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Highlights 11 

Spread is a critical stage of the biological invasion process 12 

Novel uses of data sources facilitate our ability to estimate spread rates 13 

Advances in modeling aids in understanding the factors affecting spread dynamics 14 

Understanding and predicting spread enhances decision-making in management 15 
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Abstract 17 

 Understanding and predicting the spread of invading insects is a critical challenge in 18 

management programs that aim to minimize ecological and economic harm to native ecosystems. 19 

Although efforts to quantify spread rates have been well studied over the past several decades, 20 

opportunities to improve our ability to estimate rates of spread, and identify the factors, such as 21 

habitat suitability and climate, that influence spread, remain. We review emerging sources of data 22 

that can be used to delineate distributional boundaries through time and thus serve as a basis for 23 

quantifying spread rates. We then address advances in modeling methods that facilitate our 24 

understanding of factors that drive invasive insect spread. We conclude by highlighting some 25 

remaining challenges in understanding and predicting invasive insect spread, such as the role of 26 

climate change and biotic similarity between the native and introduced ranges, particularly as it 27 

applies to decision-making in management programs. 28 

  29 



Tobin and Robinet – 4 

 

Introduction 30 

 Spread: the process by which a species moves from one area to another. Animals have been 31 

on the move for millennia, sometimes as part of migratory behavior, more often in search of food. 32 

Insects, the first group of organisms to evolve flight capability more than 300 million years ago, have 33 

been constantly on the move in search of resources to exploit. Owing to their small size and 34 

persistence, they are also adept at hitchhiking on products moved by humans, a pathway at least as 35 

old as the ancient Silk Route that linked Asia with Africa and Europe. Nowadays, with globally 36 

connected economies and transportation networks, products are continuously moved around the 37 

world, occasionally leading to the unwanted arrival of new species into new areas. This arrival stage, 38 

as the first stage of the biological invasion process, is often the product of long distance, 39 

anthropogenically-mediated spread. Upon establishment, species spread to new areas through both 40 

short- and long-range movement, with the latter often human-assisted. Attempts to predict and 41 

understand the spread of invading insects, from the mechanisms that facilitate arrival to the 42 

processes that affect spread post-establishment, have a long history dating at least to the late 1800s 43 

given the economic importance of invasive insects as agricultural pests. In this review, we examine 44 

recent methods in understanding and predicting invasive insect spread. We first focus on data 45 

sources that can be used to quantify spread rates. We then discuss advances in modeling methods 46 

that enhance understanding of the factors mediating and affecting invasive insect spread. We 47 

conclude by highlighting the importance of understanding invasive insect spread in the development 48 

of management programs, and the effect that climate change could have on spread dynamics. 49 

 50 

Data sources to estimate invasive insect spread 51 

 The spread of any invading organism is defined by the spatial displacement in its distribution 52 

through time. Thus, any attempt to quantify spread requires knowledge of where an organism is over 53 
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at least two time periods. Earlier methods to quantify spread relied on crude approximations of 54 

spatial boundaries, and whatever methods were available to detect the organism [1]. The 55 

identification and synthesis of species-specific semiochemicals facilitated the development of more 56 

sensitive insect trapping devices that more precisely defined spatial boundaries. Methods to use 57 

space-time data to estimate spread rates have been refined over the years, from linear regression 58 

techniques to spatially-explicit approaches that can account for anisotropic spread [2]. Regardless of 59 

the method to estimate spread, distributional data collected through time is still required. In this 60 

section, we highlight the use of Digital Earth data, citizen-science collected data, and genetic data 61 

derived useful in estimating distributional ranges for quantifying spread rates (Fig. 1). 62 

 63 

Digital Earth Data 64 

Digital Earth data have increased dramatically over the past several years, facilitating many 65 

avenues of research [3]. An early use of such data to estimate insect presence was reported by 66 

Rousselet et al. [4], who used Google Street View to map the distribution of pine processionary, 67 

