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ABSTRACT

Huge amount of data are nowadays produced by a large and disparate family of sensors, which typically
measure multiple variables over time. Such rich information can be profitably organized as multivariate
time-series. Collect enough labelled samples to set up supervised analysis for such kind of data is chal-
lenging while a reasonable assumption is to dispose of a limited background knowledge that can be
injected in the analysis process. In this context, semi-supervised clustering methods represent a well sui-
ted tool to get the most out of such reduced amount of knowledge. With the aim to deal with multivariate
time-series analysis under a limited background knowledge setting, we propose a semi-supervised (con-
strained) deep embedding time-series clustering framework that exploits knowledge supervision mod-
eled as Must- and Cannot-link constraints. More in detail, our proposal, named conDetSEC
(constrained Deep embedding time SEries Clustering), is based on Gated Recurrent Units (GRUs) with
the aim to explicitly manage the temporal dimension associated to multi-variate time series data.
conDetSEC implements a procedure in which an embedding generation step is combined with a cluster-
ing refinement step. Both steps exploit the small amount of available knowledge provided by Must- and
Cannot-link constraints. More specifically, during the data embedding generation the constraints are
used by jointly optimizing the network parameters via both unsupervised and semi-supervised tasks,
while at the refinement step they are used in conjunction with the goal to stretch the embedding man-
ifold towards the clustering centroids to recover a more clear cluster structure. Experimental evaluation
on real-world benchmarks coming from diverse domains has highlighted the effectiveness of our pro-
posal in comparison with state-of-the-art unsupervised and semi-supervised time-series clustering

methods.
© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

However, the effective clustering of multivariate time-series,
though being a central problem in a plethora of practical tasks,

Nowadays, the continuous acquisition of massive data has
become an essential part in processes at the basis of several appli-
cation domains, such as agriculture, biochemistry and human
health. Such data is acquired through the use of domain-specific
sensors (e.g., remote sensors, biochemical sensors, wearable
devices) that are able to produce data streams including the track-
ing of multiple features over time. When there’s the need to com-
putationally analyze such data, the natural way to model these
streams is into multivariate time-series. These data structures are
gaining increasing interest, and several methods have been pro-
posed in recent years that address tasks such as classification
[36,17,39] and forecasting [24,26,22,37] of multivariate time-
series.
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remains an open problem [19]. In real-world scenarios, labeling
data is an expensive task in terms of both time and resources,
regardless of the application domain. That’'s why developing
advanced unsupervised and semi-supervised clustering
approaches is a priority in this context [19], also considering the
fact that these methods allow to characterize multivariate time-
series data without taking into account any apriori knowledge.

In this domain, like in many others, deep learning approaches
have recently proven to be generally more effective than classic
data science approaches. That is, the ability of such neural architec-
tures to learning suitable data representation have a major impact
in optimizing the task at hand, and this is even more evident in the
multi-variate time series context, where the need to handle the
time dimension adds complexity to the already challenging subject
of multivariate data [29,11].

A deep learning based unsupervised clustering method for mul-
tivariate time series has been recently proposed in [16], which

This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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exploits a recurrent autoencoder integrating attention and gating
mechanisms in order to produce effective embeddings of the input
data. However, in practical contexts, it would be beneficial to
exploit some amount of available knowledge: even when this
quantity is too small to be used for the training of a proper classi-
fication model, it would still be valuable to use it to steer the clus-
tering process, which is clearly not possible where going for a
completely unsupervised method. For this reason, in this work
we propose a new method especially tailored for constrained clus-
tering of multi-variate time series data, namely conDetSEC, that
extends the approach in [16] to the semi-supervised setting, by
taking into account available (small amount of) background
knowledge under the shape of Must-link (ML) and Cannot-link
(CL) constraints.

To this end, we propose a neural network architecture based on
Gated Recurrent Units (GRUs), in which the clustering process is
based on a two steps procedure involving an embedding genera-
tion and a clustering refinement step, both exploiting the small
amount of available knowledge provided by ML and CL constraints.
More specifically, during the data embedding generation the con-
straints are used by jointly optimizing the network parameters
via both unsupervised and semi-supervised tasks, while at the
refinement step they are used in conjunction with the objective
to stretch the embedding manifold towards the clustering cen-
troids to recover a more clear cluster structure.

