µg  g−1) having significantly 
higher grain Zn concentrations compared to the Ankazo site 
(21.6 µg  g−1) and this may have been due to poor drain-
age in Ankazo, which could lower Zn availability due to a 
more reduced soil state. Nevertheless, neither site can be 
described as Zn deficient considering our observed ranges 
were comparable to or higher than in similar studies (Norton 
et al. 2014; Swamy et al. 2018; Rao et al. 2020).

All rice grain analyzed was unpolished brown rice, which 
was primarily due to the fact that high-quality milling equip-
ment capable of polishing rice without contaminating sam-
ples with Zn during the milling process was not available in 
Madagascar. To what extent our analysis of brown rice could 
have affected results and conclusions were briefly assessed 
by polishing a small sub-sample of grain and results indi-
cated that the average grain Zn concentrations decreased by 
18% from 33.2 µg  g−1 in brown rice to 27.2 µg  g−1 in pol-
ished rice (Fig. S6), which is similar to reductions reported 
elsewhere (Suman et al. 2021). Interestingly, the reduction 
was larger in low-Zn accessions (− 24.5%) compared to 
high-Zn accessions (− 14.2%), which would indicate that 

Fig. 6  Variation in grain Zn 
concentration of five rice acces-
sions across five field sites and 
two fertilizer treatments (no 
input and 120 kg  ha−1 NPK 
compound fertilizer). Dif-
ferences between accessions 
were the dominant source of 
variation, followed by differ-
ences between sites (see inlet of 
ANOVA table)
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using brown rice samples would not have induced a bias in 
favor of high-Zn accessions in our analyses.

Differences between rice sub‑populations

The association panel used was predominantly of the 
indica sub-population with smaller additions from the aus, 
japonica, aromatic and admix groups, and measured grain 
Zn concentrations indicated significantly higher concentra-
tions in the aus group (Fig. 2). The average of the aus group 
was 35.6% higher compared to the indica group and this 
superiority could subsequently be substantiated (+ 35.4%) 
in the confirmatory set including a much larger proportion 
of aus accessions. Considering that indica are the predomi-
nant group of varieties grown by lowland rice farmers of 
Madagascar and many other biofortification target countries, 
aus accessions identified here experimentally or through GP 
should be considered as potential donors in biofortification 
programs. Norton et al. (2014) reached a similar conclusion 
as 3 of the 5 high-Zn donor accessions identified in that 
study belonged to the aus group.

The inclusion or omission of aus accessions did not affect 
the ability to predict grain Zn in non-aus groups but omit-
ting the aus led to a strong under-estimation of grain Zn in 
that group (Figs. 2 and 4). Thus, some largely aus-specific 
genetic factors must exist that lead to the superior grain Zn in 
that group and a GP approach appears to accurately consider 
these. A similar conclusion about the need to include all 
sub-populations in the training set was reached by Grenier 
et al. (2015). Considering that many component traits lead 
to high grain Zn, it is likely that some of these component 
traits are only or at least predominantly expressed in the aus 
group. Such traits would make ideal breeding targets and 
physiological studies need to investigate if such aus-specific 
traits exist and which limiting step in the processes between 
Zn uptake, transport, retranslocation and endosperm loading 
they affect.

Understanding such bottleneck traits and the underly-
ing genetic control may be key to increasing grain Zn con-
centrations in the predominantly indica modern cultivars. 
One possible aspect to study further in this regard is the 
tendency of aus accessions like IRIS313-9368 to rapidly 
senesce at maturity, whereas modern indica varieties have 
the tendency to remain comparatively green at maturity. 
More rapid senescence could favor Zn remobilization and 
translocation to grains.

Donors from the aus group have been used repeatedly 
to move alleles for tolerance to many abiotic stresses into 
the modern rice breeding pool (Heredia et al. 2021). It is 
furthermore interesting to note that several aus accessions 
possess high tolerance to Zn deficiency (Lee et al. 2018) due 
to their efficient Zn uptake capacity from highly reduced 
soil. While it is not known whether a link between this Zn 

uptake efficiency from Zn deficient soil and high grain Zn 
concentrations under normal Zn availability exists, it would 
be very interesting to pursue such a possibility further. The 
use of aus donors in rice breeding has typically involved the 
transfer of major genes or QTL through their marker-assisted 
introgression into modern breeding lines and to what extent 
this is a likely approach to improve grain Zn remains to be 
resolved.

GWA and GP analysis

Results of Norton et al. (2014) and Swamy et al. (2018) 
suggest that grain Zn is a polygenic trait controlled by mul-
tiple small to medium effect loci. Employing a multi-locus 
GWAS approach should therefore be more suitable in iden-
tifying loci controlling grain Zn concentrations compared 
to single-locus models that test one locus at a time without 
considering interactions between loci (Xu et al. 2018). A 
weakness of the single-locus GWAS analysis is the problem 
of false positives and negatives and this is better balanced in 
the multi-locus association analysis employed here, which 
eliminates the need for a Bonferroni correction in multi-
locus GWAS (Wang et al. 2016).

