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Abstract. Promoting sustainable soil management is a pos-
sible option for achieving net-zero greenhouse gas emissions
in the future. Several efforts in this area exist, and the ap-
plication of spatially explicit models to anticipate the effect
of possible actions on soils at a regional scale is widespread.
Currently, models can simulate the impacts of changes on
land cover, land management, and the climate on the soil
carbon stocks. However, existing modeling tools do not in-
corporate the lateral transport and deposition of soil mate-
rial, carbon, and nutrients caused by soil erosion. The ab-
sence of these fluxes may lead to an oversimplified rep-
resentation of the processes, which hinders, for example,
a further understanding of how erosion has been affecting
the soil carbon pools and nutrients through time. The sed-
iment transport during deposition and the sediment loss to
rivers create dependence among the simulation units, form-
ing a cumulative effect through the territory. If, on the one
hand, such a characteristic implies that calculations must be
made for large geographic areas corresponding to hydrolog-
ical units, on the other hand, it also can make models com-
putationally expensive, given that erosion and redeposition
processes must be modeled at high resolution and over long
timescales. In this sense, the present work has a three-fold
objective. First, we provide the development details to repre-
sent in matrix form a spatially explicit process-based model
coupling sediment, carbon, and erosion, transport, and de-
position (ETD) processes of soil material in hillslopes and

valley bottoms (i.e., the CE-DYNAM model). Second, we il-
lustrate how the model can be calibrated and validated for
Europe, where high-resolution datasets of the factors affect-
ing erosion are available. Third, we presented the results for
a depositional site, which is highly affected by incoming lat-
eral fluxes from upstream lands. Our results showed that the
benefits brought by the matrix approach to CE-DYNAM en-
abled the before-precluded possibility of applying it on a
continental scale. The calibration and validation procedures
indicated (i) a close match between the erosion rates calcu-
lated and previous works in the literature at local and na-
tional scales, (ii) the physical consistency of the parameters
obtained from the data, and (iii) the capacity of the model
in predicting sediment discharge to rivers in locations ob-
served and unobserved during its calibration (model effi-
ciency (ME)= 0.603, R2

= 0.666; and ME= 0.152, R2
=

0.438, respectively). The prediction of the carbon dynamics
on a depositional site illustrated the model’s ability to simu-
late the nonlinear impact of ETD fluxes on the carbon cycle.
We expect that our work advances ETD models’ description
and facilitates their reproduction and incorporation in land
surface models such as ORCHIDEE. We also hope that the
patterns obtained in this work can guide future ETD models
at a European scale.
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1 Introduction

The adoption of more sustainable land management actions
constitutes a critical alternative for mitigating climate change
and sustaining food production (Roe et al., 2019). Soils
constitute a vital carbon (C) pool for the world, storing
1500–2400 Pg of carbon (PgC), more than the atmosphere
(589 PgC) and the surface ocean (900 PgC) together, and the
way humans interact with soils affects how soils and the
atmosphere interact, including the sequestration of carbon
(Ciais et al., 2013). It is understood that even minor dis-
turbances to soil pools can have significant impacts on the
global C cycle: increases of 4 ‰ in global agricultural stocks,
for example, could result in additional C sequestration of 2
to 3 PgC per year, which would contribute significantly to the
Paris agreement targets (Guenet et al., 2020; Minasny et al.,
2017; Soussana et al., 2019). Alternatives to rapidly increase
the content of soil organic matter, and consequently the C se-
questration from the atmosphere, include conservation agri-
culture (e.g., the retention of residues and zero or no-tillage)
(Robert, 2001), agroforestry, and afforestation. In the future,
however, the projected population growth poses an increas-
ing demand for food, feed, energy, and water, resulting in
additional pressures that, if not properly dealt with, can even
aggravate the problem (IPCC, 2019). An iconic example is
the southeastern Amazon forest, which has long been under-
stood as a C sink, but after decades of deforestation, it is
becoming a source of C to the atmosphere (Gatti et al., 2021;
Nobre et al., 2016).

One of the possible strategies for evaluating the impacts
of different alternatives on the C stocks is the use of numeri-
cal models that represent the physical, chemical, and biolog-
ical processes of the soil–plant–atmosphere system, such as
fixation by plants for biomass growth and the respiration by
microorganisms (Gettelman and Rood, 2016). Models rep-
resenting the interaction between soils and the atmospheric
system allow the evaluation of how future climate change
will impact soils and the opposite relationship. For example,
land surface models (LSMs) have allowed studies on differ-
ent topics, such as assessing the impacts of climate change on
crops, habitat, and water availability (Leng and Hall, 2019;
Schewe et al., 2019; Hamaoui-Laguel et al., 2015; Bonan and
Doney, 2018), evaluating strategies to achieve global envi-
ronmental targets (Harper et al., 2018; Chang et al., 2021),
and forecasting future scenarios of change (Friedlingstein
et al., 2006; Friedlingstein, 2015), among others. However,
the implementation state of LSMs currently does not cover
some relevant processes, such as lateral displacement of nu-
trients in the soil due to erosion, transport, and deposition
(ETD) processes (Quine and van Oost, 2020a). ETD is ar-
gued to affect the carbon cycle dynamically during its occur-
rence by inducing lateral fluxes of C in the landscape and
vertical fluxes between soil layers (Lal, 2003; Lugato et al.,
2018), and their absence in LSMs leads to an oversimplified
representation of the reality. The modeling complexity, along

with the scarcity of empirical data for the phenomenon and
the non-standardized nomenclature in the literature, hinders,
for example, a further understanding of how erosion has been
affecting the soil C pools through time (Lal, 2019; Lugato
et al., 2018; Wang et al., 2017; van Oost et al., 2007).

Including the complex ETD-related processes into exist-
ing LSMs comes at the cost of increasing the inherent tech-
nical complexity of these mechanistic models, such as re-
quiring massive amounts of codes, demanding costly com-
putational resources, and being hard to diagnose thoroughly
(Lu et al., 2020). For example, even without ETD-related
processes, existing LSMs are so complex with their detailed
soil–vegetation–atmosphere feedbacks and multitude of spa-
tial or temporal scales that simulations often must be per-
formed repeatedly for hundreds or thousands of years until
a stable condition is reached (Huang et al., 2018). In these
cases, calculations can take hundreds of processor hours, and
researchers often adopt less detailed or simplified processes
to avoid prohibitively slow simulation times (Washington
et al., 2008). Practically, such technical problems may hin-
der their operation by users, who are often individuals with
different backgrounds and abilities. Since such problems can
have an impact on model testing, validation, and ultimately
acceptance by the scientific community, approaches to over-
come them have been studied in the recent past. It is, for
example, the case of the matrix approach, which consists of
representing all carbon fluxes explicitly in matrix form (Luo
et al., 2017), which has been reported to increase modularity,
facilitate diagnostics, and accelerate spin-up calculations (Lu
et al., 2020; Xia et al., 2012; Huang et al., 2017, 2018). For
ETD-related processes, the incorporation and development
of such approaches are advisable, encouraged, and necessary
to enable the complexity of representing the vertical and lat-
eral dynamics of C and sediments on the landscape.