With the aim to assess the behavior of our framework, we pro-
vide an experimental analysis on six real-world time-series bench-
marks coming from different domains, that shows the effectiveness
and flexibility of our approach. The results of this analysis clearly
show how conDetSEC is able to exploit increasing quantities of
labeled data, with clustering results that always improve with per-
centage of available supervision.

The rest of the paper is structured as follows: Section 2 dis-
cusses related work, the conDetSEC framework is introduced in
Section 3, Section 4 presents experimental evaluation, while Sec-
tion 5 concludes.

2. Related work

Time series clustering is a problem that has been largely
addressed in literature in its univariate form [21], but that remains
challenging while coming to the multi-variate case. Focusing on
completely unsupervised approaches, several extensions of well
known techniques have been proposed [3,35,6,10]. More recent
approaches include Markov Random fields based techniques for
subsequence clustering [14], deep learning based approaches for
agglomerative clustering of video data [30] and for the clustering
of variable-length time series [29]. As regards constrained cluster-
ing, an insight into how different single-algorithm and ensemble
formulations can be adapted to the time-series case (i.e., by intro-
ducing Dynamic Time Warping as a more suitable distance mea-
sure and DBA (DTW Barycenter Averaging) method to compute
cluster centroids) is presented in [20]. The analysis highlights
how k-means based approaches are less suitable for the task, with
respect to spectral based and declarative ones. In [32] a semi-
supervised clustering methods for time series data is proposed,
namely COBRAS™, which is an extension of the COBRAS method
previously proposed by the same authors [31]. The main idea
behind this method is that of introducing super-instances, i.e., sets
of items that represent an intermediate step between the original
itemset and the final clustering. The process begins with all the
items belonging to the same super-instance, which is then decom-
posed in smaller ones through an iterative refinement process,
which takes into account must-link and cannot-link constraints.
Then the new super-instances are reassigned to new clusters.
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COBRAS™ extends the original algorithm by introducing distance
measures (DTW and shape-based) and refinement algorithms
(spectral k-Shape clustering) suitable for time series. Recently,
Fontes et al. [12] proposed a framework involving fuzzy c-means
based constrained clustering of time series in a pattern reconcilia-
tion context. The technique of data reconciliation is oriented to the
minimization of measurement errors in the data by imposing phys-
ical constraints associated with the production system (e.g., mass
and energy balances). That is, in this case the method deals with
soft constrains related to the physical properties of the cluster
members in a specific domain, and not with the classic Must-link
and Cannot-link constraints generally adopted in data science
methods. Summarizing, constrained clustering of multi-variate
time series is still an open problem, as also recently observed by
the authors in [12]. This represents a major motivation behind
the proposal of the conDetSEC framework, which could fill this
gap in literature, thus contributing in addressing this task in a
plethora of practical problems in different domains.

3. Methodology

In this section we introduce a new constrained clustering
framework especially tailored to manage multi-variate time series
data referred as conDetSEC (constrained DEep Time Series Embed-
ding Clustering). Let X = {X;}[., be a multi-variate time-series

dataset where X; is a time-series and Xj € R? is the multi-
dimensional vector of the time-series X; at timestamp j. The max-
imum length of a time-series is referred as T. Given X, a set of Must-
link constraints ML and Cannot-link constraints CL, the goal of con-
DetSEC is to partition X into a predefined number of clusters, by
exploiting the supervision supplied by the set of ML and CL con-
straints. We remind that Must-link (resp. Cannot-link) constraints
are defined over pair of time-series and indicate that two multi-
variate time-series should (resp. should not) belong to the same
partition [9].

The core of our framework is a neural network based architec-
ture. We use recurrent neural network architectures [2], and more
specifically a Gated Recurrent Unit (GRU) [4], to cope with both the
intrinsic sequential information and with the multi-variate infor-
mation that characterizes time-series data acquired by real-world
sensors. A visual representation of the GRU unit is depicted in
Fig. 1.