Thaumetopoea pityocampa (Denis & Schiffermüller). Using drone technology to assess insect presence 68 

or damage levels to guide pest management decisions [5] could also be useful in estimating the 69 

space-time distributions needed to quantify spread. Remote-sensed data in ecological applications is 70 

now several decades old, but there are still opportunities to apply this technology for smaller 71 

organisms such as insects [6*]. For example, Park et al. [7] used a drone equipped with a 72 

multispectral camera to detect trees suspected to be infected with pine wilt disease, which is caused 73 

by a nematode vectored by Monochamus species. Due to the labor and resources required to monitor 74 

an invading species across a landscape using trapping devices, Digital Earth Data could facilitate 75 

efforts to delineate spatial boundaries through time needed to estimate spread. However, limitations 76 

in microclimatic data, which are particularly important in affecting poikilothermic organisms, could 77 
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affect the ability to estimate changes in spatial distributions through time [8]. For example, 78 

phenological predictions of the occurrence of life stages, some of which could be the stage sampled 79 

in invasive insect management programs (i.e., pheromone-baited traps aimed at detecting adults), 80 

might be over- or underestimated if broad-scale weather data do not sufficiently account for 81 

microclimatic variation. 82 

 83 

Citizen-scientist collected data 84 

 Many invasive insects have been first reported by the public. In fact, in a study of insect 85 

eradication outcomes, programs that were initiated following passive detection methods (e.g., public 86 

vigilance), were more successful than those that relied on host or habitat searches by management 87 

agencies [9]. The widespread adoption of cellular phones over the past two decades has undoubtedly 88 

facilitated the collection of space-time data from citizens, such as the use of Smartphone apps to 89 

identify invasive species and provide the data needed to estimate spread [10*]. Not surprisingly, 90 

citizen-scientist collected data has been used to monitor the spread of invasive insects [11] and can 91 

be combined with climatic models to project invasive insect spread [12]. However, the potential for 92 

misidentification, especially true for a group as speciose as insects, remains a challenge [13]. 93 

 94 

Genetic techniques 95 

 The use of genetic techniques, such as DNA barcoding [14], in invasive species monitoring 96 

programs has greatly increased over the past several years. Biosurveillance based on genetic 97 

techniques can be used to monitor all stages of the biological invasion process, including species 98 

origins and spread [15]. DNA metabarcoding techniques can be used in multi-species identification 99 

from specimens collected, for example, from trapping devices [16], which can provide insight into 100 

the arrival stage and hence, the product of initial spread from a native area. The invasion history of 101 
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an organism may also be ascertained using genetic approaches. For example, Bras et al. [17] used the 102 

genetic architecture of box tree moth, Cydalima perspectalis (Walker), in its native and invaded range to 103 

ascertain primary and secondary introduction events. Ortego et al. [18] used genetic tools to 104 

ascertain introduction frequency and spread of the North American boatman, Trichocorixa verticalis 105 

(Fieber). Lastly, an emerging tool in invasive species detection is the use of environmental DNA 106 

(eDNA) in which genetic material deposited by an organism is analyzed to ascertain presence, such 107 

as from soil or plant samples [19**]. Although eDNA is useful for detection in space, it currently 108 

lacks a precise temporal signature needed to estimate spread. 109 

 110 

Modeling invasive insect spread  111 

Insect spread is the result of interactions among various mechanisms, most importantly 112 

population growth and dispersal [20]. Species with high dispersal capabilities but reduced growth 113 

rates might be diluted in space and may not readily establish, while species with rapid growth but 114 

low dispersal capabilities might spread slowly. Furthermore, waiting times between arrival and 115 

establishment can be affected by environmental and anthropogenic variables [21]. Modeling each 116 

mechanism individually (dispersal and growth), and describing spread at an integrated level, furthers 117 

our understanding of the factors that affect the spread of invading species (Fig. 1). Here we review 118 

recent innovative approaches to understanding population growth, dispersal, and integrated spread. 119 

 120 

Population growth 121 

Population growth factors, such as survivorship and reproductive rates, can provide a 122 

potential indication of the spread of an invading species, regardless of dispersal capability. Among 123 

insects, temperature and host availability are often the main drivers affecting population growth. 124 

Insect phenological models describing the development rate of life-stages as a function of 125 
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temperatures can assess where a species could potentially establish [22]. Ecophysiological models 126 

using spatially explicit growth rates and estimates of habitat suitability can also predict potential 127 

distributions [23], as can models that use other environmental factors such as humidity [24]. Species 128 

distribution models, which consider the correlation between bioclimatic variables and species 129 

occurrence, can be populated with data, including with data collected through citizen science efforts 130 

[12], to build niche models, and refined to consider habitat data from the native and invaded areas 131 

