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Abstract6

We address the question of sensitivity analysis for model outputs of any dimension using7

Regional Sensitivity Analysis (RSA). Classical RSA computes sensitivity indices related to8

the impact of model inputs variations on the occurrence of a target region of the model9

output space. In this work, we put this perspective one step further by proposing to find,10

for a given model input, the region whose occurrence is best explained by the variations of11

this input. When it exists, this region can be seen as a model behavior whose occurrence12

is particularly sensitive to the variations of the model input under study. We name this13

method mRSA (for maximized RSA).14

mRSA is formalized as an optimization problem using region-based sensitivity indices. Two15

formulations are studied, one theoretically and one numerically using a dedicated algorithm.16

Using a 2D test model and an environmental model producing time series, we show that17

mRSA, as a new model exploration tool, can provide interpretable insights on the sensitivity18

of model outputs of various dimensions.19

20

Keywords : Multivariate sensitivity analysis, Cluster analysis, Factor mapping setting, Sobol’21

indices22

1. Introduction23

The analysis of models with multidimensional outputs (temporal, spatial, heterogeneous)24

is one of the current challenges of sensitivity analysis [1, 2].25

The most natural way to handle such outputs is to apply classical sensitivity analysis26

on each of their components in order to generate multidimensional sensitivity indices (e.g.27

spatial maps or temporal evolution of sensitivity indices, as in [3, 4]). This approach however28

produces only local information while many other characterizations of the outputs distri-29

butions can be of interest in case of multi-dimensional outputs, for instance the influence30

of model inputs on the change in shape of model outputs. Two main approaches tackle31

multidimensional outputs in a non purely local way The first one aims at computing a set32

1corresponding author email: sebastien.roux@inrae.fr
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of indices associated to coordinates along a basis of functions on which the model outputs33

are projected ([5, 6, 7]). Its flexibility and interpretability are limited by the choice of the34

basis. The second approach summarizes the impact of the model inputs on the variability35

of all the model outputs using a single index [8, 9, 10, 11]. It provides useful aggregated36

indices but does not allow a fine understanding of model outputs sensitivity.37

Spear and Hornberger introduced in [12] the concept of model behavior in sensitivity38

analysis through the Regional Sensitivity Analysis (RSA) approach.39

The principle is to start from the definition of a target region of the output space (de-40

noted as ”behavioral”) and to analyze the impact of the variations of model inputs on its41

occurrence. Using model behaviors expressed as regions of the output space appears to be an42

efficient method to get interpretable characterizations of model properties [13]. It has also43

the property to scale to any dimension of the output space. Among the last developments44

on RSA, two are of particular interest in the present study: i) the application of RSA in the45

context of reliability engineering to characterize parameter sensitivity in relation to a critical46

domain of the output space (e.g. the failure domain of a system) using sensitivity measures47

compatible with rare events and taking into account interactions (Target SA, [14, 15]), ii) its48

application in combination with a clustering procedure in order to characterize parameter49

sensitivity with respect to the dominant model behaviors detected in the model output space50

(Distance-Based Generalized SA [16], Cluster-based GSA, [13]).51

These approaches rely on an a priori characterization of the behaviors (regions of the52

output space) to be analyzed. Behaviors are identified either by experts or by automatic53

clustering of the simulations. Pannier and Graf [17] for instance introduced sectional sen-54

sitivity analysis to study the functional interrelations between model inputs and outputs55

based on a priori defined subdivisions of the model inputs and outputs spaces. In this work,56

we propose a new perspective on the link between behaviors and sensitivity analysis based57

on an extension of the recent developments on RSA. Instead of trying to a priori charac-58

terize target regions of the output space, we propose to use an optimization procedure in59

order to reveal the region of the output space whose occurrence is best explained by the60

variations of this input. We name this approach mRSA (for maximized Regional Sensitivity61

Analysis). The formalization of mRSA in terms of principles and numerical algorithm is62

presented in Section 2. The results of the method application are presented in Section 3 on63

two examples: a model with 2D outputs and an environmental model producing time series.64

Software availability is described in Section 5.65

2. mRSA methods and algorithm66

2.1. Notation67

We consider a model whose inputs are noted Xi, for i = 1, .., n. We assume that X =68

(X1, ..., Xn) is a set of independent random variables. We suppose that they follow an69

uniform distribution in [0, 1]. The model output is noted Y = f(X1, .., Xn) and is typically70

a multivariate output in Rd. Model behaviors in the context of RSA are defined as regions71

of the model output space Im(f) = {f(X), X ∈ [0, 1]n}.72
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2.2. Principle73