In this paper, we address the problem of scaling the cal-
culations of CE-DYNAM, a hybrid empirical–mechanistic
ETD model based on a physical emulator of the carbon cy-
cle in soils (Naipal et al., 2020) on a continental scale. First,
we describe the model formulation and show how the matrix
approach leads to a sparse linear system, thus making cal-
culations feasible. We expect our mathematical development
of CE-DYNAM to facilitate its reproduction and incorpora-
tion in LSMs such as ORCHIDEE, DayCent, and others. We
then calibrated the model for the study area (i.e., Europe)
for the last 150 years using climate forcings with a monthly
temporal and a 0.125◦ spatial resolution (approx. 12.5 km at
the Equator) using sediment concentration in rivers from data
collected in the field. Comparing the predictions against such
observed values is important to evaluate the cumulative ef-
fect of all model assumptions, as well as its performance on
catchments with different characteristics. Internal and exter-
nal validation of the results is presented to show their consis-
tency and physical realism. Finally, we exemplify the practi-
cal use of CE-DYNAM by presenting the results of the im-
pact of ETD-related processes in a chosen depositional area
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in the territory. With the model in a matrix form, the cali-
bration, and the pattern obtained at the depositional area, we
expect it to form the basis for future large-scale model appli-
cations.

2 Materials and methods

2.1 Methodological proposal: the matrix approach

2.1.1 Definitions

The CE-DYNAM model (Naipal et al., 2020) consists of cou-
pling erosion and transport modules to the soil carbon dy-
namics of any land surface model based on CENTURY (Par-
ton et al., 1983, 1988). Typically, CE-DYNAM uses the re-
vised universal soil loss equation (RUSLE; Renard, 1997),
an approach adapted for predicting erosion at a large scale
and a coarse spatial resolution, but any other existing op-
tion such as the LISEM model (de Roo et al., 1998) could
be used. The transport module is a topography-based routing
scheme, which uses the altitude (or an approximate digital
elevation model) to distribute the sediments and their cor-
responding organic carbon. The scheme is calibrated with
field sediment discharge data to generate realistic values, and
the elements are incorporated into the soil organic C dynam-
ics as additional fluxes between pools beyond those initially
present in the first-order kinetics of CENTURY (Naipal et al.,
2015, 2016). As a remark, CE-DYNAM could be coupled
to other carbon models as long as they adopt a first-order
kinetics. Some advantages of the coupled approach of CE-
DYNAM include the current incorporation of interactions
such as the feedback between land use, climate, and erosion
(Borrelli et al., 2020; Quine and van Oost, 2020b), as well as
the potential for the future implementation of other compo-
nents such as soil properties. Figure 1 presents a simplified
representation of all fluxes of hillslopes and valley bottom
soil pools in CE-DYNAM.

CE-DYNAM has only been applied at a local scale, such
as in the non-alpine region of the Rhine basin (whose to-
tal area equals 185 000 km2) (Naipal et al., 2020). However,
scaling the model to the continental scale, where the area
can be tens of times larger than the application mentioned
above, still faces practical implementation difficulties that
we address in our current work. A careful evaluation of CE-
DYNAM’s original implementation allows the identification
of three important points. First, from a computational point
of view, the original implementation requires the storage of a
large amount of data in the computer’s memory for its execu-
tion, which in practice becomes prohibitive as the geograph-
ical area or spatial resolution increases. Second, the original
strategy is based on the subdivision of the problem in smaller
and adjacent units – generally the sub-basins of a hydro-
graphic basin. This procedure naturally restricts the ability
to distribute the solution over different processing units and

requires the continuous execution of additional steps of inte-
gration of all smaller units, which leads to a significant per-
formance reduction. Third, the equilibrium calculation pro-
cedure of the original method consists of the successive it-
eration of the model, which can be very inefficient (Huang
et al., 2018). Alternatives for these problems are more easily
perceived when the models’ mathematical notation is prop-
erly developed and stated.

Thus, to solve the problems above, we first clarify the
notation to facilitate the comprehension of details and en-
sure reproducibility. We do so by adopting a general descrip-
tion and, when necessary, including examples based on OR-
CHIDEE (Krinner et al., 2005) to illustrate the concepts. The
formulation accompanies Table 1, containing all input vari-
ables for the model, which helps clarification. The indices in
Table 1 refer to five dimensions: the soil pool (c), the spatial
location (x, interpreted here as a point of a lattice X rep-
resenting an area on the surface), the plant functional type
(PFT) (p), and the soil depth (d). Besides those dimensions,
most variables also evolve in time (t). Some datasets are as-
sumed constant on one or more dimensions during simula-
tions: the geographic area of each cell, for example, varies in
space but does not change according to the soil pools, PFTs,
soil depth, or time.

Mimicking the carbon dynamics of the LSM (in our case,
ORCHIDEE) is the most important pillar of CE-DYNAM
(Naipal et al., 2020). In general, we can represent the
soil carbon pool setting of such LSMs with a set Cs =

{c1,c2, . . .,cn}. However, in comparison to the LSM in which
it is based, CE-DYNAM makes additional assumptions to
those described above. One of these assumptions is that the
soil carbon pools are divided into two fractions – hillslopes
and valley bottoms (i.e., Cs = Ch

⋃
Cv) – in such a way that

the original number of soil carbon pools is twice the number
of the LSMs. Such an assumption affects the original calcu-
lation depending on the fraction under consideration. For the
hillslopes, calculations are modified by the inclusion of an
extra flux proportional to the erosion predicted by a chosen
model such as the RUSLE. For the valley bottoms, such a
flux from hillslopes becomes a new input, and a new lateral
dynamics of sediments across the landscape, induced by the
terrain slope (sx) and the flow accumulation (1/wx), is added.
These lateral dynamics give rise to most computational chal-
lenges in CE-DYNAM since they make the stock in one sim-
ulation unit dependent on its neighbors.

