

Advances in understanding and predicting the spread of invading insect populations

Patrick Tobin, Christelle Robinet

▶ To cite this version:

Patrick Tobin, Christelle Robinet. Advances in understanding and predicting the spread of invading insect populations. Current Opinion in Insect Science, 2022, pp.100985. 10.1016/j.cois.2022.100985 . hal-03832435

HAL Id: hal-03832435 https://hal.inrae.fr/hal-03832435v1

Submitted on 17 Jul 2023

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives 4.0 International License

1	Advances in understanding and predicting the spread of invading insect populations
2	
3	Patrick C. Tobin ^{1,3} and Christelle Robinet ²
4	
5	¹ University of Washington, School of Environmental and Forest Sciences, 123 Anderson Hall, 3715
6	W. Stevens Way NE, Seattle, Washington, USA; ORCID: 0000-0003-0237-7963
7	² INRAE, URZF, 45075 Orléans, France; ORCID: 0000-0002-4933-4656
8	³ Corresponding author; <u>pctobin@uw.edu</u> ; +1 206-685-7588
9	
10	

11 Highlights

- 12 Spread is a critical stage of the biological invasion process
- 13 Novel uses of data sources facilitate our ability to estimate spread rates
- 14 Advances in modeling aids in understanding the factors affecting spread dynamics
- 15 Understanding and predicting spread enhances decision-making in management

17 Abstract

Understanding and predicting the spread of invading insects is a critical challenge in 18 19 management programs that aim to minimize ecological and economic harm to native ecosystems. 20 Although efforts to quantify spread rates have been well studied over the past several decades, 21 opportunities to improve our ability to estimate rates of spread, and identify the factors, such as 22 habitat suitability and climate, that influence spread, remain. We review emerging sources of data 23 that can be used to delineate distributional boundaries through time and thus serve as a basis for 24 quantifying spread rates. We then address advances in modeling methods that facilitate our 25 understanding of factors that drive invasive insect spread. We conclude by highlighting some 26 remaining challenges in understanding and predicting invasive insect spread, such as the role of 27 climate change and biotic similarity between the native and introduced ranges, particularly as it 28 applies to decision-making in management programs.

30 Introduction

31 Spread: the process by which a species moves from one area to another. Animals have been on the move for millennia, sometimes as part of migratory behavior, more often in search of food. 32 Insects, the first group of organisms to evolve flight capability more than 300 million years ago, have 33 34 been constantly on the move in search of resources to exploit. Owing to their small size and 35 persistence, they are also adept at hitchhiking on products moved by humans, a pathway at least as 36 old as the ancient Silk Route that linked Asia with Africa and Europe. Nowadays, with globally connected economies and transportation networks, products are continuously moved around the 37 world, occasionally leading to the unwanted arrival of new species into new areas. This arrival stage, 38 39 as the first stage of the biological invasion process, is often the product of long distance, 40 anthropogenically-mediated spread. Upon establishment, species spread to new areas through both 41 short- and long-range movement, with the latter often human-assisted. Attempts to predict and 42 understand the spread of invading insects, from the mechanisms that facilitate arrival to the processes that affect spread post-establishment, have a long history dating at least to the late 1800s 43 44 given the economic importance of invasive insects as agricultural pests. In this review, we examine 45 recent methods in understanding and predicting invasive insect spread. We first focus on data 46 sources that can be used to quantify spread rates. We then discuss advances in modeling methods that enhance understanding of the factors mediating and affecting invasive insect spread. We 47 48 conclude by highlighting the importance of understanding invasive insect spread in the development of management programs, and the effect that climate change could have on spread dynamics. 49 50

51 Data sources to estimate invasive insect spread

52 The spread of any invading organism is defined by the spatial displacement in its distribution 53 through time. Thus, any attempt to quantify spread requires knowledge of where an organism is over

54 at least two time periods. Earlier methods to quantify spread relied on crude approximations of 55 spatial boundaries, and whatever methods were available to detect the organism [1]. The 56 identification and synthesis of species-specific semiochemicals facilitated the development of more 57 sensitive insect trapping devices that more precisely defined spatial boundaries. Methods to use 58 space-time data to estimate spread rates have been refined over the years, from linear regression 59 techniques to spatially-explicit approaches that can account for anisotropic spread [2]. Regardless of 60 the method to estimate spread, distributional data collected through time is still required. In this section, we highlight the use of Digital Earth data, citizen-science collected data, and genetic data 61 62 derived useful in estimating distributional ranges for quantifying spread rates (Fig. 1).