The objective of this work is to find, for a given input Xi, the region C∗ of the output74

space whose occurrence is most influenced by the variations of Xi. Note that it is equivalent75

to look for the partition (C∗, C∗) (where C∗ is the complement of C∗) such that the transition76

of model outputs from C∗ to C∗ (or equivalently from C∗ to C∗) is best explained by the77

variations of Xi.78

We formalize this question as an optimization problem using the region-based sensitivity79

indices proposed in [13]. These indices are based on membership functions characterizing80

the level of membership of any element of the output space to a given region C of the81

output space. They are defined by applying the variance-based Sobol’ indices [18, 19] to82

the membership functions and quantify the impact of a given input factor on the occurrence83

of C. In the context of this article, we consider first order indices and binary membership84

functions that are written using indicator functions (i.e. the function returning 1 if the85

element of the output space is in the considered region, 0 otherwise). For an input Xi, the86

region-based index under study, noted SC
i and associated to a region C, is then defined as:87

SC
i =

V [E [1C(Y )|Xi]]

V [1C(Y )]
(1)

where V is the variance, E the expectation, and 1C(.) the indicator function of set C.88

In this case, the mRSA approach aims at finding for each input Xi a partition (C∗
i , C

∗
i ) so89

that C∗
i (or equivalently C

∗
i ) maximizes SC

i . Note that this maximization does not necessarily90

gives S
C∗

i
i > 0.5, in other words, Xi is not necessarily the most influential input to explain91

the occurrence of the optimal region C∗
i .92

2.3. First Formulation: unconstrained mRSA93

A natural way of formalizing the sensitivity indices maximization problem is to consider
the following unconstrained formulation (P1):

(P1) : max
C⊂Im(f)

SC
i

94

The maximum value that can take SC
i is 1. While this maximum might not often occur95

for real world problems, studying conditions such that solutions of (P1) reach this maximum96

gives insights on the mRSA approach. This study is presented in section 2.3.1. We then97

show in Section 2.3.2 some limitations in (P1) that will lead to another formulation (P2) on98

which the rest of the article focuses.99

2.3.1. Characterization of partitions such that SC∗
i = 1100

We note as E∗
i the set of optimal solutions of (P1):

E∗
i =

{
C ⊂ Im(f) | SC

i = 1
}

We introduce a multi-valued function φi defined on Im(f) by:

φi(y) =
{
xi ∈ [0, 1] | ∃x−i ∈ [0, 1]n−1 such that y = f(xi, x−i)

}
3



The set φi(y) contains all values xi that can lead to y and contains at least one value (as101

y ∈ Im(f)). But φi(y) can also contain several values or even an infinity depending on the102

model properties.103

Let us now give a characterization of the set E∗
i of optimal solutions (see Proof in104

Appendix A).105

Proposition 1. (C ∈ E∗
i ) ⇔ There exists a function F defined on [0, 1] and valued in {0, 1}106

such that:107

108 {
C = {y ∈ Im(f)| ∀z ∈ φi(y), F (z) = 1}
C ̸= ∅ and C ̸= Im(f)

109

Proposition 1 states that an optimal partition of Im(f) verifying SC∗
i = 1 is associated110

to a partition (defined by function F ) of the domain of Xi. Note that on the other hand, a111

partition F of the domain of Xi does not necessarily defines a partition of Im(f).112

Remark 1 (Example with E∗
i = ∅). Let us consider a purely insensitive input factor Xi, a113

function F valued in {0, 1} and the set C = {y| ∀z ∈ φi(y), F (z) = 1}. As ∀(xi, x
′
i, x−i),114

f(xi, x−i) = f(x′
i, x−i), we deduce that for any y ∈ Im(f), φi(y) is equal to [0, 1]. F is115

therefore necessarily constant and equal to one. But this implies that C = Im(f), which is116

excluded in Proposition 1. Proposition 1 thus shows that there exists no set C∗ verifying117

SC∗
i = 1 in this case. Actually, in this example, for every C ⊂ Im(f), we have SC

i = 0.118

Remark 2 (Example with an infinite sets of optimal solutions). Let us now consider a model119

verifying that each point y of the output space can be uniquely reached from a single120

possible value xi. In this case, φi(.) is a single valued function. Then let us consider any121

non-degenerated partition of [0, 1]. Any such partition defines a non-degenerated partition122

of Im(f) by applying model f . The resulting partition is characterized by the fact that every123

output point reached using a same value xi is in the same set of the partition. Following124

Proposition 1, any such partition is optimal. In this case, as there is an infinite number of125

non-degenerated partitions of [0, 1], there is also an infinite set of solutions in E∗
i .126

Remark 3 (Example with Si = 0 and SC∗
i = 1). Let us consider the model Y = Sign(X1) ·127

|X2|, with X1 and X2 following uniform distributions on [−1, 1] with a focus on X2. The128

first order Sobol’ index of X2, noted S2, is equal to zero. We now apply Proposition 1: as for129

any y ∈ [−1, 1], φ2(y) = {−y, y}, all not-degenerated partitions of the output space [−1, 1]130

gathering y and −y in the same set of the partition are optimal. Among others, the set131

C∗ = {y ∈ [−1, 1] | |y| < α, with α ∈]0, 1[} defines a partition (C∗, C∗) verifying SC∗
2 = 1.132