Moreover, formally speaking, a Gated Recurrent Unit (GRU) is
defined as follows:

Zr = O-(szxt + thht—l + bz) (1)
r[ = G(W,xxt + thht—l + br) (2)
he=z,®h 1+ (1 —2z) ©tanh(Wpyx; + W (re © he_1) + bp) (3)

The ® symbol indicates an element-wise multiplication while o
and tanh represent Sigmoid and Hyperbolic Tangent function,
respectively. x; is the timestamp input vector and h;_; is the hidden
state of the recurrent unit at time t — 1. The different weight matri-
ces W,, and bias vectors b, are parameters learned during the
training of the model.

This unit follows the general philosophy of modern Recurrent
Neural Network models implementing gates and cell states. The
GRU unit has two gates, update (z;) and reset (1), and one cell state,
the hidden state (h;). Moreover, the two gates combine the current
input (x;) with the information coming from the previous times-
tamps (h._1). The update gate effectively controls the trade off
between how much information from the previous hidden state
will carry over to the current hidden state and how much informa-
tion of the current timestamp needs to be kept. On the other hand,
the reset gate monitors how much information of the previous
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Fig. 1. Visual representation of the Gated Recurrent Unit cell. The GRU cell has two
internal gates (z; and r,) and an hidden state (h;). Gates are employed to combine
together current information with the one coming from previous timestamps.

timestamps needs to be integrated with current information. As
each hidden unit has separate reset and update gates, they are able
to capture dependencies over different time scales. Units more
prone to capturing short-term dependencies will tend to have a
frequently activated reset gate, but those that capture longer-
term dependencies will have update gates that remain mostly
active [4].

The conDetSEC framework includes two main stages: embed-
ding generation and clustering refinement. Constraints informa-
tion (or semi-supervision) is integrated in both stages: during the
data embedding generation, by jointly optimizing the network
parameters via both unsupervised and semi-supervised tasks,
and at the clustering refinement stage, where the embedding man-
ifold is stretched towards clustering centroids. Such centroids can
be derived by applying any centroid-based clustering algorithm
(e.g., K-means) on the new data representation. The final clustering
assignment is derived by applying the K-means clustering algo-
rithm on the embeddings produced by conDetSEC.
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Algorithm1 summarizes the conDetSEC framework. The first
stage (lines 1-7) is devoted to learn multi-variate time series rep-
resentation exploiting the supervision supplied by the available
constraints. To this purpose, we set up a reconstruct task in which
GRU autoencoders are employed to encode/decode the sequential
information. A visual summary of the autoencoder structure we
have conceived is depicted in Fig. 2.

Here, we use two GRU autoencoders AE; and AE,. Each autoen-
coder has two components, an encoder (enc; and enc,) and a deco-
der (dec; and dec,,). More precisely, AE; encodes (ency) and decodes
(decy) the original time series considering the natural order (for-
ward) while AE, encodes (enc,) and decodes (dec,) the time series
in reverse order (backward) w.r.t. the time dimension. The two AE
models interact with each other since, the same embedding repre-
sentation, we can name it emb; (emb; = ency(X;) + enc,(rev(X;))), is
fed to the two decoders. Here, X; is the time-series i and rev(X;) is
the same time-series in reverse order w.r.t. the time dimension.
smb; refers to the embedding for the time-series X;. Furthermore,
®,,0; and O are the learnt parameters of the recurrent model
where ©; are the parameters associated to the two encoders
(enc; and ency) and ®, (resp. ®;) are the parameters associated
to the forward (resp. backward) decoders dec; (resp. dec,). The
reconstruction error is assessed by means of standard Mean
Squared Error loss (or squared L2 norm) between the original
time-series and the reconstructed one (line 4).

Furthermore, after that the model parameters are modified by
means of the two (forward and backward) reconstruction loss
functions, the semi-supervision is integrated through the Lcyn, loss
that has the objective to take into account the information carried
out by the set of ML and CL constraints. To this end, we leverage a
contrastive loss [5] with the aim to inject the available knowledge
in the representation learnt by the main reconstruction process.
More formally, we can define the contrastive loss, in our context,
as follows:

Algorithm1: conDetSEC Optimization

Require: X, ML, CL, N_.PRET_EPOCHS, N_REFINE_EPOCHS, nClust.
Ensure: embeddings.

i =0

: while i < N_PRET_EPOCHS do

Update ©®, ®; and ©3 by descending the gradient:

Ve, ‘ML‘UCL‘ Leoner(ML, CL|®4) with mini-batch SGD
i=i+1

: end while

: embeddings = extractEmbedding(®,, X)