This study identified eight QTN of which seven had minor 
effects while the QTN on chromosome 11 (28,757,650) can 
be considered a medium-effect locus. It is attributed to a 
rare allele present in accessions of the aus, japonica and 
indica sub-species and the difference in average grain Zn 
concentration between the minor (32.1 µg Zn  g−1) and major 
(23.2 µg Zn  g−1) allele groups at this QTN is 8.9 µg Zn  g−1 
(+ 38%). This contrasts with the estimated QTN effect of 
3.69 µg Zn  g−1 obtained by the multi-locus analysis. This 
would indicate a strong over-estimation of QTN effects 
if individual loci are investigated in isolation and that the 
multi-locus model may provide lower but more realistic esti-
mates of QTN effects.

Other QTL or GWA studies have identified loci on chro-
mosome 11 (summarized by Swamy et al. 2016, 2018) but 
these do not overlap with QTN_11.3 identified here. Con-
versely, we did not detect an otherwise commonly identi-
fied locus on chromosome 7 that is potentially linked to the 
OsNAS3 gene considered a prime candidate for increasing 
grain mineral concentration (Johnson et  al. 2011). Pre-
dicted gene models for the candidate region at QTN_11.3 
(28.681–28.798 Mbp) did not contain genes previously asso-
ciated with Zn metabolism or transport. Instead, a cluster of 
11 genes belonging to the glucosyl hydrolase family (class 
III chitinase homologs or xylanase inhibitors) were present. 
However, it is beyond the scope of this paper to further ana-
lyze any potential role of these genes.

Whereas several QTL and GWAS studies have been 
reported in the literature this is only the second report 
applying GP for grain Zn concentrations in rice. In 
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contrast to the work by Baertschi et al. (2021) that focused 
on assessing the potential of GP models for early selection 
of families to improve upland rice synthetic populations, 
the aim of the GP approach taken here is to predict grain 
Zn concentrations of gene bank accessions in lowland rice. 
If successful, this would allow for a very efficient search 
of potential new donors for high grain Zn concentrations. 
The prediction accuracy of 0.51 achieved in this study is 
similar to the PA ranging from 0.33 to 0.69 in wheat (Velu 
et al. 2016), of 0.43–0.73 reported for maize (Mageto et al. 
2020) and of 0.51 in upland rice (Baertschi et al. 2021). 
The present study was conducted in two low-input farmers’ 
fields rather than under the more controlled conditions one 
may encounter on research farms and that the PA achieved 
here is comparable to PAs reported from research farms 
is further suggestive of GP being a suitable approach for 
identifying potential donors from gene banks. It is further-
more noteworthy that the GP model based on field data 
from Madagascar was able to reliably predict (r = 0.74) 
grain Zn concentrations of the confirmation set that had 
been grown on the IRRI farm in the Philippines, which 
represents a more favorable environment compared to the 
low-input farmers’ fields providing the data for the training 
set. Thus, the confirmation outside the training environ-
ment lends further credibility to the predictive ability of 
GP for grain Zn concentrations.

Such robustness across environments would offer 
options to further economize resources through sparse 
testing of only part of the entire training set at each site or 
environment. Baertschi et al. (2021) suggested optimiz-
ing the GP scheme by evaluating small training sets and 
using phenotypic correlation between sites to calibrate 
the model, and in their case the phenotypic correlation 
for grain zinc concentration between sites (r2 > 0.41) was 
similar to what was achieved here.

In a review of genomic approaches to biofortification 
of cereals, Koç and Karayigit (2021) concluded that con-
ventional breeding would be the most sustainable, low cost 
and easily adoptable strategy. Our results concur inasmuch 
none of the QTN identified would be influential enough 
to be rapidly employed in marker-assisted selection. How-
ever, the success of GP in predicting grain Zn concen-
trations, here of gene bank accessions, but elsewhere in 
a rice breeding population (Baertschi et al. 2021), may 
offer opportunities, especially where genomic selection 
of other traits is already practiced. It should furthermore 
facilitate utilizing the high-Zn donors identified here, as 
breeders may be reluctant to employ such exotic mate-
rial in a conventional elite breeding program. As efforts 
are under way to mainstream biofortification traits in crop 
breeding (Virk et al. 2021), it seems worthwhile to include 
grain Zn concentrations as one of the traits targeted in 
genomic selection.

Conclusions

Data obtained from field experiments conducted in Mada-
gascar enabled us to successfully predict grain Zn con-
centrations among a set of gene bank accessions, thereby 
identifying potential donors for use in Zn biofortification 
breeding. The most promising donors all belonged to the 
aus sub-species of rice and to significantly increase Zn 
concentrations in the lowland rice breeding pool, which 
is predominantly belonging to the indica sub-species, it 
appears necessary to rely on aus introgressions. Donor of 
the aus group has been used repeatedly for the introgres-
sion of major abiotic stress tolerance loci through their 
marker-assisted introgression. This approach is less likely 
to be successful for the improvement of grain Zn concen-
trations as none of the identified loci identified here or 
elsewhere appear strong enough to raise grain Zn con-
centrations by the targeted 50% or more. Being a poly-
genic trait, the improvement of grain Zn concentrations 
would likely require the transfer of many small-effect loci 
simultaneously. Since we have shown the suitability of 
GP in identifying high-Zn donors, it can be expected that 
breeding populations developed from such donors could 
achieve target grain Zn concentrations if a similar genomic 
selection approach was used during the variety develop-
ment process.
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