X2 has therefore the effect of leading the output from the center of the domain toward its133

boundaries (or equivalently from the boundaries to the center). This example shows the134

potential of mRSA in revealing the strong influence of a model input on the occurrence of135

specific patterns of model outputs (SC∗
i = 1) while the standard application of sensitivity136

analysis methods may have led to consider it as non-important (Si = 0).137
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2.3.2. Limits of the unconstrained formulation138

Let us consider the function f(x1, x2) =
1

x1 + ⌊2 · x−0.5
2 ⌋

where ⌊x⌋ is the integer part139

of x, and let us study Y = f(X1, X2), with X1 and X2 following independent uniform140

distributions on [0, 1]. We consider problem (P1) on this model and input X1. A sample of141

model responses is presented in Figure 1.
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Figure 1: An optimal solution of problem (P1) on model f(X1, X2) = 1
X1+⌊2·X−0.5

2 ⌋ . Samples of Y as a

function of X1 are represented. A particular partition of the output space is showed vertically on the left,
defined from a partitioning of the x1 domain above (green values) and below 0.5 (pink values). The partition
is optimal from Proposition 1, but difficult to interpret as it is made of an infinite set of sub-intervals when
y tends towards zero.

142

This model has several interesting properties for a mRSA exploration with the uncon-143

strained formulation (P1):144

• First, neither X1 nor X2 is purely insensitive. Indeed, we find numerically that their145

first Sobol’ indices are respectively about S1 = 0.086 and S2 = 0.886.146

• This model has, for X1, the property mentioned in Remark 2: any point of the output147

space Im(f) = [0, 1
2
] is reached from a single possible value x1. Thus the multi-valued148

function φ1(.) produces in this case only single values and can be noted as a function149

f−1
1 (.). Let us consider the partitioning (C,C) of [0, 1

2
] defined by:150

C = {y ∈ Im(f)| F (f−1
1 (y)) = 1} with F (x1) =

{
0 if x1 > 0.5

1 if x1 ≤ 0.5
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This partition is plotted vertically on Figure 1. Following Proposition 1, we have151

SC
1 = 1, which means that X1 perfectly explains the transition of the model output152

between sets C and C.153

Nevertheless, this solution lacks interpretability, in particular because it is made of an infinite154

set of connected components when y tends towards 0 (see Figure 1). Moreover, when y155

tends toward 0, there is a full mixing of sets C and C in the sense that ∀ϵ > 0, we can156

find 0 < y1 < y2 < y3 < ϵ such that y1 ∈ C, y2 ∈ C, y3 ∈ C. The region whose occurrence157

is best explained by the variation of X1 is thus difficult to characterize in this case. This158

example shows that additional constraints must be added to the formulation of Problem159

(P1) in order to increase the interpretability of the solutions, in particular regarding the risk160

of near-overlapping between C and C.161

2.4. Improved Formulation: constrained mRSA162

To overcome the limitations described in the previous section, we now add constraints to
Problem (P1) by searching only solutions belonging to a set denoted as I (Problem (P2)):

(P2) : max
C⊂Im(f), C∈I

SC
i

This set I is introduced to increase the chances that a solution is interpretable by an163

expert of the model. There is no general definition of this interpretability, but we propose164

a trick to improve the method in this direction. We first suppose that a set of KY non-165

overlapping clusters (C1, .., CKY
) covering Im(f) has been defined. We denote as elementary166

clusters these KY clusters. A meta-cluster is defined as a union of elementary clusters. I167

is then defined as the set of all possible meta-clusters. This choice: i) allows to avoid the168

mixing effect illustrated in the 1D example presented in the previous section by choosing169

an appropriate value for KY , ii) adds an indirect constraint on the number of connected170

components of the solution (depending on the number of elementary clusters), iii) adds the171

possibility to define elementary clusters either from expert knowledge or using an automatic172

algorithm. For these reasons, we found that Problem (P2) is more relevant in practice173

than Problem (P1). However, Problem (P2) must be solved numerically using a dedicated174

algorithm, since the cost of testing all possible meta-clusters (2KY −1 − 1) is prohibitive.175

176

2.5. Algorithm for the constrained formulation (P2)177

178

2.5.1. Required simulated data179

The numerical resolution of Problem (P2) requires a simulation sample noted (X,Y),180

where X is a matrix of parameters values, and Y the matrix of multivariate simulated values181

obtained by applying the model under study on X. For the sake of simplicity, we suppose182

here that X is made of N i.i.d parameters values, but note that the algorithm presented in183

Section 2.5.3 can also be applied on not i.i.d samples with the only consequence that this184

can lead to sub-optimal results.185
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2.5.2. Aggregation of elementary clusters (C1, .., CKY
)186

