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Abstract

We address the question of sensitivity analysis for model outputs of any dimension
using Regional Sensitivity Analysis (RSA). Classical RSA computes sensitivity indices
related to the impact of model inputs variations on the occurrence of a target region
of the model output space. In this work, we invert this perspective by proposing to
find, for a given target model input, the region whose occurrence is best explained by
the variations of this input. When it exists, this region can be seen as a model behavior
which is particularly sensitive to the variations of the model input under study. We name
this method iRSA (for inverse RSA).
iRSA is formalized as an optimization problem using region-based sensitivity indices and
solved using dedicated numerical algorithms. Using analytical and numerical examples,
including an environmental model producing time series, we show that iRSA can provide
a new graphical and interpretable characterization of sensitivity for model outputs of
various dimensions.

Keywords: Multivariate sensitivity analysis, Target sensitivity analysis, Sobol’ in-
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1. Introduction

The analysis of models with complex outputs (temporal, spatial, heterogeneous) is one
of the current challenges of sensitivity analysis [1, 2]. There are two main approaches
to handle multidimensional outputs. The first one aims at computing a set of scalar
indices associated to coordinates along a basis of functions on which the model outputs
are projected ([3, 4, 5]). Its flexibility and interpretability are limited by the choice of the
basis. The second approach summarizes the impact of the model inputs on the variability
of all the model outputs using a single index [6, 7, 8, 9]. It provides useful aggregated
indices but does not allow a fine understanding of model outputs sensitivity.

Spear and Hornberger introduced in [10] the concept of model behavior in sensitivity
analysis through the Regional Sensitivity Analysis (RSA) approach. The principle is
to start from the definition of a target region of the output space (denoted as ”behav-
ioral”) and to analyze the impact of the variations of model inputs on its occurrence.
Using model behaviors expressed as regions of the output space appears to be an efficient
method to get interpretable characterizations of model properties. It has also the prop-
erty to scale to any dimension of the output space [11]. Among the last developments
on RSA, two are of particular interest in the present study: i) the application of RSA in
the context of reliability engineering to characterize parameter sensitivity in relation to a
critical domain of the output space (e.g. the failure domain of a system) using sensitivity
measures compatible with rare events and taking into account interactions (Target SA,
[12, 13]), ii) its application in combination with a clustering procedure in order to char-
acterize parameter sensitivity with respect to the dominant model behaviors detected in
the model output space (Distance-Based Generalized SA [14], Cluster-based GSA, [11]).

These approaches rely on an a priori characterization of the behaviors (regions of
the output space) to be analyzed. They are identified either by experts or automatic
clustering of the simulations. In this work, we propose a new perspective on the link
between behaviors and sensitivity analysis based on an extension of the above mentioned
developments on RSA. Instead of trying to a priori characterize target regions of the
output space, we propose to use an optimization procedure in order to reveal the regions
of the output space the most sensitive to the variations of a given input, i.e. whose
occurrences are the best explained by the variations of this input. We name this approach
iRSA (for inverse Regional Sensitivity Analysis). The formalization of iRSA in terms of
principle and numerical algorithms will be presented in Section 2. The results of the
method application are presented in Section 3 on three examples: a model with scalar
outputs which is analytically solved and two models on which numerical algorithms are
tested, a model with 2D outputs and an environmental model producing time series.

2. iRSA methods

In this section, we formalize iRSA in a general context, with a focus on the sensitivity-
based optimization criteria that can be used and on their minimization in the context of
multivariate outputs.

2.1. Notations

We consider a model f whose inputs are noted Xi, with i ∈ [1, n] and have indepen-
dent distributions. The model output is noted Y = f(X1, .., Xn) and can be multivariate.
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Model behaviors in the context of RSA are defined as regions of the model output
space. Depending on the formalization context, these regions are continuous sets (as we
will see in Section 3.1) or discrete set (in Sections 3.2 and 3.3). In the latter case, they
are ensembles of simulated points and we will denote them as clusters of model outputs.
In the following, we generically denote by C the model output space.

2.2. iRSA principle

The principle of iRSA is to find for each input factor Xi a partition of the model
output space C that maximizes a cost function related to parameter sensitivity. We will
be interested in either finding the region C whose occurrence is the most influenced by
a given input, in which case iRSA will provide the partition (C, C̄) (where C̄ is the
complement of C), or the two non-overlapping regions C and C ′ whose transition from
the one to the other is the most influenced by a given input, in which case iRSA will
provide the partition made of three regions (C,C ′, C ∪ C ′).

2.3. Main criteria and associated interpretations

We consider the region-based sensitivity indices introduced in [11]. These indices
use membership functions which characterize the level of membership of any point of the
output space to a given region C. In this work, we consider binary membership functions
that can be expressed using the indicator function 1C(.).

The idea behind these indices is simply to build sensitivity indices from the standard
Sobol’ indices [15, 16] obtained when transforming the multivariate output into a scalar
one using the membership functions.

2.3.1. Indices based on single region membership

The first and simplest region-based indices that can be used for an input Xi are the
Sobol’ indices (first or total: SICi and TSICi ) associated to the membership function of a
region C defined over the model output space C.

SICi =
V [E [1C(Y )|Xi]]

V [1C(Y )]

TSICi = 1− V [E [1C(Y )|X∼i]]
V [1C(Y )]

In that case, iRSA aims at finding for each input Xi a partition (C∗i , C
∗
i ) so that C∗i

maximizes either the first or the total region-based Sobol’ index of input Xi.
By definition, the partition (C∗i , C

∗
i ) defines the two behaviors whose transition from

the one to the other is the most influenced by the model input Xi. C
∗
i (or equivalently

C∗i ) can also be seen as the region whose occurrence is best explained by the variations
of this input.

The optimization problems can be written :

C∗i = arg max
C∈C

SICi (SICi based iRSA)

C∗i = arg max
C∈C

(
TSICi

)
(TSICi based iRSA)
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2.3.2. Indices based on cluster membership differences

A extension of these indices was also proposed in [11] by considering Sobol’ indices
on differences of membership functions.