: 6, C =runKMeans(embeddings, nClust)

10:i =0

11: while i < N_REFINE_EPOCHS do

12: Update ©4, ®; and ®3; by descending the gradient:

Vo,0,0, f Sih IXi — AEr(Xi[©1,02) |13 + ok Xy, ex|Irev(Xi) — AEpack (Xi|©1, ©3)||3with mini-batch SGD

130 Ve, 0,0, i X — AEr(Xi1©1,02)|15 + g x| rev(Xi) —AEpack (Xi|©1, 03|15 +

Lg¢reccn(embeddings, 6, C|®1) with mini-batch SGD

14: Ve, MT”Lant,(ML, CL|®;) with mini-batch SGD
15: i =i +1

16: end while

17: embeddings = extractEmbedding(®1, X)

18: return embeddings
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Fig. 2. Encoder/Decoder structure of conDetSEC. The network has three main components: i) an encoder, ii) a forward decoder and iii) a backward decoder. The encoder
includes forward/backward GRU networks. From each GRU encoder an embedding is extracted. Subsequently, the per-encoder embedding are combined via a point-wise sum
operation to obtain the final embedded representation. Finally, the forward decoder reconstructs the original signal considering its original order (forward - green color) while
the backward decoder reconstructs the same signal but in inverse order (backward - red color). X, indicates reconstructed information per timestamps.

1., 1 .
Leonr = ) 5 Dist(Xi. X)) + > S[m-Dist(Xi,X))], (4

(Xi.X;)eML (Xi.X;)ecL

where Dist(X,-,Xj) is the squared euclidean distance between the
embeddings of the time-series Xi and X;
(Dist(X;,X;) = |lemb; — emby|[3), [c]. is the classical hinge loss
defined as max(0,c) and m is the margin hyperparameter. The idea
behind this loss is to minimize the distance between two embedded
multi-variate time-series that should belong (ML) to the same par-
tition (first term of the equation) as well as maximize the distance
(up to a certain margin) between two embedded multi-variate
time-series that should not belong (CL) to the same partition (sec-
ond term of the equation). We underline that, at each epoch, the
procedure firstly iterates on the whole set of unlabelled time-
series data X updating parameters ®;,®, and ©; (line 4) and, suc-
cessively, it iterates through the set of constraints (ML U CL) updat-
ing the network parameters ©; (line 5).

Then, the pretrained encoders are employed to extract the
multi-variate time-series representation with the aim to compute
an initial clustering of the data from which centroids are derived
(lines 8-9).

Successively (lines 11-15), the clustering solution is refined by
means of an additional term in the loss function defined as follows:

nClust

1
X > Z&;HC

emb;cembeddings j=

Lyrerch (embeddings, 6, C|®1) =

—emby|5 (5)

where nClust is the number of cluster, d;is an indicator function that
expresses if a time-series i belongs to the cluster j and C; is the cen-
troid of cluster j.

Such a term allows to explicitly stretch the manifold embedding
with the aim to move closer the time-series embeddings with the
corresponding clustering centroids inducing a more sharp cluster-
ing structure. Similarly to what was done for the first stage of the
procedure, also for this part of the framework, at each epoch, firstly
the reconstruction as well as the stretching loss terms are opti-
mized considering the whole set of unlabelled time-series data X
modifying the parameters ®;,®, and ®; (line 13) and, only suc-

cessively, the contrastive loss is optimized on the set of constraints
(ML U CL) updating the network parameters ®; (line 14).

More generally, the second stage of conDetSEC is devoted to
further stretch the manifold on which the embeddings lie moving
them closer to their corresponding centroids and, simultaneously,
still pay attention to the background knowledge provided under
the shape of ML and CL constraints. Moving the embeddings closer
to their corresponding centroids helps to achieve a more sharp
structure avoiding possible confusion in the clustering assignment
related to the non-deterministic nature of the majority of modern
clustering algorithms. All these components modify the new data
representation (embeddings) with the goal to facilitate the work
of the downstream algorithm that will be employed to provide
the final result.

Finally, the new data representation (embeddings) is extracted
(line 15) and returned by the procedure. The final partition is
obtained by applying the K-Means clustering algorithm on the
new data representation.