We designed a hierarchical clustering procedure using an aggregating property in order187

to merge iteratively elementary clusters (C1, .., CKY
).188

Let us introduce a partition of [0, 1] into nX bins (B1, .., BnX
), typically withBj =]

j − 1

nX

,
j

nX

],189

for j = 1, .., nX . For a subset C of the simulated output values and a bin Bj, let us define190

hC
j such that:191

hC
j = Card{y ∈ C| ∃ xi ∈ Bj such that y = f(xi, x−i)}

The vector hC = (hC
1 , .., h

C
nX

) is an approximate representation of the distribution L(Xi|Y ∈192

C) and is a (non normalized) histogram associated to cluster C. Let us note S̃i

C
the estimate193

of Si
C obtained by using histogram hC (its expression can be found in Appendix B).194

195

Proposition 2. Let us consider two elementary clusters C and C
′
with histograms h and196

h′ satisfying h′ = θh, with θ > 0. Let us denote (C∗, C∗) the partition of the output space197

maximizing S̃i

C
over the set I. Then clusters C and C ′ belong both to C∗ or to C∗.198

Proposition 2 (see Proof in Appendix C) states that elementary clusters having propor-199

tional histograms cannot be in different sets of the optimal partition (C∗, C∗) for criterion200

S̃i

C
. It therefore suggests that meta-clusters should be defined by aggregating elementary201

clusters whose histograms are the closest to be proportional. We proposed to do that by us-202

ing a clustering method based on the histogram correlation distance d(h, h′) = 1−Cor(h, h′).203

This procedure will be used in Algorithm mRSA presented in the coming section. Note that204

while the estimator S̃i

C
was useful to establish Proposition 2, it is however not as pre-205

cise as classical Sobol’ indices estimators. It is therefore not used in practice to make any206

computation.207

2.5.3. Algorithm mRSA208

Algorithm mRSA is based on: i) the restriction of the search space to meta-clusters209

defined from (C1, .., CKY
) to handle the constraint C ∈ I, ii) the use of the aggregation210

method described in the previous section.211

The first step of Algorithm mRSA consists in clustering the simulated values using an212

automatic or user-defined clustering procedure ClustFunY to get KY elementary clusters.213

Then a clustering of these KY elementary clusters into KH meta-clusters is done using214

the method noted ClustFunH . ClustFunH is a classical hierarchical clustering method215

using the aggregation procedure described in the previous section. As the last step of216

the algorithm, an exhaustive search for the best partition over all the (2KH−1 − 1) possible217

merging of the KH meta-clusters is performed by estimating SPk
i for each candidate partition218

(Pk, Pk). This algorithm has the following parameters: the index i of the input under study,219

the pre-clustering method ClustFunY , the numberKY of clusters for the pre-clustering step,220

the number nX of bins for the histograms computations, the number of meta-clusters KH221

and a size parameter γ which is introduced to exclude meta-clusters having to few elements.222
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Algorithm mRSA

Input data: (X,Y)

Parameters: (i, ClustFunY , KY , nX , KH , γ)

Output : (Pk∗ , Pk∗), Ŝ
Pk∗
i

Apply ClustFunY on Y to get KY elementary clusters (C1, .., CKY
)

Compute all histograms (hCk)k=1..KY
for input Xi discretized with nX bins

Apply ClustFunH on (hC1 , .., hCKY ) to get KH meta-clusters (Ĉ1, .., ĈKH
)

for all 2-partitions (Pk, Pk) of (Ĉ1, .., ĈKH
) do

Compute an estimate ŜPk
i of SPk

i from (X,Y)
Compute γk =

1
N
min

(
Card(Pk), Card(Pk)

)
, where N=number of rows in X

end for
k∗ = argmax

k,γk≥γ
ŜPk
i

2.5.4. Parameter tuning guidelines223

We propose in Table 1 guidelines to set the parameters of Algorithm mRSA based on224

parameters definitions and numerical experiments.225

The sample size N (number of rows in X and Y) has to be i) large enough for precise226

estimation of first order indices using (X,Y), but also ii) large enough for a good covering227

of the output space in order to obtain partitions as close as possible to an optimal solution.228

There is no general rule for this tuning. For the two case studies, samples of size 4000 and229

5000 were enough to reveal interpretable partitions of the output space associated with high230

first order sensitivity indices.231

232

Parameter KH which drives the exhaustive search should be set to the highest value233

allowed by the computational budget (typically lower than 20). Parameter γ was typically234

set to 0.1 (10% of the number of simulated points). Parameter nX should be set in order235

to avoid histograms with too few values per bin, which was satisfied with nX around 10-236

20 in our tests. It also turned out to be quite insensitive in the numerical experiments we237

carried out. On the other hand, the pre-clustering is a critical step. As explained previously,238

the elementary clusters can be defined by the user to constrain the shape of the solution239

according to a prior knowledge. An automatic clustering can also be used, such as the240

hierarchical clustering using euclidean distances used in the numerical examples presented241

in Section 3. Note that depending on the output space and user knowledge, other procedures242

may lead to better results. The number of elementary clustersKY for this pre-clustering step243

was found very sensitive in the numerical experiments (see Section 3). Its optimal setting244

appeared to be a trade-off between the interpretability of the partition (better for low KY )245

and the sensitivity score of the partition (better for large KY ). A value of KY = 500 was246

found to be satisfactory for the different case studies.247
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Name Function Guideline Value

models
M2D

model
CANTIS

(§ 3.1, 3.2) (§ 3.3)