SICC
′

i =
V [E [1C(Y )− 1C′(Y )|Xj ]]

V [1C(Y )− 1C′(Y )]

TSICC
′

i = 1− V [E [1C(Y )− 1C′(Y )|X∼i]]
V [1C(Y )− 1C′(Y )]

In that case, iRSA aims at finding for each input Xi a partition (C∗i , C
′∗
i , C

∗
i ∪ C ′∗i )

so that that (C∗i , C
′∗
i ) maximizes either the first or the total region-based Sobol’ index

of input Xi based on membership function differences. The partition (C∗i , C
′∗
i , C

∗
i ∪ C ′∗i )

defines the two behaviors (C∗i , C
′∗
i ) giving the main direction of variation influenced by

the model input Xi.
The optimization problems can be written :

(C1∗
i , C

2∗
i ) = arg max

C,C′∈C,C∩C′=∅

(
SICC

′

i

)
(SICC

′

i based iRSA)

(C1∗
i , C

2∗
i ) = arg max

C,C′∈C,C∩C′=∅

(
TSICC

′

i

)
(TSICC

′

i based iRSA)

2.4. Generic optimization algorithms

The previous criteria can be optimized analytically only for simple models (an ex-
ample is presented in Section 3.1). In a general setting, numerical approaches must be
considered. For such numerical algorithms, the output space C is the set of all simulated
points. Regions of C can thus be seen as clusters of simulated points and iRSA as a
clustering algorithm that uses sensitivity-based criteria.

All proposed algorithms require that a classical sensitivity workflow compatible with
scalar outputs can be implemented on the model of interest and, more precisely, that a
design of experiment X is available for the sensitivity analysis. We note Y the matrix
of multivariate outputs obtained when applying the model on the design matrix X. We
suppose that applying the model on X allows to compute Sobol’ type sensitivity indices
on scalar outputs (for example, X is defined using a Jansen pick and freeze method that
allows the computation of Sobol’ indices using the Jansen estimation formula [17]).

In the following, we propose a set of algorithms implementing iRSA. Their shared
principle is to perform a pre-clustering of C into KY clusters noted (C1, ..., CKY

) in order
to reduce the computational cost. This pre-clustering is performed using a classical
distance-based approach (denoted as ClustFunY in the different algorithms), typically
a K-Means algorithm or a hierarchical clustering method, but other methods can be
considered to better suit a given application.

2.4.1. Algorithm for indices based on single cluster membership

We present a generic algorithm working for any region-based sensitivity criterion Crit
provided that it is defined using single membership functions. The most simple criteria
are SICi or TSICi as presented in the previous sections.

The algorithm has several parameters: the index i of the input under study, the
design matrix X and the associated output matrix Y , the criterion on single membership
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function Crit, the pre-clustering method ClustFunY , the number KY of clusters for the
pre-clustering step and a size parameter γ that can be used to avoid partition made of
too small regions. The optimization of Crit is performed by enumerating all partitions
of (C1, .., CKY

) into two non-empty sets. The total number of such 2-partitions is the
Stirling number SKY

2 = 2KY −1 − 1 which drives the complexity of the algorithm. The
algorithm returns the best partition under the size constraint as well as the associated
sensitivity score. We denote as iRSA SM (SM for for Single Membership) this algorithm:

Algorithm iRSA SM(i,X,Y , Crit, ClustFunY ,KY , γ)

Apply ClustFunY (KY ) on Y to get KY clusters (C1, .., CKY
)

for all 2-partitions (Pk, Pk)
k∈[1:S KY

2 ]
of (C1, .., , CKY

) do

Compute γk = min
(
Card(Pk), Card(Pk)

)
Compute Crit(i,X,Y , Pk)

end for
Get k∗ = arg max

k∈[1:S KY
2 ],γk≥γ

Crit(i,X,Y , Pk)

return (Pk∗ , Pk∗) and Crit(i,X,Y , Pk∗)

Note that by storing all sensitivity indices for each partition in the loop, it is possible
to process all inputs at once during the post-processing step, thus avoiding to run the
loop again for different inputs.

2.4.2. Algorithm for indices based on cluster membership differences

In the same spirit as the previous algorithm, the optimization of a sensitivity crite-
rion based on membership function differences such as SICC

′

i or TSICC
′

i (and denoted
generically as Crit in the detail of the algorithm), is performed by enumerating all parti-
tions. Due to the structure of these indices, it is necessary to enumerate all partitions of
(C1, .., CKY

) into three non-empty sets. The total number of such 3-partitions is the Stir-
ling number SKY

3 = 1
6

(
3KY − 3 · 2KY + 3

)
. We denote as iRSA DM (DM for Difference

of Membership) this algorithm.

Algorithm iRSA DM(i,X,Y , Crit, ClustFunY ,KY , γ)

Apply ClustFunY (KY ) on Y to get KY clusters (C1, .., CKY
)

for all 3-partitions
(
Qk1 , Q

k
2 , Q

k
3

)
k∈[1:S KY

3 ]
of (C1, .., , CKY

) do

Compute γk = min
(
Card(Qk1), Card(Qk2), Card(Qk3)

)
Compute for (p, q) ∈ I = {(1, 2), (1, 3), (2, 3)}, Crit(i,X,Y , Qkp, Q

k
q )

end for
Get (k∗, p∗, q∗) = arg max

k∈[1:S KY
3 ],(p,q)∈I,γk≥γ

Crit(i,X,Y , Qkp, Q
k
q )

return
(
Qk
∗

1 , Qk
∗

2 , Qk
∗

3

)
and Crit(i,X,Y , Qk∗p∗ , Q

k∗
q∗)

2.5. Improved algorithm for first order indices based on single cluster membership

The previous algorithms are computationally intensive because of the exhaustive
search over all partitions (2-partitions when optimizing indices of cluster membership,
3-partitions when optimizing indices of cluster membership differences). The associated
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costs are driven by the loop over these sets and is exponential with respect to the number
of clusters of the pre-clustering set (O(2KY ), O(3KY )). In practice, it becomes intractable
to consider KY larger than 15− 20, which limits the exploration to large-sized clusters.
This limit motivates the proposition of an improved algorithm that would take advantage
of the properties of the cost functions (which were not taken into account in the different
algorithms presented in the previous section). As the study then becomes dependent on
the chosen criterion, we present here an improvement of the optimization based on SICi
(first order Sobol’ index on single cluster membership).