Another assumption introduced by CE-DYNAM is a dis-
cretization of soil depth, which allows the evaluation of the
vertical movement of carbon in layers even when the LSM
does not. This is done by first setting m= 3 soil layers (that
is, surface, middle, and bottom layers) and then defining a set
D = {d1,d2, . . .,dm} of soil layers. For example, if one lets
d1 = 10 cm, d2 = 20 cm, and d3 = 30 cm, then one is iden-
tifying the segment of soil from zero to 10 cm as the sur-
face, the segment from 10 cm to 30 cm as the middle layer,
and from 30 to 60 cm as the bottom layer. Throughout this

https://doi.org/10.5194/gmd-15-7835-2022 Geosci. Model Dev., 15, 7835–7857, 2022
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Figure 1. A simplified representation of all fluxes in CE-DYNAM. All colors represent the same flux (e.g., the blue arrow represents the input
from litter). The example shown corresponds to a specific moment in time, spatial location, plant functional type (PFT), and soil pool. All
fluxes with written descriptions are directly affected by the parameters to be calibrated (i.e., γ1, γ2, etc.), except for those with an underline.
Fluxes whose description is in bold interact with one or more spatial locations, soil pools, or PFTs (right, gray squares).

text, we also use the symbol dk , k ∈ {1,2, . . .,m}, to refer to
the kth layer. Then, the input from litter to soil pools is dis-
tributed along D to calculate the share of input to each soil
layer. We describe such a vertical discretization procedure in
Sect. 2.1.2, and we denote the vertically discretized version
of I jx,pl(t) as I ∗jx,pl,d

(t) (Eq. 5).
Because the LSM used in this work is based on CEN-

TURY, carbon pool kinetics will always follow a first-order
differential equation. Furthermore, soil carbon is divided into
three pools (active, slow, passive) with different turnover
rates that vary with temperature, moisture, clay content,
and other modifiers (e.g., tillage) (Camino-Serrano et al.,
2018). The set of v = 15 plant functional types used to
represent land cover in the model is denoted here as P =
{p1,p2, . . .,pv}. Then, for a fixed layer dk ∈D, a fixed lat-
tice point x ∈X, a fixed PFT pl ∈ P , a fixed pool ci ∈ Cs,
and a fixed time t , we let Six,pl,dk

(t) denote its carbon stock.
The formulas for the CE-DYNAM rates are detailed in

later sections of the text. However, we can essentially repre-
sent how the model evolves in time with Eq. (1). While such
a representation omits most model dimensions, it is useful to
clarify its dynamics as that of a linear and non-autonomous
model (Sierra et al., 2018, Table 1). As we will describe in the
following subsections, the coupling of erosion-related pro-
cesses will always respect this general structure, with the
changes consisting of modifications to each of its elements
according to the particular case.

dS
dt
= I (t)− κ(t) · S(t) , (1)

with S(t) denoting the carbon stock at time t in the pool, I (t)
denoting all the pool’s input, and κ(t) denoting the output
rates. In the equilibrium calculation, the model was iterated
several times over the period 1860–1869 until convergence to
the pullback attracting trajectory (Sierra et al., 2018). In the
transient period, all the elements on the right part of the equa-
tion will be known, and the dS/dt calculated will correspond
to the increment in carbon stocks at each time step. Essen-
tially, we are interested in evaluating how the carbon stocks
S(t) change over the transient period. Through the rest of the
text, we frequently refer to Eq. (1) as the basis to form the
carbon budget in all cases.

In the matrix approach, we discretize Eq. (1) and represent
all fluxes between pools as a linear system. Hypothetically, if
no fluxes between pools existed, we would have

S(t +1t)= S(t)+ I (t) ·1t −A(t)S(t) ·1t, (2)

where S(t)=
[
Six,pl,dk

(t)
]
x∈X
l∈[v]
k∈[m]
i∈[n]

∈ R|X|×v×m×n,

I (t)=
[
I ix,pl,dk

(t)
]
x∈X
l∈[v]
k∈[m]
i∈[n]

∈ R|X|×v×m×n, and A(t) is a diago-

nal matrix with diagonal[
κ
i,i
x,pl,dk

(t)κ
i,i
x,pl,dk

(t)
]
x∈X
l∈[v]
k∈[m]
i∈[n]

∈ R|X|×v×m×n.

However, interactions tend to be complex in more gen-
eral situations. The following sections show that the rout-
ing scheme for valley bottoms creates a dependence between

Geosci. Model Dev., 15, 7835–7857, 2022 https://doi.org/10.5194/gmd-15-7835-2022
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Table 1. The external input variables for CE-DYNAM calculation.

Notation Description Source

ux,pl(t) The percentage of each plant functional type (PFT) in
each cell. 0< ux,pl(t) < 1, so one cell cannot be more
than 100 % covered by a PFT; and

∑
lux,pl(t)= 1.

This information comes from the land surface model.

ax The geographic area (km2) of each cell. Derived from each cell’s bounding box.

bx,dk The bulk density (g cm−3). Several potential sources are available, for example,
the Global Soil Dataset for Earth System Modeling (≈
1 km) (Shangguan et al., 2014) and SoilGrids (250 m)
(Poggio et al., 2021).

αx The depth to bedrock (cm). SoilGrids (250 m) (Poggio et al., 2021).

νx,dk The soil organic carbon stock (tonnes). Derived from SoilGrids (250 m) (Poggio et al., 2021).

κ
i,j
x,pl(t) When i = j , it represents an output rate from the pool i.

When i 6= j , it represents a transfer rate between (from)
carbon pool ci and (to) carbon pool cj (1 d−1).

These rates are calculated from the output of the land
surface model.

ρix,pl
(t) The respiration rates of carbon pool ci (1 d−1). Same as above.

I
j
x,pl(t) The input from litter pools to carbon pool cj

(gC (m2 d−1)−1).
Same as above.

ex,pl(t) The average erosion rate (t (ha d−1)−1). Calculated from any erosion model such as the universal
soil loss equation, the Water Erosion Prediction Project,
etc.

sx The terrain slope (degrees). Derived from any digital elevation model, such as from
the Shuttle Radar Topography Mission (Farr et al.,
2007).

1/wx The adimensional flow accumulation (i.e., the cumula-
tive number of upstream drainage cells).

Same as above, preferably from the same source as the
terrain dataset.

hx The fraction of each cell belonging to hillslopes. (1−
hx) is the fraction of valley bottoms.

Pelletier et al. (2016).

lx The river width (m). Derived from HydroSheds (Lehner et al., 2008).

pools of different grid cells, PFTs, and soil layers. While
such a property replaces several off-diagonal zero elements
of A(t) by non-zero rates, it still preserves the inherently
sparse structure of A(t).