63

64 Digital Earth Data

65 Digital Earth data have increased dramatically over the past several years, facilitating many 66 avenues of research [3]. An early use of such data to estimate insect presence was reported by 67 Rousselet et al. [4], who used Google Street View to map the distribution of pine processionary, 68 Thaumetopoea pityocampa (Denis & Schiffermüller). Using drone technology to assess insect presence 69 or damage levels to guide pest management decisions [5] could also be useful in estimating the 70 space-time distributions needed to quantify spread. Remote-sensed data in ecological applications is 71 now several decades old, but there are still opportunities to apply this technology for smaller 72 organisms such as insects [6*]. For example, Park et al. [7] used a drone equipped with a multispectral camera to detect trees suspected to be infected with pine wilt disease, which is caused 73 74 by a nematode vectored by Monochamus species. Due to the labor and resources required to monitor 75 an invading species across a landscape using trapping devices, Digital Earth Data could facilitate 76 efforts to delineate spatial boundaries through time needed to estimate spread. However, limitations 77 in microclimatic data, which are particularly important in affecting poikilothermic organisms, could

78 affect the ability to estimate changes in spatial distributions through time [8]. For example, 79 phenological predictions of the occurrence of life stages, some of which could be the stage sampled in invasive insect management programs (i.e., pheromone-baited traps aimed at detecting adults), 80 81 might be over- or underestimated if broad-scale weather data do not sufficiently account for 82 microclimatic variation. 83 84 Citizen-scientist collected data Many invasive insects have been first reported by the public. In fact, in a study of insect 85 eradication outcomes, programs that were initiated following passive detection methods (e.g., public 86 87 vigilance), were more successful than those that relied on host or habitat searches by management 88 agencies [9]. The widespread adoption of cellular phones over the past two decades has undoubtedly 89 facilitated the collection of space-time data from citizens, such as the use of Smartphone apps to 90 identify invasive species and provide the data needed to estimate spread [10*]. Not surprisingly, 91 citizen-scientist collected data has been used to monitor the spread of invasive insects [11] and can 92 be combined with climatic models to project invasive insect spread [12]. However, the potential for 93 misidentification, especially true for a group as speciose as insects, remains a challenge [13]. 94 95 Genetic techniques 96 The use of genetic techniques, such as DNA barcoding [14], in invasive species monitoring programs has greatly increased over the past several years. Biosurveillance based on genetic 97 98 techniques can be used to monitor all stages of the biological invasion process, including species

99 origins and spread [15]. DNA metabarcoding techniques can be used in multi-species identification

100 from specimens collected, for example, from trapping devices [16], which can provide insight into

101 the arrival stage and hence, the product of initial spread from a native area. The invasion history of

an organism may also be ascertained using genetic approaches. For example, Bras et al. [17] used the 102 103 genetic architecture of box tree moth, Cydalima perspectalis (Walker), in its native and invaded range to 104 ascertain primary and secondary introduction events. Ortego et al. [18] used genetic tools to 105 ascertain introduction frequency and spread of the North American boatman, Trichocorixa verticalis 106 (Fieber). Lastly, an emerging tool in invasive species detection is the use of environmental DNA 107 (eDNA) in which genetic material deposited by an organism is analyzed to ascertain presence, such as from soil or plant samples [19**]. Although eDNA is useful for detection in space, it currently 108 109 lacks a precise temporal signature needed to estimate spread. 110 Modeling invasive insect spread 111 112 Insect spread is the result of interactions among various mechanisms, most importantly 113 population growth and dispersal [20]. Species with high dispersal capabilities but reduced growth 114 rates might be diluted in space and may not readily establish, while species with rapid growth but 115 low dispersal capabilities might spread slowly. Furthermore, waiting times between arrival and 116 establishment can be affected by environmental and anthropogenic variables [21]. Modeling each 117 mechanism individually (dispersal and growth), and describing spread at an integrated level, furthers 118 our understanding of the factors that affect the spread of invading species (Fig. 1). Here we review 119 recent innovative approaches to understanding population growth, dispersal, and integrated spread. 120 Population growth 121 122 Population growth factors, such as survivorship and reproductive rates, can provide a 123 potential indication of the spread of an invading species, regardless of dispersal capability. Among