We start by giving a property that helps building partitions from a set of elementary
clusters (Ck) of the output space.

2.5.1. An aggregating property of clusters

We consider a model input X and suppose that it has a uniform distribution over an
interval I. Let (Ck)k∈[1,K] be a set of non overlapping clusters of the output space. We
consider the distribution of X given Y ∈ Ck and denote as hCk the associated histograms
obtained when discretizing I into nx bins. Let N be the total number of simulated points.

Then the discrete approximation of criterion SICk , noted S̃I
Ck

, can be written using hCk :

S̃I
Ck

=
nx

nx∑
j=1

hCk
j (N −

nx∑
j=1

hCk
j )

nx∑
i=1

(hCk
i −

1

nx

nx∑
j=1

hCk
j )2

Proposition 1. Let’s consider two elementary clusters Ck and Ck′ with perfectly corre-
lated histograms hCk and hC

′
k = θhCk . Let’s denote (C∗, C∗) the partition of the output

space built from the (Ck) that maximizes S̃I
C

(discretized first order index based on single
cluster membership). Then Ck and Ck′ belong both to C∗ or to C∗.

Proof. See Appendix B.

This property states that elementary clusters with perfectly correlated histograms
can not be in different sets of the optimal partition.

2.5.2. Algorithm

We derived an efficient algorithm named iRSA SM’ by taking advantage of Proposi-
tion 1. The principle of iRSA SM’ is to keep the overall structure of Algorithm iRSA SM
and to improve the pre-processing step by using Proposition 1. More precisely, Proposi-
tion 1 is used to propose a merging of elementary clusters based on the correlation of their
histograms. Indeed, if the histograms are perfectly correlated, then from Proposition 1,
the associated elementary clusters can be merged.

The pre-clustering step of Algorithm iRSA SM’ consists in two steps. Firstly, as
for iRSA SM, a pre-clustering of Y using ClustFunY is performed to get KY clusters,
but this time with a larger KY (500-1000). Secondly, a clustering of these KY clus-
ters into KH meta-clusters is done using a distance-based method denoted ClustFunH .
ClustFunH can be the same as ClustFunY but is based on a different distance: ClustFunH

works with an histogram-based correlation distance (e.g. d(h, h′) = 1− Cor(h, h′)) and
is applied on the elementary histograms associated to the conditional distributions of Xi
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given Y ∈ Ck. The last step of the algorithm, the exhaustive search for the best partition
over all possible merging of elementary clusters, is kept unchanged.

Compared to iRSA SM, Algorithm iRSA SM’ has three additional parameters: the
number nX of bins for the histograms computations, the generic method ClustFunH

and the number of meta-clusters KH .

Algorithm iRSA SM’(i,X,Y , Crit, ClustFunY ,KY , nx, ClustFun
H ,KH , γ)

Apply ClustFunY (KY ) on Y to get KY clusters (C1, .., CKY
), with KY large

Compute all elementary histograms (hCk)k=1..KY
for input Xi discretized with nx bins

Apply ClustFunH(KH) on (hC1 , .., hCKY ) to get KH meta-clusters (Ĉ1, .., ĈKH
) based

on histogram correlation
for all 2-partitions (Pk, Pk)

k∈[1:S KH
2 ]

of (Ĉ1, .., ĈKH
) do

Compute γk = min
(
Card(Pk), Card(Pk)

)
Compute Crit(i,X,Y , P k)

end for
Get k∗ = arg max

k∈[1:S KH
2 ],γk≥γ

Crit(i,X,Y , P k)

return (Pk∗ , Pk∗) and Crit(i,X,Y , P k
∗
)

Note that this time, the algorithm is strongly dedicated to the optimization related
to a single input Xi due to the histogram computation step . It is thus only possible to
re-use the first pre-clustering when performing the optimization for another input.

3. Application of the method on various models

3.1. Test model with 1d outputs: analytical resolution

In this section, we present the analytical resolution of the optimization problem on a
simple 1D model in order to highlight the main issues of the iRSA approach.

3.1.1. Model and input distributions

We consider the model with two input factors X1 and X2 defined by :

Y = Sign(X1) · |X2|

The model is studied over the domain defined by X1 and X2 having independent uniform
distributions on [−1, 1]. Y thus also takes its values within [−1, 1].

3.1.2. Optimization problem

We consider the problem of finding for X1 (resp. X2) the partition (C, C̄) of the
one-dimensional output space [−1, 1] the most influenced by the variations of X1 (resp.
X2).

C∗i = arg max
C⊂[−1,1]

SICi , i = 1, 2

We limit the search to partitions that can be parameterized with a single cutting
value yc or with two cutting values yc1 and yc2 . In the first case, it amounts to consider
partitions of type ’A-B’, and in the second case to partitions of type ’A-B-A’ of the
1-dimensional output space.
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SICi (yc) SICi (yc1 , yc2)

X1
(1−|yc|)2

1−y2c
(|yc2 |−|yc1 |)

2

(yc2−yc1 )(2−yc2+yc1 )

X2
|yc|

1+|yc|

{ 1−yc2+yc1
2−yc2+yc1

if yc2 ≤ 0 or yc1 ≥ 0
1−yc2+yc1
2−yc2+yc1

+ 2
min(|yc1 |,yc2 )

(yc2−yc1 )(2−yc2+yc1 )
if yc1 ≤ 0 ≤ yc2

Table 1: Analytical expressions of the region-based sensitivity indices for model Y = Sign(X1) · |X2|

3.1.3. Analytical expressions of the region-based indices

The simplicity of this model allows to derive analytical expressions of the sensitivity
indices (SICi )i=1,2 for the different types of partition using one cutting values yc or two
cutting values yc1 and yc2 (see Appendix A for details on how to obtain these expressions).

3.1.4. Optimization

The expressions presented in Table 1 allow to derive the optimal cutting values that
maximize the sensitivity indices for the two parameters in the different cases.

Single cutting value yc. In this case, as can be seen in Figure 1, it is easy to show that:

• SIC1 is maximum for yc = 0. For this partition, we have SIC1 = 1 and SIC2 = 0.