Next, we detail how the elements of A(t) and I (t) can be
calculated. For simplicity, we exemplify with the first time
step of the equilibrium period (t = t0), but calculations are
analogous for all time steps.

2.1.2 Vertical discretization

As mentioned in Sect. 2.1.1, CE-DYNAM vertically dis-
cretizes the soil, which has a direct impact on the respiration,
erosion, and turnover rates of the original LSM. An expo-
nential increase in the profile depth is assumed, so each soil
layer thickness in the discretization profile is calculated from
the depth to bedrock, αx , using two real-valued parameters

γ1 and r:

dm−k+1 =

z=k/m∫
z=(k−1)/m

αx · exp(γ1+ r · z)dz

=
αx

r
·

[
exp

(
γ1+ r ·

k

m

)
− exp

(
γ1+ r ·

k− 1
m

)]
∀k = 1,2, . . .,m. (3)

For any choice of γ1, the parameter r is calculated by con-
straining the sum of all vertical layers to match the total dis-
tance to bedrock. By using the general properties of definite
integrals, it is possible to show that it can be analytically cal-
culated with the closed-form solution

r =−exp(γ1)−W
[
−exp(γ1− exp(γ1))

]
, (4)

where W(·) represents the Lambert W function (see Corless
et al., 1996). The example notation of Eqs. (3) and (4) shows

https://doi.org/10.5194/gmd-15-7835-2022 Geosci. Model Dev., 15, 7835–7857, 2022
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an important property of the vertical discretization scheme:
the γ1 parameter depends solely on the soil discretization set-
ting, which is assumed to be identical for all cells in CE-
DYNAM. For this reason, there is a single γ1 value indepen-
dent of all factors being different (e.g., the spatial location,
the PFT, or the variable to be discretized). Besides, this prop-
erty also means that the vertical discretization is not scale-
invariant, and thus the depth scheme must be defined with
extra care. In Fig. 2, we show how a possible vertical profile
of depth equal to 2 m varies with γ1: for values closer to zero
(left), the profile tends towards a flat one, while for larger
values (right), the model tends to calculate a smaller surface
layer. The realistic choice of γ1 must come from the model
calibration procedure.

In the carbon simulation, the input from litter to soil pools
is also vertically discretized. This is done by multiplying the
original quantity (i.e., I jx,pl(t)) by the percentage of soil or-
ganic carbon in each soil layer (Poggio et al., 2021).

I ∗
j
x,pl,dk

(t)= I
j
x,pl(t) ·

νx,dk∑
dνx,d

(5)

For the erosion rates, the vertical discretization is assumed
inversely proportional to the mass of soil in each layer. Since
not all the carbon eroded in hillslopes goes to valley bottoms,
the term is multiplied by a fraction from zero to one, which is
assumed to vary with terrain slope and land cover. A different
curve is assumed for forests, croplands, and grasslands, and
their calibration is made using field observations.

λx,pl,dk (t)=

RUSLE rate︷ ︸︸ ︷
ex,pl (t)

bx,dk · dk ·hx,pl · ax︸ ︷︷ ︸
Total mass of soil

·

% of erosion that goes to valley bottoms︷ ︸︸ ︷
1

1+ exp(gf(sx))
, (6)

with the multiplication by hx,pl varying for hillslopes and
valley bottoms according to their fractions, and gf(sx) be-
ing the weighted sum of the different smoothing function for
forests, croplands, and grasslands multiplied by their corre-
sponding land cover fractions. Although not explicit in the
notation, such a function also varies in time, since land cover
varies each year.

2.1.3 Fluxes: hillslope soil carbon pools

Bottom soil layer: dm

We describe the carbon dynamics in hillslopes in terms of
three general pools, c1,c2,c3 ∈ Ch, which can be interpreted
in terms of the active, slow, and passive soil pools of OR-
CHIDEE. For the deepest soil layer, the rearrangement of
Eq. (1) leads to the following equations for c1, c2, and c3,

respectively:

dS1
x,pl,dm

(t0)

dt
=


Input: litter pools︷ ︸︸ ︷∑

ci∈Cl

I ∗
1
x,pl,dm

(t0)+

Input: c2 pool︷ ︸︸ ︷
κ2,1
x,pl

(t0) · S
2
x,pl,dm

(t0)

+

Input: c3 pool︷ ︸︸ ︷
κ3,1
x,pl

(t0) · S
3
x,pl,dm

(t0)



−


Respiration rate︷ ︸︸ ︷
ρx,pl (t0)

1
+

Output: c2 pool︷ ︸︸ ︷
κ1,2
x,pl

(t0) +

Output: c3 pool︷ ︸︸ ︷
κ1,3
x,pl

(t0)

+

Output: erosion B→T︷ ︸︸ ︷
λx,pl,dm (t0)

 ·
c1 stock︷ ︸︸ ︷
S1
x,pl,dm

, (7)

dS2
x,pl,dm

(t0)

dt
=

(∑
ci∈Cl

I ∗
2
x,pl,dm

(t0)+ κ
1,2
x,pl

(t0) · S
1
x,pl,dm

+κ3,2
x,pl

(t0) · S
3
x,pl,dm

(t0)
)

−

(
ρ2
x,pl

(t0)+ κ
2,1
x,pl

(t0)+ κ
2,3
x,pl

(t0)

+λx,pl,dm(t0)
)
· S2
x,pl,dm

(t0) , (8)

dS3
x,pl,dm

(t0)

dt
=

(∑
ci∈Cl

I ∗
3
x,pl,dm

(t0)+ κ
1,3
x,pl

(t0) · S
1
x,pl,dm

+κ2,3
x,pl

(t0) · S
2
x,pl,dm

(t0)
)

−

(
ρ3
x,pl

(t0)+ κ
3,1
x,pl

(t0)+ κ
3,2
x,pl

(t0)

+λx,pl,dm(t0)
)
· S3
x,pl,dm

(t0) . (9)

Since CE-DYNAM does not affect litter pools, all quanti-
ties in the equations above should be known, except the three
hillslope soil carbon pools in the equilibrium calculation. In
Eq. (7), we denote as B→ T the flux from the bottom layer
to the layer above.

Middle and top soil layers

In hillslopes, the structure for middle and top soil layers will
be identical to that for bottom layers, except for the B→ T
loss from the layers below (i.e., the fourth term of Eq. 7),
which becomes a new input to the layers above. This results
in an additional input equal to λx,pl,dk+1(t0) · S

j
x,pl,dk+1

(t0) in
the case of pool cj and depth dk . One important final remark
is that, for the top soil layer, the interpretation of the “Output:
erosion B→ T” rate becomes “Output: erosion hillslopes→
valley bottoms”.

