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Abstract: Humans are involuntarily exposed to hundreds of chemicals that either contaminate our
environment and food or are added intentionally to our daily products. These complex mixtures of
chemicals may pose a risk to human health. One of the goals of the European Union’s Green Deal
and zero-pollution ambition for a toxic-free environment is to tackle the existent gaps in chemical
mixture risk assessment by providing scientific grounds that support the implementation of adequate
regulatory measures within the EU. We suggest dealing with this challenge by: (1) characterising ‘real-
life’ chemical mixtures and determining to what extent they are transferred from the environment to
humans via food and water, and from the mother to the foetus; (2) establishing a high-throughput
whole-mixture-based in vitro strategy for screening of real-life complex mixtures of organic chemicals
extracted from humans using integrated chemical profiling (suspect screening) together with effect-
directed analysis; (3) evaluating which human blood levels of chemical mixtures might be of concern
for children’s development; and (4) developing a web-based, ready-to-use interface that integrates
hazard and exposure data to enable component-based mixture risk estimation. These concepts form
the basis of the Green Deal project PANORAMIX, whose ultimate goal is to progress mixture risk
assessment of chemicals.

Keywords: mixture risk assessment; real-life mixtures; developmental neurotoxicity; reproductive
toxicity; new methodological approaches; effect-directed analysis; effect-based trigger values; PANORAMIX
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1. Introduction

It has been long established that chemicals from environmental and food sources,
such as fluorinated chemicals, pesticides, plasticisers, flame retardants and bisphenols, can
trigger adverse health effects [1]. Humans are rarely exposed to single toxicants at any
given time, but rather to complex mixtures of chemicals that can combine their effects in
a way that may alter their toxicity [2]. Legacy chemicals that persist in our bodies almost
indefinitely, such as lipophilic persistent organic pollutants (POPs)—e.g., organochlorine
pesticides, polybrominated flame retardants and per- and polyfluorinated substances
(PFAS) present in everyday products, may add up with non-persistent chemicals, such as
chemicals arising from pharmaceuticals, personal care products and packaging (Figure 1).
Even if concentrations of some individual chemicals have decreased over the last decades
as a result of management measures and the associated reductions or cessation of industrial
production, the diversity of chemicals has increased, and new chemicals of concern are
emerging. For example, the mixture risk quotient of certain phthalates has decreased over
the last three decades, but the relative importance of the phthalate mixture effects has
increased [3]. Nevertheless, the level of risk to human health arising from an everyday
exposure to chemical mixtures remains largely unknown. The recent update of the Lancet
commission for planetary health has stressed that “three particularly worrisome, and
inadequately charted consequences of chemical pollution are developmental neurotoxicity,
reproductive toxicity, and immunotoxicity” and they also referred to the relevance of
mixture risk assessment (MRA) [1].
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Figure 1. Current approach on chemical risk assessment and the challenge of mixture risk assessment
addressed by PANORAMIX. The letters A–G refer to different compounds (modified from [2]).

Although some advances are being made toward the incorporation of regulatory
measures concerning mixture effects, current guidelines for risk assessment of chemicals
are still largely grounded on the assessment of individual chemicals (Figure 1). The
overall risk posed by the exposure to complex, real-life mixtures to human health is likely
underestimated because (1) lack of in vivo and epidemiological data often prevents the
derivation of a Point of Departure for toxicological endpoints and thus reduces the number
of substances which can be included in an MRA, (2) MRA focuses on compounds that are
relevant within the boundaries of a specific chemical legislation, but the environment and
humans are co-exposed to chemicals from different regulatory silos, (3) we do not have the
full picture of chemicals to which humans are exposed to, and (4) producers only need to
submit individual chemical data in regulatory processes.