N initial sample size

large enough for Sobol’
indices estimation and
for good covering of
output space

4000 5000

KY
number of elementary
clusters

trade-off between
interpretability (small
KY ) and optimality
(large KY ); KY ≤ N

2000, 500, 30 500

ClustFunY

method for pre-
clustering the output
space

to be adapted to the
output space/ user ex-
pertise

HCAeuc HCAeuc

KH
number of meta-
clusters

maximum value al-
lowed by computing
time budget

12 12

nX
number of histogram
bins

10-20 18 18

γ
relative minimum size
of meta-clusters

user requirement 0.1 0.1

Table 1: Guidelines for setting the parameters of the mRSA algorithm and values used for the different
tests. HCAeuc is a classical hierarchical clustering algorithm used with an euclidean distance.

3. Numerical applications248

3.1. Noise-free 2D test model249

3.1.1. Model definition and properties250

We first consider the following test model (Y1, Y2) = M2D(X1, X2, X3), where:251

Y1 = c1 + 0.25 ·
√
X3 · cos(2πX2)

Y2 = c2 + 0.25 ·
√
X3 · sin(2πX2)

with (c1, c2) =


(0.5, 0.316), if X1 < 0.33

(0.25, 0.75), if 0.33 ≤ X1 < 0.66

(0.75, 0.75), if X1 ≥ 0.66

Model M2D is studied for X1, X2, X3 following independent uniform distributions on [0, 1].252

Basically, the model draws a point in the plane at a distance from a reference point related253
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to the value of X3 and with an angle to the horizontal line related to the value of X2. The254

coordinates of the three possible reference points are defined from the value of X1. The set255

of possible positions for (Y1, Y2) is the union of three disks C1, C2, C3 centered on the reference256

points (see Figure 2). We choose the coordinates of the reference points so that any point257

of the output space is obtained from exactly one set of values of the parameters.258

By applying Proposition 1, we know what the solutions to Problem (P1) are for model259

M2D:260

• X1: φ1(y) is one of the three intervals I1 = [0, 1
3
[, I2 = [1

3
, 2
3
[, I3 = [2

3
, 1], each associated261

to one of the three disks C1, C2, C3. There are therefore three non-degenerated solutions262

of (P1) for model M2D: (C1, C1), (C2, C2), (C3, C3).263

• X2, X3: for each of these inputs and for each y ∈ Im(M2D), φi(y) has a single value.264

Thus, from Remark 2 following Proposition 1, any non-degenerated partition of the X2265

(resp. X3) domain defines an optimal partition of the output space. For both X2 and266

X3, the optimal solution is made of a sub-partition replicated on all disks C1, C2, C3.267

For X2, optimal partitions have an angular pattern (i.e. all outputs y having the same268

angle to the closest center are in the same set of the partition) resulting in partitions269

made of angular sectors. For X3, optimal partitions have a radial pattern (i.e. all y at270

the same distance from the closest center are in the same set of the partition) resulting271

in partitions made of rings.272

3.1.2. Results273

We applied Algorithm mRSA to the model M2D for problem (P2). A set of 2000 elemen-274

tary clusters is used to define the set I. Elementary clusters are obtained using a hierarchical275

clustering algorithm with an euclidean distance on R2. The values of the parameters used for276

the application of Algorithm mRSA are given in Table 1. The sensitivity indices are com-277

puted using the estimation method based on ranks [20] implemented in sobolrank function278

of the R package sensitivity [21], applied on a Monte Carlo sample of size N = 4000.279

The results are displayed as a 35 × 35 image with the following convention: red pixels280

contain only points belonging to C∗, blue pixels contain only points belonging to C∗, yellow281

pixels include points from C∗ and C∗. This display allows to quickly assess regions where282

many points of the two clusters are close together (which leads to poor interpretability).283

The results are presented in Figure 2. As we can see, the optimized values of ŜC∗
are284

equal to one for each input, showing that the algorithm is able to find optimal solutions285

for i = 1, 2, 3. The partitions found are consistent with the set of optimal solutions of286

(P1), meaning that in this simple example and with the quite large number of elementary287

clusters used, (P1) and (P2) are equivalent, and the solutions obtained are interpretable.288

This example shows the ability to find optimal numerical solutions in a favorable case.289

3.2. 2D test model with noise290

3.2.1. Model definition and properties291

In order to test the algorithm properties in a more complicated case, we add a noise in292

the formulation of model M2D to define a new model (Y
(r)
1 , Y

(r)
2 ) = M(r)

2D(X1, X2, X3, X4).293
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Figure 2: Results of the mRSA algorithm on model M2D (model with 2D outputs without noise). Left:
sample of model outputs, Right: optimized partitions found for each model input (red: pixels belonging to
C∗, blue: pixels belonging to C∗, yellow: pixels including points from C∗ and points from C∗). For each

Xi, the values of ŜC∗

i are equal to 1.