124 insects, temperature and host availability are often the main drivers affecting population growth.

125 Insect phenological models describing the development rate of life-stages as a function of

126 temperatures can assess where a species could potentially establish [22]. Ecophysiological models 127 using spatially explicit growth rates and estimates of habitat suitability can also predict potential distributions [23], as can models that use other environmental factors such as humidity [24]. Species 128 129 distribution models, which consider the correlation between bioclimatic variables and species occurrence, can be populated with data, including with data collected through citizen science efforts 130 131 [12], to build niche models, and refined to consider habitat data from the native and invaded areas [25], or microclimates in urban versus non-urban areas [26]. Combining evolutionary dynamics with 132 environmental data can substantially refine predictions from niche models [27*]; indeed, Gougherty 133 and Davies [28*] highlighted the importance of host tree phylogenetic diversity on the geographic 134 135 extent of non-native insects.

136

137	Dispersal

138 The spread of invasive insects often proceeds through stratified dispersal, which combines 139 short and long distance dispersal. Short distance dispersal is usually related to species dispersal 140 capabilities, while long-distance dispersal is more often associated with human-mediated dispersal. 141 Dispersal kernels are commonly used to quantify species movement, with various techniques, such 142 as mark-release-recapture, used to calibrate them. More recently, flight mill data [29] was used to parameterize a model to estimate dispersal of the pine wood nematode vector, Monochamus 143 144 galloprovincialis (Olivier), in forest ecosystems. Genome-wide SNP markers have been used to infer dispersal by analyzing colonization dynamics across an invaded range [30]. Other recent advances 145 146 include using least-cost path analysis to model dispersal trajectories in heterogeneous landscapes 147 [31], dynamic representations of landscape connectivity to better account for variation in dispersal 148 when the structure of habitats change over time [32], and using abiotic factors, such as temperature

and light conditions, to quantify flight probability [33], all of which can affect the diffusioncoefficient.

151 Long-distance movement of invading insects remains a challenge due to its stochasticity. 152 Efforts to consider long-distance movement include quantifying the role atmospheric-mediated 153 dispersal [34], and human-mediated dispersal such as the effects of spatial heterogeneity in human 154 population density at the source and destination [35]. Given the role of humans in moving invasive species, attempts to understand long-distance movement continue to focus on trade [36] and 155 156 visitation networks [37] including the transportation of infested material [38]. Modeling spread 157 dynamics can also serve to test different dispersal scenarios and determine if spread is attributable to 158 human vectors [39].

159

160 Integrated models

161 Models that combine population growth given local bioclimatic conditions, innate dispersal 162 capabilities, and human-mediated movement hold promise for understanding invasive insect spread 163 [40]. However, given the complexity, relatively few models describe growth and dispersal 164 simultaneously [41**]. Combining components in an integrated model could be used to better 165 understand spread. For example, dispersal could be reduced to potential entry points (i.e., through human-mediated dispersal) and combined with habitat suitability to assess invasion risk [42]. 166 167 Considering phenology during the transportation stage along trade routes also informs the probability of human-mediated long-distance movement [43]. Among herbivorous insects, it is 168 169 crucial to consider interactions between the insect and its host plant in terms of phylogeny [44] and 170 habitat connectivity [45]. Some models account for multiple interactions, such as the interactions 171 among the invading insect, its host plant, fire, and drought [46] or the interplay between insects and 172 fungal pathogens [47]. The effectiveness of control measures on spread can also improve