To capture all chemicals that might be relevant for a MRA (industrial chemicals, bio-
cides, pesticides, medicines, etc.), it is necessary to regulate co-exposures across regulatory
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silos and look at mixtures in an unbiased way. From studies on ecotoxicological effects of
water quality, we know that even if we analyse hundreds of chemicals, we are still not able
to explain all the toxic effects arising from these water samples by the identified chemi-
cals [4]. This phenomenon has been observed also in in vitro studies on human blood and
tissues, where 35 out of 100 analysed chemicals were detected, but their predicted mixture
effect derived from single-compound modelling explained less than 2% of the experimental
mixture effect (activation of the arylhydrocarbon receptor and cytotoxicity) [5].

Implementation of MRA across different silos is challenging from both the regulatory
and scientific perspective and requires that the knowledge base on hazard and exposure
covers a reasonable proportion of currently used chemicals. At present, none of our single
regulatory systems alone can fully safeguard against potential risks from exposure to
coincidental multi-component mixtures of substances from multiple sources via multiple
exposure routes. Due to the complexity of this matter, human health assessment of aggre-
gated exposure to multiple chemicals currently presents a great challenge to researchers,
risk assessors and risk managers.

In the future, we cannot continue to rely only on data from animal studies for hazard
characterisation, and the trend is moving towards using in vitro bioassays and so-called
new approach methodologies (NAMs) as alternatives to animal testing [6,7]. Likewise, we
cannot only use food intake data for exposure evaluation, as humans are often exposed to
the same chemicals from many different sources, so an exposome approach that accounts
for the total internal exposure might be a way forward [8].

To obtain a closer picture of the human exposome for MRA, major issues need to be
addressed, such as the analytical workflow and the methodology used to monitor, identify
and quantify these substances. New methodological approaches supported by advanced
technologies, such as high-resolution mass spectrometry (HRMS) profiling, for suspect (SS)
and non-targeted (NTS) screening, are today available to reach this goal. These innovative
analytical approaches open the door to the simultaneous detection of a number of chemicals
never achieved before, which is expected to become a game-changer in human chemical
exposure assessment. SS aims to detect known chemicals that are expected to be present
in a sample, to characterise exposure trends and to contribute to better prioritisation for
further targeted developments based on generated semi-quantitative real exposure patterns.
In contrast, the ambition for NTS is to identify potential unknown or new chemicals, to
generate new research hypotheses and to contribute to an early warning system. Due
to the diversity and complementarity of existing analytical workflows used for SS and
NTS, the interpretation and comparability of the results sorted out by these approaches
remains at this stage limited, and robust conclusions cannot yet be easily translated into
active policies [9]. For instance, the amount of existing library databases available for
data analysis and data mining in NTS is rather scarce, and only a small percentage of the
exposure compounds can be framed [10]. Finally, these up-and-coming methods remain
complex and require a highly technical methodological framework. We will build on
methodologies developed under the EU Joint program ‘Human Biomonitoring for Europe’
to further improve the SS and NTS approaches. The mixtures considered encompass
all extractable organic chemicals, no inorganics or metals unless they are organometallic
compounds. Persistent organic pollutants, non-persistent organics and ionisable organics
are considered.

The PANORAMIX consortium addresses this need to assess the biological impact of
the combined exposure to multiple organic chemicals from different sources and, from
there, perform classical MRAs as well as derive effect-based trigger (EBT) values (Figure 1).
This project provides a new way of identifying “chemical mixtures of concern” and those
compounds in the mixture that are mainly responsible for the mixture response (so called
mixture drivers) in a diverse range of environmental, food and human samples, by creating
an experimental and theoretical framework coupled with computational modelling and
analysis, and a web-based chemical mixture risk calculator that can be directly used for
chemical MRA and regulation.
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2. Chemical Mixture Drivers across the Environment-Food-Human Continuum

The assessment of combined effects from realistic complex chemical mixtures based
on data from in vivo studies alone is unquestionably limited, not only due to the huge
temporal-spatial variation of co-occurring exposures and health endpoints but also due
to the problematic use of test animals from an economical and ethical point of view. To
circumvent this issue, a great effort has been made by regulatory agencies to incorporate
non-animal based NAMs into chemical risk assessment [11,12]. NAMs comprise in silico
and in vitro methods that may efficiently provide information on molecular initiating events
and key events mediating adverse effects, often at a high throughput level [13–17].