The idea is to have a fourth parameter X4 (following a uniform distribution in [0, 1]) that294

adds a small displacement to the output of M2D.295

In order to avoid ending up with a stochastic model (which would raise additional issues296

for the definition and estimation of the Sobol’ indices [22], outside the scope of the present297

study), the perturbation is defined in a deterministic way by taking the row of index ⌊100·X4⌋298

of a pre-defined matrix Υ. Matrix Υ is of size (100, 2) and made of small 2D displacements299

sampled from random distributions. (Y
(r)
1 , Y

(r)
2 ) = M(r)

2D(X1, X2, X3, X4) is therefore defined300

as:301

Y
(r)
1 = Y1 +Υ⌊100·X4⌋,1

Y
(r)
2 = Y2 +Υ⌊100·X4⌋,2

Due to the perturbations, Problem (P1) no longer has simple solutions when consid-302

ering model M(r)
2D. Indeed, for many points y of the output space, φi(y) is multi-valued:303

there are many different settings leading to a same value y (actually all (x1, x2, x3) such as304

M2D(x1, x2, x3) = y −Υi,., where Υi,. is one row of Matrix Υ). We therefore do not know a305

priori the solutions of (P1) or (P2) in this case. Nevertheless, as the amplitude of the noise306

decreases, we expect to retrieve the solutions found for the model M2D.307

3.2.2. Results308

We applied Algorithm mRSA on problem (P2) for model M(r)
2D for KY = {2000, 500, 30}309

elementary clusters in the pre-clustering phase of the algorithm. The results are presented310

in Figure 3 for all the inputs (including the one driving the perturbations).311

As expected, the partitions found are related to the ones obtained with model M2D,312

but are blurred. We can also notice that the level of noise depends on the setting of the313

parameter KY : there is more noise for high values of KY , which makes the interpretation of314

the results more difficult. On the other hand, lowering KY too much leads to more clearly315

defined partitions but at the expense of their optimality. For example, when looking at the316
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sensitivity scores ŜC∗
2 as a function of KY , we have ŜC∗

3 (2000) = 0.435, ŜC∗
3 (500) = 0.315,317

and ŜC∗
3 (30) = 0.234. As mentioned in the guidelines given in Table 1, there is a compromise318

to be found in the value of KY to obtain results that are both precise and interpretable. In319

this example, KY = 500 seems to be a relevant choice.320

Another notable result is that the patterns found are not the same depending on the value321

of KY . However, we can note that they all correspond to an optimal solution of the previous322

problem. For example there are different angular patterns for the solutions found for X2.323

Lastly, it is interesting to look at the patterns and associated sensitivity scores obtained for324

the perturbation parameter X4. As expected, the scores are low and the patterns made of325

a lot of connected components even for KY = 500. The algorithm therefore does not create326

a falsely interpretable structure associated with this perturbation parameter.327

3.3. Environmental model simulating temporal outputs328

3.3.1. Model and input distributions329

We applied the mRSA algorithm on the environmental model CANTIS [23], which sim-330

ulates the decomposition of organic biomass in crop residues over time based on a set of331

differential equations. We use the same model setting as in [13]. The model setting consists332

in ten uncertain model inputs and the analysis of one time-varying output: the zymogenous333

microbial biomass, here-after referred to as ZYB. The reader is invited to refer to [13] for334

more details. The sensitivity indices are computed using the estimation method based on335

ranks [20] implemented in sobolrank function of the R package sensitivity [21], applied on336

a Monte Carlo sample of size N = 5000 producing 5000 output curves of ZYB. The other337

parameters values used to apply Algorithm mRSA are given in Table 1.338

3.3.2. Results339

We present in Table 2 the sensitivity indices ŜC∗
i obtained when applying the Algorithm340

mRSA on each input of the CANTIS model in the considered uncertainty setting. Only X8341

and X9 exhibits large values that deserve further analysis. For these two inputs, we plotted342

in Figure 4 the optimal clusters found.343

For input X8, we obtained ŜC∗
8 = 0.851. Looking at Figure 4, we can see that the344

two clusters identified differ the most at the beginning of the simulation time period. The345

two clusters then overlap rapidly. The application of the method indicates that X8 drives346

the occurrence of biomass dynamics that start by increasing (or equivalently that start by347

decreasing).348

For input X9, a very high score (ŜC∗
9 = 0.874) was also obtained. For this input, when349

examining Figure 4, it appears that what best distinguishes the two clusters is the level350

of ZYB values over the entire simulated time period, and particularly the final values. We351

conclude that X9 drives the occurrence of dynamics with the highest (or the lowest) biomass352

levels all along the considered time scale and particularly for the final value.353