2.1.4 Fluxes: valley bottom soil carbon pools

Preliminary assumptions

In the hillslope soil carbon pools described above, the move-
ment of C was spatially static, which means that all calcula-
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Figure 2. Possible options for the vertical discretization parameter in CE-DYNAM. The vertical axis shows the layer heights in centimeters,
and the horizontal axis shows some possible γ1 values.

tions were performed within the same spatial unit (i.e., grid
cell). However, the physical definition of valley bottoms ex-
tends the movement to other cells, since connected areas ex-
change sediments and C according to the terrain and land
cover configuration. This characteristic is incorporated into
the CE-DYNAM model by defining a routing scheme that
transports sediments along the landscape.

To represent the lateral transport, a new rate τx derived
from the sediment residence time is added. Its calculation is
performed as

Sediment rate︷︸︸︷
τx =

1
gτ (1/wx)︸ ︷︷ ︸

Residence time

, (10)

with gτ (1/wx) representing a smoothing function between
the sediment residence time and the flow accumulation (i.e.,
upstream area) to be calibrated from the observations. In
this work, we adopted a 3rd degree B-spline to represent all
smoothing functions. Besides, the flow accumulation infor-
mation is also used in the routing scheme to generate an ap-
proximated digital elevation model, wx . Such an approxima-
tion is used instead of the original terrain to ensure a hydro-
logically consistent topography for the lateral movements.

Also, let P+x (t) be the number of non-zero PFTs in cell
x at time t and Q(x) be the set of queen neighbors (Fig. 3)
(Quinn et al., 1991) of a given cell x formed as

Q(x)= {y : y− x ∈ {−1,0,1}× {−1,0,1},y 6= x} .

With these definitions, the routing scheme for a given cell
consists of two elements incorporated into its C balance.
First, at the surface depth, d0, there is loss from the cell to

Figure 3. Queen neighbor setting used for the routing scheme. The
center cell (red) is x.

its neighbors, but some definitions are necessary to dictate
how the process occurs.

1. The routing scheme works only within the same carbon
pool. For example, the active carbon routed from one
cell is added exclusively to the active carbon pool of its
neighbor cells.

2. The C from one PFT in the source cell is transferred
equally to all non-zero PFTs of the target cell.

3. The bare soil PFT (conventionally denoted here by p0)
loses and gains no C on the routing scheme.
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The rate of routed C from a PFT pr of the source cell x to
a PFT pl of the target cell y can then be calculated as

Lateral transfer rate︷ ︸︸ ︷
θ[ x,y︸︷︷︸

Source, Target

] =

Indicator function︷ ︸︸ ︷
1(wy<wx) ·

Slope: rise/run︷ ︸︸ ︷
wx −wy

||x− y||2
, (11)

Rate of routed carbon︷ ︸︸ ︷
ζx,pr,y,pl(t) =

Indicator︷ ︸︸ ︷
1(pl 6=p0,pr 6=p0) ·

Sediment rate︷︸︸︷
τx

·

Local % of lateral transfer︷ ︸︸ ︷
θx,y∑

y∈Q(x)θx,y
·

Local % of target PFT︷ ︸︸ ︷
uy,pl(t)∑v
s=1uy,ps (t)

,

(12)

where the indicator function equals 1 when the condition is
met or zero otherwise. Together, Eqs. (11) and (12) result in
the important remark: the total loss of C in PFT pr 6= p0 of
the source cell is equal to τx times the corresponding C stock
at the surface, which varies according to the pool under con-
sideration (for example, S1

x,pr,d0
(t0) for pool c1). Also, the

flux is equal to zero for the remaining case of pr = p0, since
the bare soil does not participate in the routing scheme. At
the surface, the equilibrium value of C stock in one cell and
PFT will depend on the equilibrium value of C stock in all the
PFTs of all its neighbors. This property of the routing scheme
is essential and makes several zero off-diagonal elements be
represented as rates from/to different grid cells, PFTs, or soil
layers.

Besides, despite affecting more directly the soil surface
layer, the routing scheme is also assumed to affect the ver-
tical movement of C described earlier in Sect. 2.1.3 for the
case of hillslopes. The same total rate routed from one PFT
to the neighbors also moves through the layers, from the
bottom to the top (B→ T) (i.e., subsoil exposure). In the
other way (T→ B), the rate received from the neighbors
is transmitted vertically from each layer to the layer below
(i.e., burial). The only exception is naturally dm, which has
no layers below. Such input rate to pl can be denoted as∑
y∈Q(x)

∑v
r=1ζy,pr,x,pl(t).

Top soil layer: d0

The equations for the C dynamics in valley bottoms can be
obtained by putting the new fluxes along with the other ones
from the original LSM. This implicitly assumes that litter in-
put and PFT in valley bottoms are the same as in the standard
LSM. Again, we make this section using a general notation
of c1,c2,c3 ∈ Ch and its respectively correspondent pools
c4,c5,c6 ∈ Cv. For example, if c1 is the hillslope soil active
carbon pool, then c4 is the valley bottom soil active carbon
pool. Below, we describe the fluxes for PFT pl of pool c4 us-
ing element-wise notation. For the topsoil layer, d0, we have
input from below but not from above, and we also have in-
puts from some neighbor cells via the routing scheme and

losses for other neighbors for the same reason.

dS4
x,pl,d0

(t0)

dt
=


Input: litter pools︷ ︸︸ ︷∑

ci∈Cl

I ∗
4
x,pl,d0

(t0)+

Input: c6 pool︷ ︸︸ ︷
κ6,4
x,pl

(t0) · S
6
x,pl,d0

(t0)

+

Input: c5 pool︷ ︸︸ ︷
κ5,4
x,pl

(t0) · S
5
x,pl,d0

(t0)

+

Input: hillslopes︷ ︸︸ ︷
λx,pl,d0 (t0) · S

1
x,pl,d0

(t0)+

Input: vertical flow B→T︷ ︸︸ ︷∑
y∈Q(x)

P+y (t0) · τx · S
4
x,pl,d1

(t0)

+

Input: routing scheme︷ ︸︸ ︷∑
y∈Q(x)

∑
r=1

v
ζy,pr,x,pl (t0) · S

4
y,pr,d0

(t0)



−


Respiration rate︷ ︸︸ ︷
ρ4
x,pl

(t0) +

Output: c5 pool︷ ︸︸ ︷
κ4,5
x,pl

(t0) +

Output: c6 pool︷ ︸︸ ︷
κ4,6
x,pl

(t0)

+

Output: routing scheme + extra respiration︷ ︸︸ ︷∑
y∈Q(x)

P+y (t0) · τx

+

Output: erosion T→B︷ ︸︸ ︷
λx,pl,d0 (t0) +

Output: vertical flow T→B︷ ︸︸ ︷∑
y∈Q(x)

∑
r=1

v
ζy,pr,x,pl (t0)



·

c4 stock︷ ︸︸ ︷
S4
x,pl,d0

(t0)

(13)

For the other pools c5 and c6, the equations are analogous.