• SIC2 is maximum when yc reach the boundaries of the domain (yc = −1 or yc = 1).
In this case, SIC2 = 1

2 . For these partitions, we have SIC1 = 0.

We conclude that the single cutting value case allows to find an optimal partition
(C∗1 , C

∗
1 ) = ([−1, 0], [0, 1]) for input X1 independently of the hypothesis on the num-

ber of cutting values (as SIC1 maximum value is 1). However, the case of a single cutting
value does not allow to find a partition fully explained by the variations of X2.

Two cutting values. In this case, as can be seen in Figure 2, we can show that:

• SIC1 is maximum for (yc1 , yc2) = (−1, 0) and (yc1 , yc2) = (0, 1). This values are
degenerated situations and correspond to the single cutting value case.

• SIC2 is maximum when yc1 = −yc2 . For these partitions, we have SIC2 = 1 and
SIC2 = 0.

Considering the case of two cutting values allows to find a set of partitions with SIC2 = 1.
These partitions can be written (C∗2 , C

∗
2 ) = ([−δ, δ], [−1,−δ] ∪ [δ, 1]), with δ ∈]0, 1[.

3.1.5. Conclusion of the example

Using the analytical expressions of the sensitivity indices given previously, the iRSA
sensitivity approach allows to conclude that X1 has the effect of leading negative output
to positive outputs, and that X2 has the effect of leading the output from the center of
the domain toward its boundaries.

This example also highlights some issues about iRSA:
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Figure 1: First order indices SICi as a function of a single cutting value yc for the two inputs of model
Y = Sign(X1) · |X2|
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Figure 2: First order indices SICi as a function of two cutting values yc1 and yc2 for the two inputs of
model Y = Sign(X1) · |X2|

• The optimal partition is associated to a model input and may be different depending
on the input factor considered.

• Optimal partitions can be found even if the space of partitions is not completely
explored. In this example, exploring partitions defined by one or two cutting values
was sufficient to find global optima.

• We can have SIC
∗

i > SIi (SIi being the standard first order Sobol’ index of input
factor Xi). In this example, we have SIC

∗

2 = 1 while SI2 = 0: the information
provided by iRSA is different from the one provided by a standard variance-based
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sensitivity analysis.

• The optimal partition may not be unique. In this example, we found a set of
optimal partitions for X2.

3.2. Test model with 2D outputs: illustration of the different SI-based criteria

3.2.1. Model and input distributions

We consider the model having 2D outputs (Y1, Y2) and four inputs (X1, X2, X3, X4).
Basically, the model draws a point in the plane at a distance related to X4 and with an
angle related to X3. This angle is defined from one of three given centers, with a choice
of center related to X1 and X2 in interaction. More precisely, the model definition is the
following:

Y1 = c1 + 0.4 ·X3
4 · cos(2πX3)

Y2 = c2 + 0.4 ·X3
4 · sin(2πX3)

where (c1, c2) =


(0.5, 0.25), if X1 < 0.5

(0.25, 0.75), if X1 ≥ 0.5 and X2 < 0.5

(0.75, 0.75), if X1 ≥ 0.5 and X2 ≥ 0.5

All inputs have independent uniform distribution in [0, 1]. The sensitivity indices were
computed using the SobolSalt function of the R package sensitivity [18] with a sample
size of n = 1000, producing 10000 output values.

3.2.2. Optimization setting

We illustrate the three numerical algorithms of Section 2 on this 2D toy model. More
precisely, we apply for each input (Xi)i=1..4 Algorithm iRSA SM and its improved version
iRSA SM’ in order to find the clustering maximizing SICi . We also apply Algorithm

iRSA DM in order to find the clustering maximizing SICC
′

i . For algorithms iRSA SM and
iRSA DM, we use a pre-clustering of the simulated results inKY = 10 elementary clusters
using a fuzzy k-means clustering approach (which is well adapted for small KY ). This
pre-clustering is presented in Figure 3. For Algorithm iRSA SM’, the first pre-clustering
was performed in KY = 1000 elementary clusters. The histogram correlation method
was then applied to obtain KH = 10 clusters before the application of the exhaustive
search step with a size constraint parameter γ = 10%. A hierarchical clustering approach
(more adapted for large KY ) was used for ClustFunY (with an euclidean distance on
Y) and ClustFunH (with a correlation distance on histograms).

3.2.3. Method for displaying clusters

For Algorithm iRSA SM and iRSA DM, we present the clustering into two or three
clusters and the associated region-based sensitivity indices. Algorithm iRSA SM’ must
be handled differently, as the algorithm does not guaranty clear boundaries between
clusters. To handle this issue, we propose a different display of its results: we associate
to each pixel a continuous color level (noted mmv, for mean membership value) linked
to the proportion of output points belonging to each of the two clusters. Using this
definition, pixels with output points from cluster A only (resp. B only) will be displayed
in blue (resp. red), but pixels with output points from the two clusters will have a clearly
different color. This display allows to quickly spot zones where the clusters boundaries
are blurred and where interpreting the regions can be difficult.
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Figure 3: Clustering of the 2D test model outputs into KY = 10 clusters

3.2.4. Clustering based on SIC with Algorithm iRSA SM

Figure 4: Results obtained with the SIC criterion and Algorithm iRSA SM on the 2D toy model. First
line: region-based sensitivity indices of the best clustering for each input. Second line: visualization of
the clusters for each input.

We present in Figure 4 the result obtained with Algorithm iRSA SM. For inputs X1

and X4, the clustering found is associated to very high region-based indices (SIC
∗

1 = 0.86,
SIC

∗

4 = 0.80). These scores reveal a strong effect of these inputs in the occurrence of the
obtained clusters. For X1, two large clusters are obtained with a boundary approximately
equal to the line y2 = 0.5. For X4, the clustering distinguishes a region made of three
zones (each one close to one of the three centers) from a region made of points far from
all centers. Note that the pre-clustering does not allow to get perfect circles around the
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centers. Nevertheless, the optimized region-based sensitivity indices are very high. For
input X3, the sensitivity score associated to the clustering is low and prevents any further
interpretation. For X2, we obtain a relatively low sensitivity score (SIC

∗

2 = 0.27) but a
clear structure of clusters: the optimal partition is made from points closest to top right
center. This was expected, as X2 drives the choice of the two centers of the top. But as
this choice is made conditionally to X1, there is a strong interaction effect with X1 that
prevents from getting first order indices close to one.