4. Experiments

In this section we describe the experimental evaluation we have
conducted to assess the performance of conDetSEC. To this end, we
compare conDetSEC with different competing methods over sev-
eral benchmarks and we quantitatively and qualitative inspect
the behaviour of our proposal.

4.1. Competitors

For the comparative study, we consider the following
competitors:

e The well-established K-means clustering algorithm [27]
equipped with Dynamic Time Warping distance measure [8]
(DTW).

o Another version of K-means algorithm equipped with the Soft
Dynamic Time Warping measures introduced in [7] (SOFTDTW).
This measure is a differentiable distance measure recently
introduced to manage dissimilarity evaluation between multi-
variate time-series of variable length;
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e The constrained spectral clustering approach proposed in [19],
named Spec. Such a clustering algorithm is still based on DTW
as internal dissimilarity measure. Among several methods for
constrained clustering over time series data, the spectral based
algorithm exhibits the best performances;

e The COP K-means algorithm coupled with DTW. In this case, the
original k-Means algorithm is modified in order to choose a
reassignment of the clustering solution not violating any con-
straints at each iteration. Similarly to the spectral based
approach, also this method is introduced in [19] and it is
pointed out as one of the strategies achieving the highest clus-
tering performances when a set of diverse time series bench-
marks is considered. We name such a competitor COPK-Means.

¢ A fully unsupervised variant of our approach that does not con-
sider the input constraints. This baseline allows to analyze the
added value related to the injection of background knowledge
under the form of constraints. We name such a baseline
conDetSEC,,oc.

All the k-means based approaches are adapted to multi-variate
time-series analysis leveraging the DBA (DTW Barycenter Averag-
ing) method [20].

Summing up, the two competitors based on the original K-
means algorithm (DTW and SOFTDTW), as well as the conDetSEC,,¢
variant of the proposed approach, are fully unsupervised, i.e., they
do not take into account the ML and CL constraints. While the con-
strained spectral clustering approach (Spec) and the COP K-means
algorithm are able to exploit constraints, they do so by adapting
classic constrained clustering algorithms to the time series domain,
i.e., constraints are exploited through basic algorithmic rules and
distance measures. Conversely, the aim of conDetSEC is to exploit
an advanced neural network architecture in order to overcome
the previous strategies, i.e., by explicitly taking into account the
constraints while at the same time managing the time dimension
during the process to learn the new embedded representation.

4.2. Data and Experimental Settings

The evaluation has been carried out on six benchmarks [11]
coming from disparate application domains and characterized by
contrasted features in terms of number of samples, number of
attributes (dimensions) and time series lengths. More in detail:

o The ArabDigit dataset contains timeseries of mel-frequency cep-
strum coefficients (MFCCs) corresponding to spoken Arabic dig-
its. It includes data from 44 male and 44 female native Arabic
speakers.

e The JapVowel benchmark still involves a speech classification
task. Nine male speakers uttered two Japanese vowels/ae/ suc-
cessively. For each utterance discrete-time series of LPC cep-
strum coefficients are extracted.

e The Dordogne benchmark involves a classification task where
time series are extracted from multi-temporal satellite image
acquisitions. The underlying task consists in the classification
of each (pixel) multi-variate time series to one of the several
land covers available in the nomenclature associated to the
study site (i.e. Crop, Water, Urban settlement, Forest, etc...).

e The ECG5000 benchmark contains time series coming from the
medical domain and describing people with severe congestive
heart failure. The class values were obtained by automated
annotation. The data was pre-processed in two steps: (1)
extract each heartbeat, (2) make each heartbeat equal length
using interpolation.
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e The HAR (Human Activity Recognition) dataset has been col-
lected from 30 subjects performing six different activities
(Walking, Walking Upstairs, Walking Downstairs, Sitting,
Standing, Laying). It consists of inertial sensor data that was col-
lected using a smartphone carried by the subjects.

¢ The Pendigits benchmark involves a handwritten digit classifica-
tion task. 44 writers were asked to draw the digits [0...9],
where instances are made up of the x and y coordinates of the
pen traced across a digital screen. The data was spatially resam-
pled to 8 spatial points, such that each sample has 2 dimension
of 8 points, with a single class label [0...9] being the digit
drawn.

All benchmarks, except Dordogne (which was obtained by con-
tacting the authors of [13]), are available online.