Middle layers

The routing scheme for valley bottoms also affects the mid-
dle layers with its vertical components. For having layers
above and below, such layers have fluxes in both directions.
For a PFT pl of pool c4, the equation for dk , 0< k < m, is
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dS4
x,pl,dk

(t0)

dt
=


Input: litter pools︷ ︸︸ ︷∑

ci∈Cl

I ∗
4
x,pl,dk

(t0)+

Input: c6 pool︷ ︸︸ ︷
κ6,4
x,pl

(t0) · S
6
x,pl,dk

(t0)

+

Input: c5 pool︷ ︸︸ ︷
κ5,4
x,pl

(t0) · S
5
x,pl,dk

(t0)

+


Input: erosion T→B︷ ︸︸ ︷
λx,pl,dk−1 (t0) +

Input: vertical flow T→B︷ ︸︸ ︷∑
y∈Q(x)

∑
r=1

v
ζy,pr,x,pl (t0)



·S4
x,pl,dk−1

(t0)+

Input: vertical flow B→T︷ ︸︸ ︷∑
y∈Q(x)

P+y (t0) · τx · S
4
x,pl,dk+1

(t0)



−


Respiration rate︷ ︸︸ ︷
ρ4
x,pl

(t0) +

Output: c5 pool︷ ︸︸ ︷
κ4,5
x,pl

(t0) +

Output: c6 pool︷ ︸︸ ︷
κ4,6
x,pl

(t0)

+

Output: vertical flow T→B︷ ︸︸ ︷∑
y∈Q(x)

∑v

r=1
ζy,pr,x,pl (t0)+

Output: erosion T→B︷ ︸︸ ︷
λx,pl,dk (t0)

+

Output: vertical flow B→T︷ ︸︸ ︷∑
y∈Q(x)

P+y (t0) · τx

 ·
c4 stock︷ ︸︸ ︷

S4
x,pl,dk

(t0) . (14)

Bottom soil layer: dm

Finally, for the bottom soil layer, the equation is identical to
Eq. (14), the exception being the inexistence of B→ T input
or T→ B output rates, since there are no bottom layers. In
this case, for a given PFT pl of pool c4, we have

dS4
x,pl,dm

(t0)

dt
=


Input: litter pools︷ ︸︸ ︷∑

ci∈Cl

I ∗
4
x,pl,dm

(t0)+

Input: c6 pool︷ ︸︸ ︷
κ6,4
x,pl

(t0) · S
6
x,pl,dm

(t0)

+

Input: c5 pool︷ ︸︸ ︷
κ5,4
x,pl

(t0) · S
5
x,pl,dm

(t0)

+


Input: erosion T→B︷ ︸︸ ︷
λx,pl,dm−1 (t0) +

Input: vertical flow T→B︷ ︸︸ ︷∑
y∈Q(x)

∑
r=1

v
ζy,pr,x,pl (t0)


·S4
x,pl,dm−1

(t0)
)

−


Respiration rate︷ ︸︸ ︷
ρ4
x,pl

(t0) +

Output: c5 pool︷ ︸︸ ︷
κ4,5
x,pl

(t0) +

Output: c6 pool︷ ︸︸ ︷
κ4,6
x,pl

(t0)

+

Output: vertical flow B→T︷ ︸︸ ︷∑
y∈Q(x)

P+y (t0) · τx

 ·
c4 stock︷ ︸︸ ︷

S4
x,pl,dm

(t0) . (15)

2.2 Study area

In this work, the study area comprises the European Union
member states (EU27), plus Switzerland, the United King-
dom, and the Balkan states (i.e., Albania, Bosnia and Herze-
govina, Kosovo, Montenegro, North Macedonia, and Serbia).

The EU27 is a political and economic block of 27 coun-
tries, covering 410× 106 ha – larger than the seventh-largest
country in the world (India) – and 447 million inhabitants.
Switzerland, the United Kingdom, and the Balkan states were
included for being spatially adjacent territories. The food and
farming sector of the EU27 used 156.7×106 ha of land (i.e.,
38.2 % of the total area) for agricultural production in 2016
and currently provides nearly 40 million jobs (i.e., 9.75 %
of the total population) (Statistical Office of the European
Union, 2020; European Commission, 2021b).

The EU27 has been promoting changes to shift its agricul-
ture towards more sustainable practices. In 2019, for exam-
ple, the European Commission proposed the European Green
Deal, a growth strategy for the continent that proposes en-
vironmental targets, including climate neutrality by 2050.
Some of the targets include increasing the share of organic
farming from 8.5 % of the total agricultural land to 25 %
by 2030 and increasing tree cover by planting 3 billion ad-
ditional trees also by 2030 (European Commission, 2021a).
Such actions come as an anticipated response to projections
of future environmental conditions. For example, the pro-
jected patterns of rainfall erosivity for the future indicate an
increase in 81 % of the European territory by 2050 (Panagos
et al., 2017), which will consequently affect soils, a very rel-
evant natural resource for the achievement of the European
Green Deal’s goals (Montanarella and Panagos, 2021).

2.2.1 Input data: LSM emulator and erosion rates

The first step to running CE-DYNAM is to build a standalone
version of the soil carbon dynamics of an existing LSM, i.e.,
an emulator. Such a procedure is done by carefully analyz-
ing and modifying the source code of the original LSM to
allow the export of all necessary variables for reproducing
calculations externally. In this work, we ran ORCHIDEE, a
process-based model that simulates vegetation, energy, wa-
ter, and carbon fluxes (Krinner et al., 2005), with the follow-
ing settings: (i) version: ORCHIDEE 2.2; (ii) time step and
range: daily, from 1 January 1860 to 31 December 2018; (iii)
climate: monthly forcings at a 0.125◦ spatial resolution from
the VERIFY project (see https://verify.lsce.ipsl.fr/index.php/
presentation, last access: 6 October 2022); (iv) land cover:
annual forcing – derived from the ESA CCI Land Cover
dataset (European Spatial Agency, 2021; LSCE, 2021).