3.2.5. Clustering based on SICC
′

with Algorithm iRSA DM

The optimization of criterion SICC
′

tries to find two regions whose transition from
the one to the other is the most influenced by the variations of an input. By construction
it leads to higher scores compared to optimizing SIC since SIC is a particular case of
SICC

′
with C ′ = ∅. When looking at Figure 5, we can verify this property for X1 and X4.

We can also see that the result obtained on X3 still prevents any interpretation. For X4,
the indices are still high, but the interpretation is not made easier. On the other hand
for X2, the algorithm found an improved value of the first order index ( SICC

′∗

2 = 0.41
) associated with a value of its total index TSICC

′∗
= 0.97 that only X2 reaches. This

means that X2 is the key model input that explains the transitions between the red
cluster (points closest to the top right center) and the blue one (points closest to the top
right center). Note again that it is not surprising to still get a strong interaction with
X1 given the model definition. This example shows the interest of considering the SICC

′

criterion.

Figure 5: Results obtained with the SICC′ criterion and Algorithm iRSA DM on the 2D toy model.
First line: region-based sensitivity indices of the best clustering for each input. Second line: visualization
of the clusters (red and blue with neutral class in yellow) for each input.

3.2.6. Clustering based on SIC with Algorithm iRSA SM’

The results of the application of Algorithm iRSA SM’ are presented in Figure 6. The
algorithm allows to generate clusters with more flexibility in terms of boundaries and
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spatial resolution than Algorithm iRSA M. For X1 and X4, the sensitivity indices were
already well optimized using the first algorithm. However, this score is significantly im-
proved for X4 using Algorithm iRSA SM’. We can also note that the three red zones
identified for X4 have the clear expected circular shape, which was not possible to obtain
with the first algorithm. For X2, the scores are still low (SIC

∗

3 = 0.30) but in this case, it
is due to the definition of the model, not to a limit of the algorithm. A clear improvement
was obtained for X3, for which the sensitivity score associated to the best clustering is
strongly improved (SIC

∗

3 = 0.57 against SIC
∗

3 = 0.11 for Algorithm iRSA SM) and where
the expected angular pattern starts to appear. The three red zones correspond approx-
imately to the same angular section around their closest centers, which was expected
given the model definition.

Figure 6: Results obtained with the SIC criterion and Algorithm iRSA SM’ on the 2D toy model. First
line: region-based sensitivity indices of the best clustering for each input. Second line: visualization of
the clusters for each input using mean membership maps.

To conclude, we have shown on this example that Algorithm iRSA SM’ managed to
automatically identify regions of the output space that maximize first-order region-based
Sobol’ indices. These regions were quite precisely delimited and are consistent with what
was expected, given the model definition.

3.3. Test model producing time series: application of Algorithm iRSA SM’

3.3.1. Model and input distributions

We apply the iRSA approach on the environmental model CANTIS [19], which simu-
lates the decomposition of organic biomass in crop residues over time. We use the same
model setting as in [11] and invite the reader to refer to this article to get more details.
The model setting consists in ten uncertain model inputs and the analysis of one time-
varying output: the zymogenous microbial biomass, here-after referred to as ZYB. The
sensitivity indices are computed using the SobolSalt function of the R package sensitivity
[18] with a sample size n = 2500 producing 55000 output curves of ZYB.
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input X1 X2 X3 X4 X5 X6 X7 X8 X9 X10

SIC
∗

1 0.056 0.054 0.057 0.057 0.042 0.049 0.038 0.843 0.868 0.031

Table 2: Optimized region-based sensitivity indices obtained for each input Xi.

3.3.2. Optimization setting

Algorithm iRSA M’ is applied for each input (Xi)i=1..10 in order to find the clustering
maximizing SICi . A hierarchical clustering approach (well adapted to large KY ) is used
for ClustFunY (with an euclidean distance on Y) and ClustFunH (with a correlation
distance on histograms). The first pre-clustering is performed with KY = 500 clusters
and the second with KH = 10 clusters before the application of the exhaustive step with
a size constraint of γ = 10%.

3.3.3. Method for displaying clusters

In this case, iRSA produces two sets of curves for each input factor. As in the
2D example, we represent the result using mean membership maps (see Section 3.2.3).
We also plot for each cluster the quantiles of the distributions obtained at each time
step. In order to quickly assess whether at a given time, the distribution of values of
the two clusters differ a lot or not, we add an horizontal colorbar corresponding to the
Kolmogorov–Smirnov test statistic (maximum value of the difference between cumulated
distributions).

3.3.4. Results

We present in Table 2 the sensitivity indices SIC
∗

1 obtained when applying Algorithm
iRSA SM’ for each input of the CANTIS model in the considered uncertainty setting.
Only X8 and X9 exhibits large values that deserve further analysis. For these two inputs,
we present in Figure 7 the clusters using the visualization approach detailed in Section
3.3.3, which is necessary to handle large-sized data set (55000 clustered curves).

For input X8, we obtain SIC∗8 = 0.843 for the optimized clustering. Looking at
Kolmogorov–Smirnov test statistic in Figure 7, we see that the two clusters differ the
most at the beginning of the simulation. More precisely, when looking at the mean
membership map, we see that the red cluster is composed mostly of curves that start to
increase and the blue one of curves that start to decrease. The two clusters then overlap
rapidly. The application of the method let us conclude that X8 drives the occurrence of
biomass dynamics that start by increasing (or equivalently that start by decreasing).

For input X9, a very high score SIC∗9 = 0.868 is obtained using Algorithm iRSA SM’.
For this input, when looking Kolmogorov–Smirnov test statistic, it appears that what
best distinguishes the two clusters is the level of ZYB values over the entire simulated
time period, and particularly the final value. We can conclude that X9 drives the occur-
rence of dynamics with highest (or lowest) biomass levels all along the considered time
scale.
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Figure 7: Clustering obtained with Algorithm iRSA SM’ on the CANTIS model for input X8 (first
line) and X9 (second line). First column: region-based sensitivity indices of the best clustering; second
column: mean membership maps; third and fourth columns: quantiles (0.05,0.25,0.50,0.75,0.95) of the
two clusters of curves at each time. The horizontal colorbar stresses significant differences between the
two distributions Y (t)|(Y ∈ C) and Y (t)|(Y ∈ C̄). : yellow (resp. black) correspond to a high (resp.
low) value of the Kolmogorov–Smirnov (ks) test statistics applied to the two distributions.