173	understanding of invasion dynamics; for example, Cacho and Hester [48] describe the dynamics
174	between an invading species and biological control agents to determine conditions needed for
175	biocontrol success.
176	
177	Remaining challenges
178	Despite recent attempts to understand the effect of control measures on spread, more work
179	is needed in this area especially with regard to tactics that could be implemented in the near future.
180	Although insect phenology has been considered in efforts to predict the area of potential
181	establishment, its role in spread remains unclear. Furthermore, when considering climate change,

182 insect species could adapt either by shifting their seasonality to match changing thermal conditions,

183 dispersing to more favorable areas, or both [49*]. Phenology can also interact with spatial spread in

184 climate-driven range expansions [50]. Lastly, environmental resistance is an important factor in

185 spread that deserves greater attention, even though modeling species interactions to assess habitat

186 invasibility can be complex. Considering biotic similarity between species communities in the native

187 and invaded range could be useful in assessing environmental suitability [51*].

188

189 Acknowledgements

PCT acknowledges support from the David R.M. Scott Endowed Professorship in Forest Resourcesat the University of Washington.

192

193 Funding

This research did not receive any specific grant from funding agencies in the public, commercial, ornot-for-profit sectors.

197	References and recommended reading
198	1. Skellam JG: Random dispersal in theoretical populations. Biometrika 1951, 38:196-218.
199	2. Tobin PC, Liebhold AM, Roberts EA: Comparison of methods for estimating the spread of a
200	non-indigenous species. Journal of Biogeography 2007, 34:305-312.
201	3. Guo H, Nativi S, Liang D, Craglia M, Wang L, Schade S, Corban C, He G, Pesaresi M, Li J, et al.:
202	Big Earth Data science: an information framework for a sustainable planet.
203	International Journal of Digital Earth 2020, 13 :743-767.
204	4. Rousselet J, Imbert C-E, Dekri A, Garcia J, Goussard F, Vincent B, Denux O, Robinet C,
205	Dorkeld F, Roques A, et al.: Assessing species distribution using Google Street view: A
206	pilot study with the pine processionary moth. PLoS ONE 2013, 8:e74918.
207	5. Iost Filho FH, Heldens WB, Kong Z, de Lange ES: Drones: Innovative technology for use in
208	precision pest management. Journal of Economic Entomology 2019, 113:1-25.
209	6*. Rhodes MW, Bennie JJ, Spalding A, ffrench-Constant RH, Maclean IMD: Recent advances in
210	the remote sensing of insects. Biological Reviews 2022, 97:343-360.
211	A review on remote sensing techniques including available platforms such as satellite,
212	aircraft, and drone, and available sensors, and their use in mapping habitats and detecting
213	insects.
214	7. Park HG, Yun JP, Kim MY, Jeong SH: Multichannel object detection for detecting
215	suspected trees with pine wilt disease using multispectral drone imagery. $I\!E\!E\!E$
216	Journal of Selected Topics in Applied Earth Observations and Remote Sensing 2021, 14:8350-8358.
217	8. Pascoe EL, Pareeth S, Rocchini D, Marcantonio M: A lack of "Environmental Earth Data" at
218	the microhabitat scale impacts efforts to control invasive arthropods that vector
219	pathogens. Data 2019, 4:133.