Evidently, in a project of the scale of PANORAMIX, it is not possible to evaluate all
possible mixture scenarios. Therefore, we propose a novel tiered approach where we rely on
prior experience from assessing complex mixtures extracted from environmental samples
and use pooled samples representative of the environment (wastewater, surface water and
wild fish) as well as food (drinking and bottled water, aquaculture and wild fish and milk)
in a “One Health perspective” to benchmark against existing studies [18]. We will further
extend this approach to human exposure by assessing pooled blood samples from both
adult volunteers and umbilical cord, as well as human breast milk.

Regarding the exposure assessment component of PANORAMIX, samples will be
collected in different European countries and pooled to approach a European ‘real-life’
mixture. For blood, pooled samples from Australia and Canada will also be included.
Samples will be extracted and enriched using harmonised methods for each type of matrix,
and further characterised through a combination of SS/NTS methods. Taking advantage of
recent advances in chromatography coupled to HRMS, less selective strategies involving
simpler sample preparation and full-scan screening have indeed emerged in the last decade
to open the scope to the simultaneous analysis of suspected and unsuspected chemicals,
and even the identification of unknown chemicals [19–21]. In addition, targeted analysis
of an extended range of chemical contaminants of concern (both historical and emerging)
will be performed, based on well-established sample preparation and mass spectrometric
detection, identification and quantification procedures. The development and use of this
integrated framework will allow the identification and/or quantification of a whole range
of chemicals of the human exposome. The implementation of a set of reference standards
will also generate estimated concentration data of some detected markers, leading to an
integrated analysis and interpretation of the exposure effects.

Regarding the hazard characterisation component of PANORAMIX, we will apply
a whole mixture-based approach, using a panel of in vitro bioassays with endpoints that
can be mapped to classical toxicological endpoints, such as impairment of reproductive
and neurodevelopmental functions. Both are known to be compromised by a great va-
riety of chemicals, and particularly chemical mixtures [22–25]. For this purpose, each
extract will be assessed in a panel of up to 20 well-established and carefully selected cell-
based or cell-free in vitro bioassays with endpoints related to reproductive toxicity and
neuro(developmental)toxicity (Figure 2). This panel includes measurement of neurotoxicity
in human neuronal cells, including neurite outgrowth inhibition [26], acetylcholinesterase
inhibition [27] and mitochondrial toxicity [28], neurodevelopmental assessment in zebrafish
embryos [29], developmental toxicity in embryoid bodies derived from human-induced
pluripotent stem cells [30], thyroid hormone disruption, such as binding to the transport
protein transthyretin [31], inhibition of uptake and efflux of thyroid hormones [32], thy-
roid hormone receptor activity [33], activation/inactivation of thyroid hormones, iodide
utilisation and recycling [32,34,35], oestrogen, androgen and aryl hydrocarbon receptor
activities [36], genotoxicity, including identification of potential aneugenic and clastogenic
activity [37], and finally measurement of oxidative stress [38].
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Figure 2. Overview of Phases 1 and 2 of the workplan for whole mixture screening based on
high-throughput in vitro new methodological approaches. Pooled blood/water/fish/food: samples
from a large number of European countries or European individuals are pooled, and thereafter the
chemicals are extracted from the pools. ACHE: acetylcholinesterase; TPO: thyroid peroxidase; TTR:
transthyretin; TBG: thyroid hormone binding globulin; GH3-TRE-luc: reporter gene bioassay that can
measure thyroid hormone receptor mediated activity; ER: estrogen receptor; AR: androgen receptor;
hIPSC: human-induced pluripotent stem cells; Nrf2: nuclear factor erythroid 2–related factor 2; AhR:
arylhydrocarbon receptor; PPAR: peroxisome proliferator-activated receptor.

Most in vitro bioassays used are well-established and have reached a certain maturity
within their research field, including the assessment of complex environmental samples [39]
as well as applications in biomonitoring [36]. Some of the assays have been standardised
and validated or are expected to be validated for use in regulatory applications by Organi-
sation for Economic Co-operation and Development (OECD) for testing single chemicals,
but an extension of their regulatory application domain in mixture assessment will also be
demonstrated during PANORAMIX.