4. Conclusion

In this work, we introduced a new sensitivity analysis approach (named iRSA) for
exploring models with various output dimensions by proposing a new perspective on
the concept of Regional Sensitivity Analysis. Instead of a priori defining target model
behaviors, we automatically detect the ones whose occurrences are best explained by
the variations of the different model inputs. This is a new way of exploring simulation
models.
The method was illustrated by analytically solving a simple scalar case. Different algo-
rithms have been proposed to compute numerical solutions in the case of complex models
as well as adapted graphical representations to interpret the results. The relevance of
the results was checked on a model with 2D outputs. iRSA was also applied on an en-
vironmental model producing time series, showing that interpretable information can be
produced by the method.
Future work on iRSA will be focused on i) the extension of the proposed sensitivity crite-
ria in order to focus on groups of inputs and interactions, ii) attempting to derive efficient
algorithms for other criteria (as we did for the first order indices), iii) the application of
the method on models with other kind of complex outputs, such as spatial ones.

References

[1] A. Marrel, N. Saint-Geours, M. De Lozzo, Sensitivity analysis of spatial and/or temporal phenom-
ena, Handbook of Uncertainty Quantification (2016) 1–31.

[2] A. Saltelli, A. Jakeman, S. Razavi, Q. Wu, Sensitivity analysis: A discipline coming of age, Envi-
ronmental Modelling & Software 146 (2021) 105226.

15



[3] K. Campbell, M. D. McKay, B. J. Williams, Sensitivity analysis when model outputs are functions,
Reliability Engineering & System Safety 91 (10-11) (2006) 1468–1472.

[4] M. Lamboni, D. Makowski, S. Lehuger, B. Gabrielle, H. Monod, Multivariate global sensitivity
analysis for dynamic crop models, Field Crops Research 113 (3) (2009) 312–320.

[5] S. Xiao, Z. Lu, P. Wang, Multivariate global sensitivity analysis for dynamic models based on
wavelet analysis, Reliability Engineering & System Safety 170 (2018) 20–30.

[6] M. Lamboni, H. Monod, D. Makowski, Multivariate sensitivity analysis to measure global contri-
bution of input factors in dynamic models, Reliability Engineering & System Safety 96 (4) (2011)
450–459.

[7] F. Gamboa, A. Janon, T. Klein, A. Lagnoux, Sensitivity analysis for multidimensional and func-
tional outputs, Electron. J. Statist. 8 (1) (2014) 575–603.

[8] M. Lamboni, Multivariate sensitivity analysis: Minimum variance unbiased estimators of the first-
order and total-effect covariance matrices, Reliability Engineering & System Safety 187 (2019)
67–92.

[9] L. Xu, Z. Lu, S. Xiao, Generalized sensitivity indices based on vector projection for multivariate
output, Applied Mathematical Modelling 66 (2019) 592–610.

[10] R. Spear, G. Hornberger, Eutrophication in peel inlet—ii. identification of critical uncertainties via
generalized sensitivity analysis, Water Research 14 (1) (1980) 43–49.

[11] S. Roux, S. Buis, F. Lafolie, M. Lamboni, Cluster-based gsa: Global sensitivity analysis of models
with temporal or spatial outputs using clustering, Environmental Modelling & Software 140 (2021)
105046.

[12] A. Marrel, V. Chabridon, Statistical developments for target and conditional sensitivity analysis:
application on safety studies for nuclear reactor, Reliability Engineering & System Safety (2021)
107711.

[13] M. I. Idrissi, V. Chabridon, B. Iooss, Developments and applications of shapley effects to reliability-
oriented sensitivity analysis with correlated inputs, Environmental Modelling & Software 143 (2021)
105115.

[14] D. Fenwick, C. Scheidt, J. Caers, Quantifying asymmetric parameter interactions in sensitivity
analysis: application to reservoir modeling, Mathematical Geosciences 46 (4) (2014) 493–511.

[15] I. M. Sobol, Sensitivity estimates for nonlinear mathematical models, Mathematical Modelling and
Computational Experiments 1 (4) (1993) 407–414.

[16] A. Saltelli, K. Chan, E. M. Scott, et al., Sensitivity analysis, Wiley New York, 2000.
[17] M. J. Jansen, Analysis of variance designs for model output, Computer Physics Communications

117 (1-2) (1999) 35–43.
[18] G. Pujol, B. Iooss, A. Janon, Sensitivity: Global sensitivity analysis of model outputs, R package

https://cran.r-project.or/package=sensitivity (2017).
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Appendix A: region-based indices for model (Sign(X1) · |X2|)

We derive for this model the expressions of SICi when X1 and X2 have independent
uniform distributions over [−1, 1] for two parameterizations of an interval C ⊂ [−1, 1] :
one using a single cutting value yc and another using two cutting values yc1 and yc2.