4. Conclusion354

In this work, a new sensitivity analysis approach extending Regional Sensitivity Analysis355

and named mRSA was introduced with the aim of automatically identifying the model356
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Figure 3: Results of the mRSA algorithm on the 2D model with noise M(r)
2D with KY = {2000, 500, 30} for

the four model inputs. Red: pixels belonging to C∗, blue: pixels belonging to C∗, yellow: pixels including
points from C∗ and points from C∗.

behaviors best explained by the variations of the different model inputs. A first formalization357

of mRSA as an unconstrained maximization problem using a sensitivity based criterion was358

theoretically studied. An improved formulation (constrained mRSA), more interesting in359

practice, was introduced and solved numerically with a dedicated algorithm. The application360

of this algorithm on an environmental model producing biomass dynamics showed the ability361

of mRSA to reveal, both in a quantitative and graphical way, some impact of the model362

inputs variations that would not have been easy to detect without strong prior knowledge.363

This approach opens new perspectives, particularly for the study of complex models with364

multivariate outputs.365

In this study, only first order indices were considered in the optimization procedure.366
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Xi X1 X2 X3 X4 X5 X6 X7 X8 X9 X10

ŜC∗
i 0.069 0.066 0.083 0.069 0.078 0.059 0.069 0.851 0.874 0.062

Table 2: Optimized region-based sensitivity indices obtained for each input Xi for the environmental model
CANTIS.
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Figure 4: Clustering obtained with Algorithm mRSA on the CANTIS model. Left: samples of output curves.
Right: results of the mRSA application for input X8 and X9. Sensitivity scores and optimal partitions are
represented. The optimal partitions are plotted using quantiles (0.05,0.25,0.75,0.95) as a function of time.
The horizontal colorbar indicates the significance of the difference between the two partitions at a given
time: yellow (resp. black) corresponds to a high (resp. low) difference as given by Kolmogorov–Smirnov
statistic.

Other indices could have been considered, such as indices of groups of parameters, or indices367

quantifying some interaction effects of interest. Looking for partitions optimizing such in-368

dices would enlarge the possible model properties explored. The question of having efficient369

algorithm to find solutions in such cases is however challenging and is a direction for future370

work.371

372

5. Software availability373

R codes for applying Algorithm mRSA on the toy model and on the CANTIS model374

are available from a Gitlab repository located at https://forgemia.inra.fr/sebastien.375

roux/mrsa_paper/.376
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Appendix A: Proof of Proposition 1426

We first recall the Sobol’ Hoeffding decomposition over [0, 1]n, which states that any427

function g square-integrable over [0, 1]n can be uniquely decomposed in the following form:428

g(X) = g0 +
n∑

i1=1

gi1(Xi1) +
∑
i2>i1

gi1i2(Xi1 , Xi2) + ...+ gi1..in(Xi1 , .., Xin)

where429

E[gi1..is(Xi1 , .., Xis)] = 0,∀{i1...is} ⊆ {1, 2, ..., n}
E[gi1..is(Xi1 , .., Xis)gj1..it(Xj1 , .., Xjt)] = 0,∀{i1, ...is}) ̸= {j1, ..., jt}

We also recall that Si = 1 (where Si is the first Sobol’ index associated to Xi) implies that430

for all multi-index j ̸= {i}, the total Sobol’ index ST
j = 0, which implies that all terms in431

decomposition except gi have null variances. Therefore, Si = 1 implies that:432

g(X) = g0 + gi(Xi) (2)

Necessary Condition We suppose C ∈ E∗
i (thus C ̸= ∅ and C ̸= Im(f)). As SC

i = 1, when
applying Equation (2) to 1C(.), we find that there exists a function Fi(.) valued in {0,1},
such that ∀(X1, .., Xn) in their variation domain:

1C(f(X1, .., Xn)) = Fi(Xi)

If y ∈ C (resp. C), any (xi, x−i) such that y = f(xi, x−i) verifies Fi(xi) = 1 (resp. 0).433

Therefore y ∈ C (resp. C) implies that ∀z ∈ φi(y), Fi(z) = 1 (resp. 0). Therefore Fi434

satisfies the conditions of Proposition 1.435

Sufficient Condition We suppose the existence of a set C satisfying the right hand side of
Proposition 1 and calculate SC

i . There exists a function F such that ∀(X1, .., Xn) in their
variation domain:

1C(f(X1, .., Xn)) = F (Xi)

This implies that:
V[E[1C(f(X1, .., Xn))|Xi]] = V[F ]

Moreover, as C ̸= ∅ and C ̸= Im(f), we have V[1C(f(X1, .., Xn))] = V [F ] ̸= 0. Therefore436

SC
i = 1.437

Appendix B: Expression of S̃C
i , an approximation of SC

i using hC
438

Equation (1) can be written as:

Si
C =

1

V[1C(Y )]
EXi

[E[1C(Y )|Xi]− E[E[1C(Y )|Xi]]]
2
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We note that, with the discretization of Xi into nX bins:439

E[E[1C(Y )|Xi]] =
1

nX

nX∑
j=1

E[1C(Y )|Xi ∈ Bj]