The use of in vitro bioassays holds great promise in providing valuable data for a
MRA. However, with their increasingly regular use comes the need to better integrate all
generated data and to interpret it collectively. We suggest combining our whole mixture-
based approach with a component-based assessment, and the link between these two
approaches will be achieved through effect-directed analysis (EDA). EDA on its own is a
well-established method for the assessment of water samples [40–42], and its applications
can be advanced and used in an innovative way through a combination with targeted
screening, SS and NTS based on liquid/gas chromatography coupled to HRMS, as well as
with well-informed choices of in vitro bioassays applied to real-life biological matrices.

In recent years, progress has been made with respect to the establishment of guidelines
for SS and NTS, for instance by formulating recommendations for quality control and
quality assurance of tandem mass spectral libraries [43]. These types of libraries are
instrumental for obtaining high confidence annotations of HRMS data and of reliable
identification of suspects. In addition, guidelines for the implementation of SS/NTS for
human biomonitoring, environmental health studies and support to risk assessment were
described [44]. Furthermore, to improve HRMS data annotation quality and enhance the
identification success rate, different approaches for the identification of chemicals were
reported, such as HaloSeeker to aid the identification of halogenated chemicals [21] and
the CECscreen database, to support the annotation of chemicals of emerging concern and
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their (human) metabolites [45]. A workflow incorporating EDA for feature prioritisation in
SS and NTS was developed and validated [46,47].

In PANORAMIX, we will apply state-of-the art EDA using a top-down approach
(Figure 3), in which a relevant in vitro effect will guide further fractionation of mixture
extracts for a non-targeted identification of chemicals (or groups of chemicals) responsible
for that specific effect [36]. Importantly, EDA enables the identification of chemicals that
are mixture risk drivers irrespective of their origin and use. In brief, in vitro bioassays
will be implemented for screening of the activity in unfractionated extracts. In the case
of high response, the extract will be fractionated to obtain a high-resolution bioactivity
chromatogram, and HRMS data can be acquired to enable the identification of bioactive
chemicals.
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Our hypothesis is that the chemical drivers in a “mixture of concern” change and
become more persistent and bioavailable when we move up the food chain. Using this
approach, our aim is to determine how many and which chemicals drive mixture effects
in humans, and show how mixtures “travel” and change, in terms of types of chemicals,
concentrations and mixture ratios, from the environment to humans via the food chain.

3. Chemical Mixture Drivers in Human Cord Blood

Although there is concern that exposure to chemical mixtures during critical periods of
development (in utero or during infancy) could increase the risk of neurodevelopmental and
reproductive disorders, researchers have primarily studied this by component-based mixture
approaches to determine if and how the chemicals interact. However, this approach is usually
limited to a small number of compounds, and therefore can provide only limited insight into
the association between human health effects and combined exposure to chemicals.

As one possible strategy, we suggest characterising the link between mixture exposure
of the foetus and the development of reproductive and/or neurobehavioural dysfunction
at early age. With this purpose in mind, we will analyse cord blood samples collected at
birth in the Odense Child Cohort (OCC) (Figure 4). OCC is an on-going prospective birth
cohort wherein newly pregnant women residing in the Odense Municipality were offered
participation from 2010–2012 [48]. Following enrolment, the women’s general health and
lifestyle was assessed. Gestational age of the mothers, as well as birth weight, length and
head and abdominal circumference of the newborns were obtained from birth records
and a cord blood sample was stored. At child age of 3 months, 11/2 , 3, 5 and 7 years,
parents answered questionnaires on child and maternal health, and the child underwent a
clinical examination. Currently, over 2500 children are enrolled in this cohort and data on
important health outcomes for the children is well-documented, in particular reproductive
toxicity-related outcomes, including anogenital distance as a non-invasive hallmark of
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incomplete masculinisation and several sex hormones, as well as neuropsychological
development function, such as the assessment of language development (vocabulary and
complexity) using MacArthur-Bates Communicative Development Inventories report, the
Child Behaviour Checklist for ages 11/2–5 years that comprises 100 questions regarding
behavioural, emotional, and social problems, six of which represent an attention deficit
hyperactivity disorder problem scale, and the intelligence quotient score at the age of 7,
based on subtests of the original Wechsler’s Intelligence Scale for Children. Thus, this
cohort can provide unique cord blood samples to study chemical mixture drivers to which
the foetus is exposed.
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PANORAMIX will apply developed methodology and scientific evidence provided
by the first phase of the project, from which 3 to 6 bioassays, performing best in terms of
specificity, selectivity and sensitivity, will be selected to assess mixture effects of extracts
from 500 cord blood samples from the OCC (Figure 2; Phase 2). Resorting to chemical
profiling coupled to EDA, we will identify and quantify chemical mixture drivers in
children and associate this data with existing health information and measures of adverse
effects in the children collected from the OCC (Figure 4).