A.1 Parameterization with one cutting value yc

In this case, we study f(X1, X2) = 1sign(X1)|X2|≤yc

A.1.1 Derivation of SIC1 (yc)

Conditional expectation. E[f |X1] = 1
2

∫ 1

−1 1sign(x1)|x2|≤ycdx2:

If x1 < 0: E[f |X1] =

{
1 if yc ≥ 0
1
2 (
∫ yc
−1 dx2 +

∫ 1

−yc dx2) = 1 + yc if yc ≤ 0
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If x1 > 0: E[f |X1] =

{
1
2

∫ yc
−yc dx2 = yc if yc ≥ 0

0 if yc ≤ 0

Variance of conditional expectation. V[E[f |X1]]
1

2

∫ 1

−1
E[f |x1]dx1 =

1

2
(

∫ 0

−1
E[f |x1]dx1 +

∫ 1

0

E[f |x1]dx1) =
1 + yc

2

1

2

∫ 1

−1
E[f |x1]2dx1 =

1

2
(

∫ 0

−1
E[f |x1]2dx1 +

∫ 1

0

E[f |x1]2dx1) =

{
1+y2c

2 if yc ≥ 0
(1+yc)

2

2 if yc ≤ 0

Therefore V[E[f |X1]] =
1

2

∫ 1

−1
E[f |x1]2dx1 − (

1

2

∫ 1

−1
E[f |x1]dx1)2 =

(1− |yc|)2

4

Variance. V[f ] = E[f2]−E[f ]2 with E[f2] = E[f ] so V[f ] =
1 + yc

2
−(

1 + yc
2

)2 =
1− y2c

4

Sobol index . SIC1 (yc) =
V[E[f |x1]]

V[f ]
=

(1− |yc|)2

1− y2c

A.1.1 Derivation of SI2(yc)

Conditional expectation. E[f |X2] = 1
2

∫ 1

−1 1sign(x1)|x2|≤ycdx1:

E[f |X2] =
1

2

∫ 1

−1
1sign(x1)|x2|≤ycdx1 =

1

2
(

∫ 0

−1
1−|x2|≤ycdx1 +

∫ 1

0

1|x2|≤ycdx1)

=
1

2
(1−|x2|≤yc + 1|x2|≤yc) =

{
1
21−|x2|≤yc if yc < 0
1
2 (1 + 1|x2|≤yc) if yc > 0

Variance of conditional expectation. V[E[f |X2]]

E[f |X2] is independent of the sign of x2 hence:
1

2

∫ 1

−1
E[f |x2]dx2 =

∫ 1

0

E[f |x2]dx2 =

1 + yc
2
1

2

∫ 1

−1
E[f |x2]2dx2 =

∫ 1

0

E[f |x2]2dx2 =

{
1
4

∫ 1

0
1−x2≤ycdx2 = 1+yc

4 if yc < 0
1
4

∫ 1

0
(1 + 3 · 1x2≤yc)dx2 = 1+3yc

4 if yc > 0

V[E[f |X2]] =
1

2

∫ 1

−1
E[f |x2]2dx2 − (

1

2

∫ 1

−1
E[f |x2]dx2)2 =

|yc| − y2c
4

Sobol index . SIC2 (yc) =
V[E[f |X2]]

V[f ]
=
|yc| − y2c
1− y2c

=
|yc|

1 + |yc|

A.2 Parameterization with two cutting values yc1 and yc2

In this case, we study f(x1, x2) = 1sign(x1)|x2|∈[yc1,yc2] with yc1 < yc2.
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A.2.1 Derivation of SIC1 (yc1, yc2)

Conditional expectation. E[f |X1] = 1
2

∫ 1

−1 1sign(x1)|x2|∈[yc1,yc2]dx2

If x1 < 0: E[f |X1] =


0 if yc1 ≥ 0
1
2 (
∫ 0

yc1
dx2 +

∫ −yc1
0

dx2) = −yc1 if yc1 ≤ 0 ≤ yc2
yc2 − yc1 if yc2 ≤ 0

If x1 > 0: E[f |X1] =


yc2 − yc1 if yc1 ≥ 0
1
2

∫ yc2
−yc2 dx2 = yc2 if yc1 ≤ 0 ≤ yc2

0 if yc2 ≤ 0

Variance of conditional expectation. V[E[f |X1]]
1

2

∫ 1

−1
E[f |x1]dx1 =

1

2
(

∫ 0

−1
E[f |x1]dx1 +

∫ 1

0

E[f |x1]dx1) =
yc2 − yc1

2

1

2

∫ 1

−1
E[f |x1]2dx1 =

1

2
(

∫ 0

−1
E[f |x1]2dx1+

∫ 1

0

E[f |x1]2dx1) =

{
(yc2−yc1)2

2 if yc2 ≤ 0 or yc1 ≥ 0
y2c1+y

2
c2

2 if yc1 ≤ 0 ≤ yc2

Therefore V [E[f |x1]] =
1

2

∫ 1

−1
E[f |x1]2dx1 − (

1

2

∫ 1

−1
E[f |x1]dx1)2 =

(|yc2| − |yc1|)2

4

Variance . V[f ] = E[f2]−E[f ]2 with E[f2] = E[f ] so: V[f ] =
yc2 − yc1

2
−(

yc2 − yc1
2

)2 =

yc2 − yc1
4

(2− yc2 + yc1)

Sobol index. SIC1 (yc1, yc2) =
V[E[f |x1]]

V[f ]
=

(|yc2| − |yc1|)2

(yc2 − yc1)(2− yc2 + yc1)
If yc1 and yc2 have the same sign: SIC1 (yc1, yc2) = yc2−yc1

2−yc2+yc1

If yc1 and yc2 have opposite sign: SIC1 (yc1, yc2) = (yc2+yc1)
2

(yc2−yc1)(2−yc2+yc1 )

A.2.2 Derivation of SIC2 (yc1, yc2)

Conditional expectation.

E[f |X2] =
1

2

∫ 1

−1
1sign(x1)|x2|∈[yc1,yc2]dx1 =

1

2
(

∫ 0

−1
1−|x2|∈[yc1,yc2]dx1 +

∫ 1

0

1|x2|∈[yc1,yc2]dx1)

=
1

2
(1−|x2|∈[yc1,yc2] + 1|x2|∈[yc1,yc2]) =


1
21|x2|∈[yc1,yc2] if yc1 ≥ 0
1
2 (1−|x2|∈[yc1,0] + 1|x2|∈[0,yc2]) if yc1 ≤ 0 ≤ yc2
1
21−|x2|∈[yc1,yc2] if yc2 ≤ 0

Variance of conditional expectation. V[E[f |X2]]

E[f |X2] is independent of the sign of X2 hence:
1

2

∫ 1

−1
E[f |x2]dx2 =

∫ 1

0

E[f |x2]dx2 =
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yc2 − yc1
2

1

2

∫ 1

−1
E[f |x2]2dx2 =

∫ 1

0

E[f |x2]2dx2

=

{
1
41|x2|∈[|yc1|,|yc2|] = yc2−yc1

4 if yc2 ≤ 0 or yc1 ≥ 0
1
4 (1−|x2|∈[yc1,0] + 1|x2|∈[0,yc2] + 2 · 1|x2|∈[0,−yc1]∩[0,yc2]) = yc2−yc1+2min(|yc1|,yc2)