220	9. Tobin PC, Kean JM, Suckling DM, McCullough DG, Herms DA, Stringer LD: Determinants of
221	successful arthropod eradication programs. Biological Invasions 2014, 16:401-414.
222	10*. Howard L, van Rees CB, Dahlquist Z, Luikart G, Hand BK: A review of invasive species
223	reporting apps for citizen science and opportunities for innovation. <i>NeoBiota</i> 2022, 71.
224	A review that developed a rubric for assessing the functionality of Smartphone apps in
225	reporting non-native invasive species, highlighting information gaps and making
226	recommendations that could enhance their use.
227	11. Pusceddu M, Floris I, Mannu R, Cocco A, Satta A: Using verified citizen science as a tool for
228	monitoring the European hornet (Vespa crabro) in the island of Sardinia (Italy).
229	NeoBiota 2019, 50 .
230	12. Streito J-C, Chartois M, Pierre É, Dusoulier F, Armand J-M, Gaudin J, Rossi J-P: Citizen
231	science and niche modeling to track and forecast the expansion of the brown
232	marmorated stinkbug Halyomorpha halys (Stål, 1855). Scientific reports 2021, 11:11421.
233	13. Brown ED, Williams BK: The potential for citizen science to produce reliable and useful
234	information in ecology. Conservation Biology 2019, 33:561-569.
235	14. Armstrong KF, Ball SL: DNA barcodes for biosecurity: invasive species identification.
236	Philosophical Transactions of the Royal Society of London B Biological Sciences 2005, 360 :1813-1823.
237	15. Hamelin RC, Roe AD: Genomic biosurveillance of forest invasive alien enemies: A story
238	written in code. Evolutionary Applications 2020, 13:95-115.
239	16. Piper AM, Batovska J, Cogan NOI, Weiss J, Cunningham JP, Rodoni BC, Blacket MJ:
240	Prospects and challenges of implementing DNA metabarcoding for high-throughput
241	insect surveillance. GigaScience 2019, 8:giz092.
242	17. Bras A, Avtzis DN, Kenis M, Li H, Vétek G, Bernard A, Courtin C, Rousselet J, Roques A,
243	Auger-Rozenberg M-A: A complex invasion story underlies the fast spread of the

244	invasive box tree moth (Cydalima perspectalis) across Europe. Journal of Pest Science
245	2019, 92 :1187-1202.
246	18. Ortego J, Céspedes V, Millán A, Green AJ: Genomic data support multiple introductions
247	and explosive demographic expansions in a highly invasive aquatic insect. Molecular
248	Ecology 2021, 30 :4189-4203.
249	19**. Larson ER, Graham BM, Achury R, Coon JJ, Daniels MK, Gambrell DK, Jonasen KL, King
250	GD, LaRacuente N, Perrin-Stowe TI, et al.: From eDNA to citizen science: Emerging
251	tools for the early detection of invasive species. Frontiers in Ecology and the Environment
252	2020, 18 :194-202.
253	A review of existing and emerging tools (environmental DNA, chemical approaches, remote
254	sensing, citizen science, and agency-based monitoring) for surveillance and monitoring of
255	invasive species.
256	20. Liebhold AM, Tobin PC: Population ecology of insect invasions and their management.
257	Annual Review of Entomology 2008, 53:387-408.
258	21. Nunez-Mir GC, Walter JA, Grayson KL, Johnson DM: Assessing drivers of localized
259	invasive spread to inform large-scale management of a highly damaging insect pest.
260	Ecological Applications 2022, 32:e2538.
261	22. Barker BS, Coop L, Wepprich T, Grevstad F, Cook G: DDRP: Real-time phenology and
262	climatic suitability modeling of invasive insects. PLoS ONE 2021, 15:e0244005.
263	23. Régnière J, St-Amant R, Duval P: Predicting insect distributions under climate change
264	from physiological responses: spruce budworm as an example. Biological Invasions 2012,
265	14 :1571-1586.

266	24. Fisher JJ, Rijal JP, Zalom FG: Temperature and humidity interact to influence brown
267	marmorated stink bug (Hemiptera: Pentatomidae) survival. Environmental Entomology
268	2020, 50 :390-398.
269	25. Canelles Q, Bassols E, Vayreda J, Brotons L: Predicting the potential distribution and forest
270	impact of the invasive species Cydalima perspectalis in Europe. Ecology and Evolution
271	2021, 11 : 5713-5727.
272	26. Polidori C, García-Gila J, Blasco-Aróstegui J, Gil-Tapetado D: Urban areas are favouring the
273	spread of an alien mud-dauber wasp into climatically non-optimal latitudes. Acta
274	Oecologica 2021, 110 :103678.
275	27*. Sherpa S, Després L: The evolutionary dynamics of biological invasions: A multi-
276	approach perspective. Evolutionary Applications 2021, 14:1463-1484.
277	A review that shows how genetic, observational, ecological, and environmental data can be
278	combined to provide a more integrative understanding of biological invasions.
279	28*. Gougherty AV, Davies TJ: Host phylogenetic diversity predicts the global extent and
280	composition of tree pests. Ecology Letters 2022, 25:101-112.
281	A global study showing that the species composition of tree pests is mostly driven by the
282	phylogenetic composition of host tree species as opposed to climate and geography.
283	29. Robinet C, David G, Jactel H: Modeling the distances traveled by flying insects based on
284	the combination of flight mill and mark-release-recapture experiments. <i>Ecological</i>
285	Modelling 2019, 402 :85-92.
286	30. Cristescu ME: Genetic reconstructions of invasion history. Molecular Ecology 2015, 24:2212-
287	2225.