We hypothesise that with this approach, we will identify several chemicals of emerging
concern that elicit specific in vitro effects and can be associated with specific disorders which
so far have flown under the radar.

Furthermore, by involving samples from this well-characterised child cohort, PANORAMIX
will take the first steps toward associating adverse health outcomes to chemical mixture expo-
sures in early life.

4. State of the Art of Mixture Risk Assessment

Mixture toxicity as such, i.e., the ability of chemical mixtures to cause more harm to
human health than their individual constituents under certain circumstances, is broadly
accepted given the numerous reports of mixture effects under laboratory in vitro and in vivo
conditions. However, there is still a long way to go regarding the implementation of
regulatory actions on MRA [49–51].
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Guidelines on health risk assessment of chemical mixtures have been establish by
the United States Environmental Protection Agency (USEPA) for over 30 years [52]. In
Europe, options for estimating maximum residue levels were primarily discussed by the
European Food Safety Authority (EFSA) with regard to pesticides [53]. More recently,
considerations on different approaches for MRA were shared by both EFSA [54] and the
OECD [55]. These documents provide guidance on both component-based and whole
mixture-based approaches. In the latter approach, a MRA is performed from a more holistic
point of view, where each mixture as a whole is evaluated in the same way as an individual
chemical is.This whole-mixture MRA can be used for the assessment of poorly defined
mixtures, as is the case of the so-called UVCB substances, i.e., ‘Substances of Unknown or
Variable Composition, Complex Reaction Products and Biological Materials’ [56]. Its main
advantage is that this MRA approach reflects the integrated contribution of all chemicals
within a given mixture, even when it comprises unknown or unidentified substances, as
well as potential interactions among them. However, it does not provide information on
the toxicity of individual mixture components and does not allow the identification of the
chemicals that drive mixture effects. Moreover, it is grounded on the assumption that the
mixture composition (quantitatively and qualitatively) does not vary significantly over
time or across individuals [57].

On the other hand, the component-based approach accounts for the compositional
variability of the mixtures, predicting risk based on individual chemicals present in a
mixture, and it is currently applied by many risk assessment frameworks [58–60]. For this
approach, closely related chemicals are considered as a group, rather than as individual
substances, being assigned to cumulative assessment groups (CAGs) based on individual
toxicological properties. In Europe, this classification was first recommended by EFSA
for the risk assessment of pesticides, with thyroid and nervous system as common target
organs [61], and recently this recommendation was further expanded to other chemical
classes and other endpoints [62]. Several CAGs have been proposed so far, including
common mechanisms or modes of action, or common adverse outcome pathways [63–66].
This categorisation has allowed a component-based MRA to be established on the default
assumption of dose addition, meaning that the individual hazard quotients of known
chemicals within the same CAG are simply added up to a hazard index (HI) [67,68]. For
example, using this component-based MRA approach, it was reported that the combined
exposure to four polybrominated flame retardants, with neurodevelopmental adverse
effects in common, had an estimated hazard index that exceeded acceptable levels in
breastfeeding infants and small children, even at moderate exposure levels [69].