4 if yc1 ≤ 0 ≤ yc2

Therefore

V[E[f |X2]] =
1

2

∫ 1

−1
E[f |x2]2dx2 − (

1

2

∫ 1

−1
E[f |x2]dx2)2

=

{
(yc2−yc1)(1−yc2+yc1)

4 if yc2 ≤ 0 or yc1 ≥ 0
(yc2−yc1)(1−yc2+yc1)+2min(|yc1|,yc2)

4 if yc1 ≤ 0 ≤ yc2

Sobol index. SIC2 (yc1, yc2) =
V[E[f |x2]]

V[f ]

SIC2 (yc1, yc2) =

{
1−yc2+yc1
2−yc2+yc1

if yc2 ≤ 0 or yc1 ≥ 0
1−yc2+yc1
2−yc2+yc1

+ 2 min(|yc1|,yc2)
(yc2−yc1 )(2−yc2+yc1 )

if yc1 ≤ 0 ≤ yc2

Appendix B: Proof of Proposition 1

We recall the expression of the discretized version of the first order sensitivity-based
criterion used to performed the clustering based on single membership functions for an
input X whose conditional distribution given Y ∈ C has an nx bins histogram noted hC :

S̃I
C

=
nx

nx∑
j=1

hCj (N −
nx∑
j=1

hCj )

nx∑
i=1

(hCi −
1

nx

nx∑
j=1

hCj )2

Let us consider a cluster C0 to which we either add a set of points with histogram
h to form a cluster C1 or two set of points with respective histograms h and h′ = θh

forming a cluster C2. The criteria for these three sets are S̃I
C0

, S̃I
C1

, S̃I
C2

.
We suppose that adding to C0 the set of points with histogram h improves the cluster-

ing (C0, C0), so that S̃I
C0 ≤ S̃I

C1

. Then the principle of the proof is to show that there
is a greater improvement in adding also the set with a perfectly correlated histogram

h′, ie that S̃I
C1

< S̃I
C2

. Finally, supposing now then that there are two set Ck and C ′k
with perfectly correlated histograms, there are necessarily of the same side of the optimal
partition made by grouping elementary clusters, otherwise grouping Ck and C ′k would
strictly improve the criterion, which is not possible.
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So we assume now that S̃I
C0 ≤ S̃I

C1

and want to show that S̃I
C1

< S̃I
C2

:

S̃I
C0

=
nx

nx∑
j=1

hC0
j (N −

nx∑
j=1

hC0
j )

nx∑
i=1

(hC0
i −

1

nx

nx∑
j=1

hC0
j )2

S̃I
C1

=
nx

nx∑
j=1

(hC0
j + hj)(N −

nx∑
j=1

(hC0
j + hj))

nx∑
i=1

(hC0
i + hi −

1

nx

nx∑
j=1

(hC0
j + hj))

2

S̃I
C2

=
nx

nx∑
j=1

(hC0
j + (1 + θ)hj)(N −

nx∑
j=1

(hC0
j + (1 + θ)hj))

nx∑
i=1

(hC0
i + (1 + θ)hi −

1

nx

nx∑
j=1

(hC0
j + (1 + θ)hj))

2

We denote: N0 =
N

nx
, H0 =

1

nx

nx∑
j=1

hC0
j , H1 =

1

nx

nx∑
j=1

hj and u = hC0−H0, v = h−H1.

nxS̃I
C0

=
1

H0(N0 −H0)

nx∑
i=1

u2i

nxS̃I
C1

=
1

(H0 +H1)(N0 − (H0 +H1))

nx∑
i=1

(ui + vi)
2

nxS̃I
C2

=
1

(H0 + (1 + θ)H1)(N0 − (H0 + (1 + θ)H1))

nx∑
i=1

(ui + (1 + θ)vi)
2

Assuming S̃I
C0 ≤ S̃I

C1

:

||u+ v||2 ≥ (H0 +H1)(N0 − (H0 +H1))

H0(N0 −H0)
||u||2 (1)

Assuming H0 + (1 + θ)H1 < N0, we consider
S̃I
C2

S̃I
C1

:

S̃I
C2

S̃I
C1

=
||u+ (1 + θ)v||2

||u+ v||2
(H0 +H1)(N0 − (H0 +H1))

(H0 + (1 + θ)H1)(N0 − (H0 + (1 + θ)H1))

=
||u+ v||2 + (θ2 + 2θ)||v||2 + 2θu.v

||u+ v||2
(H0 +H1)(N0 − (H0 +H1))

(H0 + (1 + θ)H1)(N0 − (H0 + (1 + θ)H1))

From (θ2 + 2θ)||v||2 + 2θu.v = θ(||u + v||2 − ||u||2 + (1 + θ)||v||2) and Equation (1) we
deduce:

(θ2 + 2θ)||v||2 + 2θu.v ≥θ(1− H0(N0 −H0)

(H0 +H1)(N0 − (H0 +H1))
)||u+ v||2

||u+ v||2 + (θ2 + 2θ)||v||2 + 2θu.v ≥(1 + θ − θH0(N0 −H0)

(H0 +H1)(N0 − (H0 +H1))
)||u+ v||2
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Hence:

S̃I
C2

S̃I
C1
≥ (1 + θ)(H0 +H1)(N0 − (H0 +H1))− θH0(N0 −H0)

(H0 + (1 + θ)H1)(N0 − (H0 + (1 + θ)H1))

S̃I
C2

S̃I
C1
≥ (H0 + (1 + θ)H1)(N0 − (H0 +H1))− θH0H1

(H0 + (1 + θ)H1)(N0 − (H0 +H1))− θH1(H0 + (1 + θ)H1)

S̃I
C2

S̃I
C1
≥ 1 +

θ(1 + θ)H2
1

(H0 + (1 + θ)H1)(N0 − (H0 + (1 + θ)H1))
> 1

so S̃I
C1

< S̃I
C2

.
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