For the calculation of erosion rates, we applied the well-
known revised universal soil loss equation (RUSLE) model,
using the values recently developed by the European Com-
mission specifically for our study area (Panagos et al.,
2015e). For a given year (y) and month (m), the monthly
erosion rate (E) (in t (ha yr−1 PFT−1)−1) was calculated as

E(y,m)= R(y,m) ·K ·C(y) ·LS ·P , (16)
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with R(y,m) being the rainfall erosivity factor1 (in
MJ mm ha−1 h−1 yr−1), K being the soil erodibility factor2

(in t ha h ha−1 MJ−1 mm−1), C(y) being the dimensionless
land cover and management factor3, LS being the dimen-
sionless slope length and steepness factor4, and P being the
dimensionless support practice factor5. When collapsing the
PFT dimension for the calculation of annual or monthly av-
erages, E(y,m) was multiplied by the corresponding land
cover fraction pi for PFT i (Table 1). All the data were
aligned and processed on a 0.125◦ grid.

As seen in Eq. (16), factors K , LS, and P were assumed
constant for the whole period 1860–2018, while R(y,m)
varies per month, and C(y) varies annually. The source of K
is the extrapolated version of Panagos et al. (2014) including
stoniness, LS comes from the completely harmonized ver-
sion of Panagos et al. (2015b) for the whole study area, and P
comes from the database provided by Panagos et al. (2015d).
The first and the second factors cover the whole study area
originally, but the third does not, so an additional assumption
was added: in places where P was not available (i.e., Switzer-
land and the Balkan states), it was assumed to be equal to 1.
According to the authors mentioned above, K and P were
derived from the LUCAS field survey carried out in 2009
and 2012, respectively.

For C, we used the spatial dataset of Panagos et al.
(2015c), but an additional procedure was made to minimize
the differences arising from the mismatch in the land cover
class definitions and spatial resolution. Such a procedure
consisted of fitting a linear regression model to the upscaled
version of the original C factor using the target land cover
classes as explanatory variables (i.e.,C =

∑
iβipi+ε, ε ∼

N(0,σ 2)). An intercept term was intentionally not added to
the linear regression, and pi is the average land cover from
the period 2010–2018, approximately the period of data col-
lection of Panagos et al. (2015c).

The rainfall erosivity also demanded an extra processing
step. The main source for calculations was the monthly ero-
sivity derived and provided by Ballabio et al. (2017). To ex-
trapolate for the past, we assumed a constant erosivity den-
sity for the whole simulation period, 1860–2018. That was

1It represents the “kinetic energy of raindrop’s impact and the
rate of associated runoff” (Panagos et al., 2015a; Wischmeier and
Smith, 1978).

2It “represents an integrated annual value of the soil profile re-
action to the process of soil detachment and transport by raindrops
and surface flow” (Panagos et al., 2014; Renard, 1997).

3It “accounts for how land cover, crops, and crop management
cause soil loss to vary from those losses occurring in bare fallow
areas” (Panagos et al., 2015c; Kinnell, 2010).

4It describes “the effect of topography on soil erosion” (Panagos
et al., 2015b).

5It “accounts for control practices that reduce the erosion poten-
tial of runoff by their influence on drainage patterns, runoff concen-
tration, runoff velocity, and hydraulic forces exerted by the runoff
on the soil surface” (Panagos et al., 2015d; Renard et al., 1991).

made by calculating

R(y,m)= r(y,m) ·
R∗(m)

r(m)
,

with R∗(m) being the original monthly erosivity dataset up-
scaled to a 0.125◦ spatial resolution, r(m) being the aver-
age monthly precipitation of the period 2010–2018 (roughly
the same data collection period of Ballabio et al., 2017), and
r(y,m) being the monthly precipitation for the month m of
year y.

2.2.2 Calibration and validation

Calibration

Calibrating CE-DYNAM means ensuring that the values pre-
dicted by the routing scheme introduced are realistic and
consistent with field observations. To do so, we made an
exact copy of the model described in Sect. 2.1.3 and 2.1.4
but replaced the carbon quantities with sediment quanti-
ties. Then, we used as field data the information of to-
tal suspended solids and river discharge from the GEMStat
database (United Nations Environment Programme, 2018)
for the whole of Europe. We adopted a squared error cost
function between the model predictions and the observa-
tions. Because the calculation of analytical derivatives of
the cost function with respect to the parameters is hard in
our case, minimization was performed using the NEWUOA
solver (Powell, 2006, 2008) with early stopping to prevent
overfitting.

Like most optimization methods, NEWUOA requires sev-
eral evaluations of the cost function, which is computation-
ally expensive in our case. For this reason, we calibrated
the model using annual averages instead of monthly inputs
to accelerate calculations. We also pre-processed our obser-
vations by first aggregating annually the total of 10 552 in-
stantaneous observations available, which resulted in 391 an-
nual median values for 40 rainfall stations distributed across
Europe from 1979 to 2003. Then, we calculated the 5-year
moving averages of the median annual values to simultane-
ously smooth extreme values from floods that are not mod-
eled in CE-DYNAM and remove stations with a few obser-
vations. The final dataset contained 241 observations at 30
stations, whose contributing areas covered nearly one-fourth
(23.34 %) of the study area. For each set of parameters, we
calculated the predicted sediment stock in the river fraction
of the cell (from variable lx , see Table 1), and the objective
function adopted was the squared error between this quan-
tity and the product between the total suspended sediments
observed and the water volume in a day (derived from the
instantaneous discharge). As in similar works such as Bor-
relli et al. (2018), the model was assessed using the Nash–
Sutcliffe model efficiency (ME) coefficient (Nash and Sut-
cliffe, 1970) and the coefficient of determination (R2) as de-
fined by Everitt and Skrondal (2010).
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Validation

The hillslope erosion rates were externally validated by com-
paring our estimates with some field observations and mod-
eled values in the literature. We used the compilation of ob-
servations by Cerdan et al. (2010) in two ways: (i) we ag-
gregated our and their land cover classes into four common
categories (i.e., croplands, grasslands, forest, and bare soil)
and compared the distribution of our calculations with their
reported point estimates; and (ii) we compared our country
averages with their extrapolated calculations for the whole of
Europe. We also compared our erosion values to the compi-
lation of local-scale field observations from different sources
reported by Panagos et al. (2020) and modeled country aver-
ages of Panagos et al. (2015e) to evaluate the model behavior
at a local and regional scale, respectively.