To measure the performances of all the clustering methods, we
use the Normalized Mutual Information (NMI) [25] as well as the
Adjusted Rand Index (ARI) [15]. Both metrics take their maximum
value when the clustering partition completely matches the origi-
nal one, i.e., the partition induced by the available class labels. The
NMI measure ranges between [0, 1] while the ARI index ranges
between [—1, 1]. Both evaluation metrics can be considered as an
indicator of the purity of the clustering result.

We analyze the behavior of the different methods according to
increasing levels of supervision. We simulate the supervision by
randomly select Must-link and Cannot-link constraints similarly
to what is commonly done in previous studies on semi-
supervised clustering [34,1,23]. More precisely, we randomly sam-
ple pairs of points and for each pair, we introduce a Cannot- or
Must-link constraint based on the labels of the sampled pair. We
adopt a similar constraint range as the one proposed in [38], we
vary the total amount of constraints from 1000 to 5000 with a step
of 1000. Such a constraint range represents a very small portion of
all the possible constraints we can generate from the previously
presented benchmarks. In addition, we have empirically observed
that considering a smaller number of constraints does not intro-
duce any kind of supervision in the competing approaches. For this
reason, we have chosen a constraint range that can provide room
for investigation according with the considered competing meth-
ods. Due to the random sample selection process and the non
deterministic nature of the clustering algorithms, we repeat the
sample selection step 5 times for each number of constraints.
Finally, for each level of supervision, we report the average values
of Normalized Mutual Information and Adjusted Rand Index. For
all the methods, the number of clusters is equal to the number of
classes.

conDetSEC is implemented via the Tensorflow python library
and the implementation is available online '. Model parameters
are learnt using the Adam optimizer [18] with a learning rate equal

to 5 x 10~* for both stages of our framework (embedding generation
and clustering refinement).

We set a batch size of 32 and the number of pretraining
(N_PRET_EPOCHS) and refining (N_REFINE_EPOCHS) epochs to 40
and 60, respectively. We set to 64 the number of hidden units for
the GRU cell. We remind that, for our framework, conDetSEC,
exactly the same architecture is employed for all the different
benchmarks involved in the experimental evaluation.

For all the competing methods we use the TSLEARN python
library [28] implementation of the Dynamic Time Warping and
Soft Dynamic Time Warping measure. Experiments are carried
out on a workstation equipped with an Intel(R) Xeon(R) W-2133,
3.6Ghz CPU, with 64 Gb of RAM and one GTX1080 Ti GPU.

1 https://gitlab.irstea.fr/dino.ienco/cmts-clustering/
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4.3. Results

Fig. 3 and Fig. 4 summarize the results, in terms of average Nor-
malized Mutual Information and Adjusted Rand Index, respec-
tively, of the different competing methods over the multi-variate
time series benchmarks varying the amount of labelled samples
from which constraints are derived. Generally, we can observe that
both evaluation metrics, NMI and ARI, depict a similar scenario.
competing

conDetSEC systematically outperforms all the
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approaches when at least two thousand constraints are taken into
account. Note that conDetSEC generally outperforms competing
methods also for the one thousand constraints configuration, with
some rare exceptions (ECG5000 for ARI, HAR for both metrics). In
addition, we can also note that our framework tends to provide
better clustering solutions when the amount of available labelled
samples per class increases. Conversely, the other semi-
supervised clustering methods (Spec and COP-KMeans) clearly
struggle to take advantage of increasing amount of background
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Fig. 3. Results (in terms of NMI) of the different approaches varying the amount of constraints on: (a) JapVowel (b) ArabDigit (c¢) HAR (d) Dordogne (e) ECG5000 and (f)

PenDigits benchmarks.
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benchmarks.

knowledge to steer the learning process. Spec generally exhibits
stable performance metric values, no matter the amount of back-
ground knowledge is injected in the semi-supervised process, with
the only exception being JapVowel (where its performance slightly
improves with the number of constraints). Conversely, COP-
KMeans shows to be sensitive to the number of constraints taken
into account, but rarely with positive outcomes (i.e., its perfor-
mance tends to decrease when a higher number of constraints is
exploited).
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Regarding the fully unsupervised approaches DTW and
SOFTDTW, we can notice that the former outperforms the latter
in the majority of the cases. In addition, the K-means strategy
based on the DTW measure exhibits competitive performances
with respect to its semi-supervised counterparts.