[25], or microclimates in urban versus non-urban areas [26]. Combining evolutionary dynamics with 132 

environmental data can substantially refine predictions from niche models [27*]; indeed, Gougherty 133 

and Davies [28*] highlighted the importance of host tree phylogenetic diversity on the geographic 134 

extent of non-native insects.  135 

 136 

Dispersal 137 

The spread of invasive insects often proceeds through stratified dispersal, which combines 138 

short and long distance dispersal. Short distance dispersal is usually related to species dispersal 139 

capabilities, while long-distance dispersal is more often associated with human-mediated dispersal. 140 

Dispersal kernels are commonly used to quantify species movement, with various techniques, such 141 

as mark-release-recapture, used to calibrate them. More recently, flight mill data [29] was used to 142 

parameterize a model to estimate dispersal of the pine wood nematode vector, Monochamus 143 

galloprovincialis (Olivier), in forest ecosystems. Genome-wide SNP markers have been used to infer 144 

dispersal by analyzing colonization dynamics across an invaded range [30]. Other recent advances 145 

include using least-cost path analysis to model dispersal trajectories in heterogeneous landscapes 146 

[31], dynamic representations of landscape connectivity to better account for variation in dispersal 147 

when the structure of habitats change over time [32], and using abiotic factors, such as temperature 148 
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and light conditions, to quantify flight probability [33], all of which can affect the diffusion 149 

coefficient.  150 

Long-distance movement of invading insects remains a challenge due to its stochasticity. 151 

Efforts to consider long-distance movement include quantifying the role atmospheric-mediated 152 

dispersal [34], and human-mediated dispersal such as the effects of spatial heterogeneity in human 153 

population density at the source and destination [35]. Given the role of humans in moving invasive 154 

species, attempts to understand long-distance movement continue to focus on trade [36] and 155 

visitation networks [37] including the transportation of infested material [38]. Modeling spread 156 

dynamics can also serve to test different dispersal scenarios and determine if spread is attributable to 157 

human vectors [39]. 158 

 159 

Integrated models 160 

Models that combine population growth given local bioclimatic conditions, innate dispersal 161 

capabilities, and human-mediated movement hold promise for understanding invasive insect spread 162 

[40]. However, given the complexity, relatively few models describe growth and dispersal 163 

simultaneously [41**]. Combining components in an integrated model could be used to better 164 

understand spread. For example, dispersal could be reduced to potential entry points (i.e., through 165 

human-mediated dispersal) and combined with habitat suitability to assess invasion risk [42]. 166 

Considering phenology during the transportation stage along trade routes also informs the 167 

probability of human-mediated long-distance movement [43]. Among herbivorous insects, it is 168 

crucial to consider interactions between the insect and its host plant in terms of phylogeny [44] and 169 

habitat connectivity [45]. Some models account for multiple interactions, such as the interactions 170 

among the invading insect, its host plant, fire, and drought [46] or the interplay between insects and 171 

fungal pathogens [47]. The effectiveness of control measures on spread can also improve 172 
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understanding of invasion dynamics; for example, Cacho and Hester [48] describe the dynamics 173 

between an invading species and biological control agents to determine conditions needed for 174 

biocontrol success. 175 

 176 

Remaining challenges 177 

Despite recent attempts to understand the effect of control measures on spread, more work 178 

is needed in this area especially with regard to tactics that could be implemented in the near future. 179 

Although insect phenology has been considered in efforts to predict the area of potential 180 

establishment, its role in spread remains unclear. Furthermore, when considering climate change, 181 

insect species could adapt either by shifting their seasonality to match changing thermal conditions, 182 

dispersing to more favorable areas, or both [49*]. Phenology can also interact with spatial spread in 183 

climate-driven range expansions [50]. Lastly, environmental resistance is an important factor in 184 

spread that deserves greater attention, even though modeling species interactions to assess habitat 185 

invasibility can be complex. Considering biotic similarity between species communities in the native 186 

and invaded range could be useful in assessing environmental suitability [51*]. 187 
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Figure legend 355 

 356 

Figure 1. The spread of invasive insects involves quantifying the change in distributional ranges 357 

through time, and innovative data sources can be used to delineate spatial boundaries. Spread itself is 358 

largely a component of two processes: population growth and dispersal, each of which can be 359 

considered separately and be affected by different factors, such as habitat quality for population 360 

growth and landscape connectivity for dispersal. Models that integrate population growth and 361 

dispersal provide an opportunity to better understand and predict spread. 362 
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