Similarly, in a study by Kortenkamp et al. [70], the cumulative risk from 29 antian-
drogenic substances from different chemical groups, including plasticisers, bisphenols,
pesticides and preservatives on semen quality was estimated to surpass tolerable levels for
people on the upper end of exposure levels by 100-fold. Bisphenols, polychlorinated dioxins
and paracetamol were found to drive risks to semen quality. Such studies highlight the need
to limit human exposure to chemicals that might be hazardous when combined in real-life
mixtures, even when they are individually present below their regulatory thresholds.

Mixture responses for compounds from the same CAG have been shown in many
experimental studies to be accurately predicted by dose addition. For instance, the foetal
testosterone production affected by a chemical mixture was accurately predicted with the dose
addition model, based on available data of individual chemicals [71]. In this study, mixture
effects of five antiandrogenic phthalates were predicted from individual data for 11 out of 14
endpoints of abnormal postnatal male reproductive tract development in rats. Orton et al. [72]
showed that the combined antiandrogenic effects of 30 substances, from a wide range of
chemical groups, occurred even at very low concentrations of individual components, with
concentration-response curves closely following dose addition estimations.

Nevertheless, and although rarely observed in experimental studies, the dose addition
model can underestimate combination effects. For instance, Christiansen et al. [73] showed
that a mixture of four antiandrogenic chemicals (one phthalate, two fungicides and one
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pharmaceutical) with different modes of action, composed and tested at their no observed
adverse effect levels (NOAELs), agreed well with the dose-addition prediction for most
hallmarks of disrupted male sexual development (anogenital distance (AGD), retained
nipples and sex organ weights), but underestimated the malformations of external sex
organs. Experimental synergistic effects have been reported mainly at high effect levels in
combination with binary or ternary mixtures [74]. The competing case of overestimating
mixture responses (antagonism) and for which the dose addition assumption may be
too conservative, appear to be even less frequent [75], and are often reported for specific
groups of chemicals like metals [76–78]. Here, the pharmacological prerequisite of the dose
addition model, i.e., all compounds in the mixture share a “similar” pharmacological site
or mode of action, is often not fulfilled. In the most extreme case, all compounds might act
on distinct molecular target sites, which would suggest the independent action mixture
model as the better reference. At environmentally realistic effect levels below 10% effect, the
difference between mixture predictions of dose addition and independent action becomes
negligible as the number of chemicals in a mixture increases [79].

It is commonly accepted that synergisms are more likely to occur with an increasing
complexity of the endpoint, i.e., simple receptor activation endpoint offer a priori less possi-
bilities to deviate from the dose addition assumption than a functional in vitro endpoint or
apical in vivo endpoint.

Importantly, a comprehensive component-based MRA frequently requires the assign-
ment of chemicals from different classes into the same CAG, and this categorisation still
remains a challenge. We suggest overcoming this issue by resorting to specific in vitro data
of chemicals, where active chemicals by default can be considered to belong to the same
CAG. This approach assumes that chemicals are acting additively within a mixture, that
the in vitro effect can be extrapolated to an in vivo effect, and that the molecular initiating
event or key event translate to an adverse outcome in vivo, meaning that the chemicals
are part of the same CAG. We will challenge this hypothesis by comparing the overlap
between compounds of a CAG derived by the proposed in vitro classification with the
target organ-based approach suggested by EFSA [62].

5. Pragmatic Solutions for Mixture Risk Assessment
5.1. Designed Mixture Experiments for Assessing Alignment with or Deviation from Additivity

Generally, it is accepted that chemicals can be grouped for MRA according to modes of
action, not according to chemical structural similarity or use/function-based criteria. Chemi-
cals with a similar mode of action are assumed to act dose-additively at low effect levels in,
while synergism and antagonism may play a minor role in environmentally realistic mixtures
and mixtures that we find in the human body [74,75]. However, it remains to be evaluated
whether deviations from additivity can occur in mixtures of a large number of compounds at
realistic exposure concentrations in blood for various bioassay endpoints. Thus, it remains to
be determined whether dose addition affords sufficient protection.