V[1C(Y )] = E[(E[1C(Y )|Xi]− E[E[1C(Y )|Xi]])
2]

=
1

nX

nX∑
j=1

E[1C(Y )|Xi ∈ Bj]− (
1

nX

nX∑
j=1

E[1C(Y )|Xi ∈ Bj])
2

SC
i can be rewritten with the discretization of Xi into nX bins by:440

SC
i =

1

nX

nX∑
j=1

(
E[1C(Y )|Xi ∈ Bj]−

1

nX

nX∑
l=1

E[1C(Y )|Xi ∈ Bl]

)2

1

nX

nX∑
j=1

E[1C(Y )|Xi ∈ Bj].(1−
1

nX

nX∑
j=1

E[1C(Y )|Xi ∈ Bj])

Moreover, using the simulation sample of size N , we have the approximation:

E[1C(Y )|Xi ∈ Bj] ≈
nX .h

C
j

N

Using this approximation, we deduce that the following expression noted S̃i

C
is an ap-441

proximation of SC
i :442

S̃C
i =

nX
nX∑
j=1

hC
j .(N −

nX∑
j=1

hC
j )

nX∑
j=1

(hC
j − 1

nX

nX∑
l=1

hC
l )

2 =
||hC −HC ||2

HC .(N − nXH
C)

where HC =
1

nX

nX∑
j=1

hC
j .443

Appendix C: Proof of Proposition 2444

Let us consider a cluster C0 (having histogram h0 with mean H0) that we either merge445

with a cluster C (having histogram h and histogram mean H) to form cluster C1 = C0 ∪C,446

or with two clusters C and C ′ having respective histograms h and h′ = θh to form cluster447

C2 = C0 ∪C ∪C ′. The region-based sensitivity criteria based on histograms for these three448

sets are S̃i

C0
, S̃i

C1
and S̃i

C2
.449

We suppose that S̃i

C0 ≤ S̃i

C1
, i.e that merging C0 and C, forming partition (C1, C1)450

leads to a better partition than (C0, C0). The principle of the proof is to show that there451

is an improvement in merging C ′ with C1, i.e. that S̃i

C1
< S̃i

C2
. Hence we will conclude452
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that, supposing now that two elementary clusters have proportional histograms, then they453

are necessarily of the same side of the optimal partition.454

We denote: N0 =
N

nX

, and u = h0 −H0, v = h−H.455

From C0 ∪C ∪C ′ ⊊ Im(f) we deduce
∑
j

(h0
j +(1+ θ)hj) < N and H0+(1+ θ)H < N0.456

Then, with these notations, we express the sensitivity criteria based on histograms:457

nX S̃i

C0
=

1

H0(N0 −H0)
||u||2

nX S̃i

C1
=

1

(H0 +H)(N0 − (H0 +H))
||u+ v||2

nX S̃i

C2
=

1

(H0 + (1 + θ)H)(N0 − (H0 + (1 + θ)H))
||u+ (1 + θ)v||2

From S̃i

C0 ≤ S̃i

C1
we deduce:458

||u+ v||2 ≥(H0 +H)(N0 − (H0 +H))

H0(N0 −H0)
||u||2 (3)

As H0 + (1 + θ)H < N0, we consider
S̃i

C2

S̃i

C1
:459

S̃i

C2

S̃i

C1
=

||u+ (1 + θ)v||2

||u+ v||2
(H0 +H)(N0 − (H0 +H))

(H0 + (1 + θ)H)(N0 − (H0 + (1 + θ)H))

=
||u+ v||2 + (θ2 + 2θ)||v||2 + 2θu.v

||u+ v||2
(H0 +H)(N0 − (H0 +H))

(H0 + (1 + θ)H)(N0 − (H0 + (1 + θ)H))

From (θ2+2θ)||v||2+2θu.v = θ(||u+v||2−||u||2+(1+θ)||v||2) and Equation (3) we deduce:460

(θ2 + 2θ)||v||2 + 2θu.v ≥θ(1− H0(N0 −H0)

(H0 +H)(N0 − (H0 +H))
)||u+ v||2

||u+ v||2 + (θ2 + 2θ)||v||2 + 2θu.v ≥(1 + θ − θH0(N0 −H0)

(H0 +H)(N0 − (H0 +H))
)||u+ v||2

Hence:461

S̃i

C2

S̃i

C1
≥ (1 + θ)(H0 +H)(N0 − (H0 +H))− θH0(N0 −H0)

(H0 + (1 + θ)H)(N0 − (H0 + (1 + θ)H))

S̃i

C2

S̃i

C1
≥ (H0 + (1 + θ)H)(N0 − (H0 +H))− θH0H

(H0 + (1 + θ)H)(N0 − (H0 +H))− θH(H0 + (1 + θ)H)

S̃i

C2

S̃i

C1
≥ 1 +

θ(1 + θ)H2

(H0 + (1 + θ)H)(N0 − (H0 + (1 + θ)H))
> 1

so S̃i

C1
< S̃i

C2
.462
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