A direct comparison between conDetSEC and DTW also indi-
cates that HAR is the only benchmark over six where, when the
smallest amount of constraints is taken into account (one thou-
sand), the fully unsupervised DTW clustering approach exhibits
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competitive performances with respect to conDetSEC. Then, when
reasonable amount of background knowledge is integrated in the
learning process, our framework clearly exploits such information
to boost the clustering performances achieving evident gains com-
pared to the DTW method. Finally, the comparison between con-
DetSEC and its fully unsupervised ablation (conDetSEC,,c) makes
evident the fact that the proposed framework effectively exploits
the amount of supervision it can access.
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Fig. 5 and Fig. 6 depict the performances in terms of Normalized
Mutual Information and Adjusted Rand Index, respectively, when
only the samples involved in the Must-link and Cannot-link con-
straints are considered. This experiment has the objective to inves-
tigate how the different competing methods internally manage the
samples related to the background knowledge, thus providing
room for understanding the ability of each competing approach
to satisfy the set of input constraints. Since the COP K-means
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Dordogne (e) ECG5000 and (f) PenDigits benchmarks.
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method satisfies the whole set of input constraints by construction,
we did not include it for this experiment.

We can note that both NMI and ARI measures provide a similar
picture of the results. conDetSEC exhibits the best performances
over all the considered set of benchmarks under all constraints
configurations (the only exception being HAR with 1000 con-
straints), demonstrating once again its strong ability to well cap-
ture the supervision supplied by the set of input constraints
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conversely to the other competitors. On some benchmarks (i.e.,
JapVowel and ArabDigit), our framework achieves a perfect match-
ing when enough input constraints are provided as input to the
semi-supervised time series clustering process. While for other
benchmarks (e.g., HAR and PenDigits) the performance of conDet-
SEC, in terms of absolute values, is also excellent (NMI and ARI
around 0.9), for Dordogne and ECG5000 we can note slightly lower
behaviors. This attitude is shared by all the competing approaches,
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Table 1

Benchmark Characteristics.
Dataset # Samples # Dims Min/Max Avg. # Classes

Length Length
ArabDigit 8800 13 4/93 39 10
JapVowel 640 12 7/29 15 9
Dordogne 9919 6 23/23 23 7
ECG5000 4686 1 140/140 140 5
HAR 10299 9 128/128 128 6

PenDigits 10992 2 8/8 8 10

Table 2
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pinpointing the fact that these datasets, compared to the other
benchmarks employed in the experimental evaluation, constitute
a challenging testbed for the semi-supervised learning algorithms.
Finally, we can also observe that conDetSEC clearly benefits from
the increasing amount of Must- and Cannot-link constraints, con-
versely to the competing approaches that are marginally impacted
by the amount of available background knowledge. Table 1.

Table 2 reports an additional qualitative experiment where the
distance distributions for the samples involved in the Must-link
and Cannot-link constraints are evaluated. More in detail, here,
we compute the average intra pairwise distance for the set of
Must-link and Cannot-link constraints for: i) the Dynamic Time

Statistics (average and standard deviation) about the distances between samples involved in the Must-link and Cannot-link constraint sets when Dynamic Time Warping is
applied on the original time-series space (DTW) as well as the euclidean distance is deployed on the embedded space generated by conDetSEC when 5000 Must-link and Cannot-

link constraints are randomly sampled.

Dataset DTW Embedding
ML CL ML CL

JapWov 0.1322 + 0.0781 0.2583 + 0.0882 0.0991 + 0.0705 0.5909 + 0.1436
ArabDigit 0.1723 + 0.0269 0.2058 + 0.0221 0.1295 + 0.0665 0.5067 + 0.1116