288	31. Nunes P, Branco M, Van Halder I, Jactel H: Modelling Monochamus galloprovincialis
289	dispersal trajectories across a heterogeneous landscape to optimize monitoring by
290	trapping networks. Landscape Ecology 2021, 36:931-941.
291	32. Anderson T, Dragićević S: A geographic network automata approach for modeling
292	dynamic ecological systems. Geographical Analysis 2020, 52:3-27.
293	33. Hannigan S, Nendel C, Krull M: Effects of temperature on the movement and feeding
294	behaviour of the large lupine beetle, Sitona gressorius. Journal of Pest Science 2022.
295	34. Garcia M, Sturtevant BR, Saint-Amant R, Charney JJ, Delisle J, Boulanger Y, Townsend PA,
296	Régnière J: Modeling weather-driven long-distance dispersal of spruce budworm
297	moths (Choristoneura fumiferana). Part 1: Model description. Agricultural and Forest
298	Meteorology 2022, 315 :108815.
299	35. Takahashi D, Park Y-S: Spatial heterogeneities of human-mediated dispersal vectors
300	accelerate the range expansion of invaders with source-destination-mediated
301	dispersal. Scientific reports 2020, 10:21410.
302	36. Bonnamour A, Gippet JMW, Bertelsmeier C: Insect and plant invasions follow two waves of
303	globalisation. Ecology Letters 2021, 24:2418-2426.
304	37. Runghen R, Bramon Mora B, Godoy-Lorite A, Stouffer DB: Assessing unintended human-
305	mediated dispersal using visitation networks. Journal of Applied Ecology 2021, 58:777-788.
306	38. Jentsch PC, Bauch CT, Yemshanov D, Anand M: Go big or go home: A model-based
307	assessment of general strategies to slow the spread of forest pests via infested
308	firewood. <i>PLoS ONE</i> 2020, 15 :e0238979.
309	39. Robinet C, Darrouzet E, Suppo C: Spread modelling: a suitable tool to explore the role of
310	human-mediated dispersal in the range expansion of the yellow-legged hornet in
311	Europe. International Journal of Pest Management 2019, 65:258-267.