For this purpose, we will design complex mixtures containing up to 50 chemicals,
based in the concentration ratios from human blood samples, and model and predict the
mixture effects on reproductive function and developmental neurotoxicity with the aim of
determining if there are any major deviations from additivity at realistic exposure levels or
if dose addition is a robust prediction model for mixtures in human blood.

5.2. Case Studies for Evaluating Mixture Assessment Factors and Safety Margins

Instead of assessing risk from mixtures, a pragmatic, intermediate measure might be to
lower safety limits for single chemicals by (a) certain factor(s), so-called mixture assessment
factors (MAF). To provide input on the general need for and magnitude of evidence-based
MAFs for implementation by regulators, PANORAMIX will conduct knowledge-building
theoretical case studies on mixture effects of potential reproductive and developmental
neurotoxicants. These case studies will allow the identification of mixture drivers, the
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evaluation of current safety margins (as provided by the substance-by-substance approach),
and the recommendation of potential case-specific MAFs.

5.3. Derivation of Effect-Based Trigger Values

Over time, in vitro bioassays, in particular reporter gene assays, have been tuned to be
sufficiently sensitive to detect effects in enriched samples of clean waters, such as drinking
water and recycled water [39]. This high sensitivity means that a positive result in a bioassay
does not necessarily mean that there is concern for related real-life exposure. To help distin-
guish between an acceptable and an unacceptable bioassay response, the establishment of
EBT values has been proposed [79]. EBT values have been shown to adequately set a quality
threshold for different types of water, including drinking water [80,81]. However, they have
never been established for assessing mixture effects in food or human samples.

In an analogy to the successful application of the EBT concept in water quality as-
sessment, PANORAMIX aims to develop mechanism-based EBT values derived from
endocrine disruption and neurotoxicity bioassay results performed on food and human
blood samples.

Through this innovative experimental approach, we will derive EBT values for mix-
tures in the environment, food, and humans that can be used for determining if a mixture
in a sample is hazardous or not and for setting acceptable limits for mixture exposures.

5.4. Integrative Web-Based Chemical Mixture Calculator

To fulfil the need for a tool for MRA, we will develop a flexible web-based interface
comprising hazard and exposure data for a large number of chemicals which—based on
the assumption of dose additivity—can be applied for an initial assessment of risk from
mixtures of chemicals defined by the user.

A basic prototype of the Chemical Mixture Calculator (CMC) has been built [68]
and presently contains 200–300 data-rich compounds. The CMC allows the estimation of
hazard indices based on the assumption of dose addition for seven types of adverse effects.
The current platform will be further populated by in vitro and exposure data from the
chemical mixture identification and bioassay testing and will incorporate existing datasets
from the ICE (https://ntp.niehs.nih.gov/whatwestudy/niceatm/comptox/ct-ice/ice.html,
accessed on 1 June 2022), CompTox (https://comptox.epa.gov/dashboard/, accessed on 1
June 2022) and IPCHEM (https://ipchem.jrc.ec.europa.eu/, accessed on 1 June 2022), to
ensure that the 2.0 version of the CMC integrates newly available hazard and exposure
data. The underlying hypothesis is that risk characterisation ratios or hazard quotients
can be calculated based on toxicokinetic-corrected in vitro data for key events and human
biomonitoring data.

In the end, the intention is to deliver a user-friendly, integrative solution, ready for
use by the widespread scientific community and by risk assessors and regulators, which
will allow instantaneous MRA for both data-rich and data-poor substances.

6. Conclusions

With our outlined workplan, we will contribute to four major goals: (1) provide
scientific evidence to enable prevention and/or mitigation of co-exposure to environmental
chemicals in the environment and in humans; (2) support the implementation of existing
risk assessment and risk management approaches to reduce the most critical exposures,
including the setting of EBT values for mixture effects from bioassays; (3) evaluate new
regulatory approaches, such as the MAFs; (4) support activities on combined exposures as
relevant for the ‘Strategic Approach to Pharmaceuticals in the Environment’ and as to be
defined in the forthcoming implementation of the ‘Chemical Strategy for Sustainability’.
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