HAR 0.2602 + 0.1446 0.4372 £ 0.1734 0.0703 + 0.0758 0.5132 + 0.2487
Dordogne 0.2470 + 0.0903 0.3093 + 0.1030 0.2519 + 0.1211 0.4257 + 0.1535
ECG5000 0.2583 + 0.1789 0.3557 + 0.1562 0.1852 + 0.1211 0.4410 + 0.2097
PenDigits 0.3133 + 0.1594 0.5067 + 0.1217 0.1602 + 0.1263 0.5450 + 0.1462
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Fig. 7. Visualizaton of the conDetSEC embeddings considering the same 100 per class samples belonging to the ArabDigits dataset with (a) 1000 (b) 3000 and (c) 5000
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randomly sampled constraints. The two dimensional representation is obtained via the T-SNE algorithm [33].
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Warping distance applied on the original time-series space (DTW)
and ii) the euclidean distance on the embedded space generated by
conDetSEC (Embedding). For each pair of (dataset,method) we
report average and standard deviation. Results have been obtained
by exploiting 5000 random sampled constraints. We can note that,
for all benchmarks, the embedded space generated by conDetSEC
permits to clearly stretch the manifold facilitating a better separa-
tion (in terms of average distance) between the samples involved
in the Cannot-link constraints with respect to the samples involved
in the Must-link ones.

To conclude the experimental evaluation, with the aim to visu-
ally inspect the behavior of conDetSEC, we depict the embedding
generated by our approach on the ArabDigit dataset by varying
the amount of random sampled constraints with values
1000,3000 and 5000. The results of this analysis are reported in
Fig. 7. To obtain the two dimensional representations, we apply
the t-distributed stochastic neighbor embedding (TSNE) approach
[33]. For this evaluation we consider 100 instances per class. To
make the visual results comparable, we firstly group together all
the embedding generated by conDetSEC, no matter the amount
of class samples were used to generated them. Successively, we
deploy the TSNE approach and, finally, we separated the obtained
projections to retrieve the original partitions. In this way, all the
TSNE projections exist in the same two dimensional space making
the visual inspection fair. The experiment underlines the ability of
conDetSEC to modify the data manifold exploiting the increasing
amount of background knowledge. We observe that clear differ-
ences exist between the embeddings learnt when 1000 (Fig. 7
(a)), 3000 (Fig. 7(b)) and 5000 (Fig. 7(c)) randomly sampled con-
straints are considered. Generally, increasing the amount of
semi-supervision results in more clear cluster structure in which
the classes are more distinguishable and separated from each
other. As a final remark, we want to stress out how conDetSEC
proved to be effective (constantly outperforming competing
approaches) on benchmarks coming from different application
domains and characterized by different structural characteristics.
This proves how the proposed approach is extremely flexible, since
it has not been designed to work on a specific domain or on time
series of a specific form. Therefore, it can be successfully applied
to any real world application where it is possible to model the
input data in the form of a time series with associated ML/CL
knowledge (e.g., any problem relying on sensor based data and
having some ground truth knowledge associated to derive the con-
straints set).

5. Conclusion

In this work we have presented conDetSEC, a new semi-
supervised (constrained) clustering algorithm especially tailored
for multi-variate time series data. The proposed framework is
based on Gated Recurrent Unit models and it includes two differ-
ent stages: embedding generation and clustering refinement. Con-
straints information (or semi-supervision) is integrated in both
stages.

The evaluation on six benchmarks has demonstrated the effec-
tiveness of conDetSEC and its flexibility on data coming from dif-
ferent application domains. The achieved results clearly point out
that conDetSEC has the ability to effectively exploits the amount
of supervision it can access. Additionally, we also conduct a visual
inspection of the embedded representation learnt by conDetSEC
that shows how the manifold learnt by the learning process is pos-
itively influenced by the amount of available background knowl-
edge injected as pairwise constraints. Despite the interesting
behavior exhibited by conDetSEC, several limitations are still
affecting our framework and need further research efforts. In the
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conducted research, we have made the strong assumption that
clustering is performed once time series were collected. In a more
realistic scenario multi-variate time series data could be acquired
in a dynamic scenario (i.e. [oT or mobile sensors) where streams
of information are generated. In such a context, incremental learn-
ing constitutes a possible way to limit human intervention and
meet the specificity of data streams like concept drift as well as
restricted access to the incoming data. Another limitation associ-
ated to our framework is that, as of now, conDetSEC is not capable
to manage new must- or cannot-link constraints that can be pro-
vided in a successive moment. To this end, methods and or mech-
anisms related to continual or incremental learning can represent
an interesting research track to explore in the future in order to
cope with current limitations associated to our methodology.
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