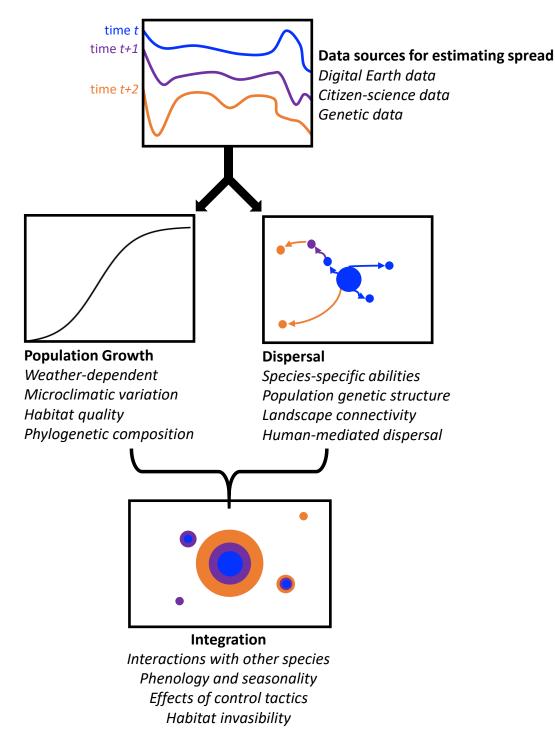
312	40. Robinet C, van den Dool R, Collot D, Douma JC: Modelling for risk and biosecurity related
313	to forest health. Emerging Topics in Life Sciences 2020, 4:485-495.
314	41**. Jones CM, Jones S, Petrasova A, Petras V, Gaydos D, Skrip MM, Takeuchi Y, Bigsby K,
315	Meentemeyer RK: Iteratively forecasting biological invasions with PoPS and a little
316	help from our friends. Frontiers in Ecology and the Environment 2021, 19:411-418.
317	A biological invasion forecasting platform, co-designed with stakeholders, that accounts for
318	dispersal, establishment and reproduction processes, and optimized with feedback loops for
319	real-world decision making.
320	42. Marchioro CA, Krechemer FS: Prevention is better than cure: Integrating habitat
321	suitability and invasion threat to assess global biological invasion risk by insect pests
322	under climate change. Pest Management Science 2021, 77:4510-4520.
323	43. Gray DR: Risk analysis of the invasion pathway of the Asian gypsy moth: a known forest
324	invader. Biological Invasions 2017, 19:3259-3272.
325	44. Uden DR, Mech AM, Havill NP, Schulz AN, Ayres MP, Herms DA, Hoover AM, Gandhi KJK,
326	Hufbauer RA, Liebhold AM, et al.: Phylogenetic risk assessment is robust for
327	forecasting the impact of non-native insects on North American trees. Ecological
328	Applications In press.
329	45. Ledru L, Garnier J, Gallet C, Noûs C, Ibanez S: Spatial structure of natural boxwood and the
330	invasive box tree moth can promote coexistence. Ecological Modelling 2022, 465:109844.
331	46. Canelles Q, Aquilué N, Brotons L: Anticipating <i>B. sempervirens</i> viability in front of <i>C.</i>
332	perspectalis outbreaks, fire, and drought disturbances. Science of the Total Environment
333	2022, 810 :151331.

334	47. Kopačka M, Nachman G, Zemek R: seasonal changes and the interaction between the
335	horse chestnut leaf miner Cameraria ohridella and horse chestnut leaf blotch disease
336	caused by Guignardia aesculi. Forests 2021, 12:952.
337	48. Cacho OJ, Hester SM: Modelling biocontrol of invasive insects: An application to
338	European wasp (Vespula germanica) in Australia. Ecological Modelling 2022, 467:109939.
339	49*. Hällfors MH, Pöyry J, Heliölä J, Kohonen I, Kuussaari M, Leinonen R, Schmucki R, Sihvonen
340	P, Saastamoinen M: Combining range and phenology shifts offers a winning strategy
341	for boreal Lepidoptera. Ecology Letters 2021, 24:1619-1632.
342	This study used a dataset of 289 Lepidopteran species to highlight that the most viable
343	strategy under a changing climate is a combination of phenology and range shifts,
344	underscoring the importance of phenology in efforts to understand invasive species spread.
345	50. Robinet C, Laparie M, Rousselet J: Looking beyond the large scale effects of global change:
346	local phenologies can result in critical heterogeneity in the pine processionary moth.
347	Frontiers in Physiology 2015, 6:334.
348	51*. Lovell RSL, Blackburn TM, Dyer EE, Pigot AL: Environmental resistance predicts the
349	spread of alien species. Nature Ecology & Evolution 2021, 5:322-329.
350	This study proposed an alternative approach to predict the spread of non-native species by
351	considering the environmental resistance of the recipient region; although applied to global
352	avifauna, this study provides an important perspective for the spread of invading insects
353	species.
354	

355 Figure legend

356

357	Figure 1. The spread of invasive insects involves quantifying the change in distributional ranges
358	through time, and innovative data sources can be used to delineate spatial boundaries. Spread itself is
359	largely a component of two processes: population growth and dispersal, each of which can be
360	considered separately and be affected by different factors, such as habitat quality for population
361	growth and landscape connectivity for dispersal. Models that integrate population growth and
362	dispersal provide an opportunity to better understand and predict spread.



366 Figure 1