The calibration of the lateral movements on the model was
validated both internally and externally. The model’s internal
consistency was checked by comparing the physical quanti-
ties obtained empirically by the calibration procedure with
the results previously obtained in the literature. We checked
the model’s ability to predict the sediment concentrations in
places unobserved during the calibration process. For this
purpose, the 30 rainfall stations of the final dataset were di-
vided between 24 stations for calibration – i.e., 80 % ob-
served by the model – and 6 stations for validation – i.e.,
20 % unobserved by the model.

2.3 Simulations

In order to evaluate the behavior of CE-DYNAM under dif-
ferent scenarios, two simulations were made after model cal-
ibration. In Simulation #1 (S1), all ETD-related processes
are considered. In Simulation #2 (S2), no ETD-related pro-
cesses are added to the original LSM fluxes. In this case, the
original model is only affected by the vertical discretization
of fluxes and the division of soil carbon pools into hillslopes
and valley bottom soil carbon pools. With such assumptions,
the summation of all the results for soil layers of S2 recovers
the original LSM results. In both cases, simulations were run
from 1 January 1860 to 31 December 2018.

3 Results and discussion

3.1 LSM emulator and erosion rates

The main result for the LSM emulator is presented in Fig. 4:
a comparison of the true values of ORCHIDEE against the
predicted ones from the emulator with ETD not enabled. The
simulation was made in one random grid cell representa-
tive of the model behaviors over the entire studied region.
A slight mismatch between original and predicted values ex-
ists at early time steps, but as expected, values tend to a
nearly identical curve after a few time steps, indicating the
adequacy of the emulator to replace the full LSM for erosion

calculations with CE-DYNAM. In general, the adoption of an
emulator has advantages and disadvantages for CE-DYNAM
compared to its implementation directly on an LSM. On the
one hand, one can list its simplicity, agility, and flexibility as
an advantage to be easily modified for the inclusion of new
dynamics, such as the ETD fluxes in the present research or
for other LSMs. It could be noted at this point that practically
all existing soil carbon model implementations can be repre-
sented in a linear form, and therefore, the matrix approach
could be applicable and CE-DYNAM coupled (Huang et al.,
2018). In fact, Sierra and Müller (2015) and Metzler et al.
(2020) demonstrate how the approach could be used even for
more complex nonlinear models. On the other hand, the use
of a standalone version of the LSM allows the processes to be
represented only in a simplified way. In the present work, for
example, respiration rates and litter input are always assumed
to be identical to those simulated by LSM, whereas the liter-
ature suggests that, in fact, these should also be affected by
ETD fluxes (Olson et al., 2016). Such a limitation also exists
for other important interactions affecting the fate of trans-
ported carbon that cannot be properly incorporated into the
emulator, such as variation in soil moisture and temperature,
as well as in organic matter quality and soil fractions (Lal,
2003).

For the erosion rates, Figs. 5 and 6 present the historical
spatiotemporal variability reconstructed. On the top subfig-
ure of Fig. 5, the absolute erosion rates in 1860 are shown
on the left, while the maps for 1910, 1960, and 2010 repre-
sent the variation with respect to 1860. It can be seen that
the annual variations do not follow a linear pattern through
time, thus affecting erosion calculations unequally. A de-
crease in erosion rates from 1860 to 2010 can be noted in
Central Europe, and a strong pattern on countries’ borders
follows from the assumptions of the reconstructed land cover
database used (LSCE, 2021). Although partially, this result
is related to those reported by Bork and Lang (2003) and
Dotterweich (2008), who in historical reconstructions in Ger-
many and Central Europe found peaks in erosion rates in the
second half of the 18th century, a period for which there
is documentary evidence of extreme rainfall events, and in
the early 19th century. In Fig. 5, the 1860 erosion map also
shows points in four different locations (i.e., P1, P2, P3, and
P4, plus the whole study area (WSA)). Within a year, the
monthly variations in erosion rates are due solely to changes
in the rainfall and the erosivity factor, and as seen in the bot-
tom graph of Fig. 5, the pattern of such changes also varies
nonlinearly in space and may differ from the average pattern
of the study area. Additionally, Fig. 6 shows the annual av-
erage erosion rates, calculated as 2.96 t ha−1 for 2018. Such
a value is higher than the 2.46 t ha−1 reported by Panagos
et al. (2015e), which can be justified by the different spatial
resolution, land cover database, and study area, since, in our
case, we include Switzerland and the Balkan states, which
have erosion rates that are relatively higher compared to their
neighbors (Fig. 5, top left). Fig. 6 also shows the average ef-
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Figure 4. Comparison between the results of the original LSM (i.e., ORCHIDEE, continuous lines) and the results of the emulator constructed
for the present work (dashed lines), for 10 years of pool initializations. ORCHIDEE does not have a hillslope–valley bottom differentiation
of pools, while the line for the emulator corresponds to their sum. Ideally, the emulator would be a perfect standalone version of the LSM.

fect of the two time-varying factors adopted for RUSLE cal-
culation, i.e., theR and theC factors of Eq. (16). Two distinct
patterns of variation can be seen through time, with theR fac-
tor having a higher annual variability and the C factor be-
ing less abrupt, except for the evident breaks during the two
World Wars. The R factor shows a cyclic pattern from 1860
to 1901 due to the recycling of (i.e., repetition of climate)
forcings adopted by ORCHIDEE for this period. The calcu-
lations also indicate an overall increase in erosion rates from
1860 to 1960 due mainly to land cover changes and a peak in
rainfall erosivity, followed by an overall decrease from 1960
to 2018. Despite such a pattern in the nearer past, the liter-
ature indicates a tipping point in the present. Future projec-
tions from Panagos et al. (2021) indicate that water erosion in
Europe is expected to increase between 13 % and 22.5 % by
2050, and Borrelli et al. (2020) estimate an increase in 2015
water erosion rates of 33 % to 66 % by 2070 worldwide. Un-
der these scenarios, future values could be even higher than
the past values calculated and shown in Fig. 6.

Also for the erosion rates, the annual country averages
were compared against values reported in the literature. The
results of Fig. 7 (left) show a positive agreement between
all databases considered, as highlighted by the positive slope
of the robust linear models fitted to the data. The steep-
ness of curves suggests that the model’s ability to reproduce
the continent-scale patterns is higher than local-scale pre-
dictions, which can be interpreted as a consequence of the
model’s relatively coarse resolution to represent local-scale
hydrology. On the right part of Fig. 7, the comparison per
land cover class shows a close match for croplands and bare
soil, the highest rates in our model. On the other hand, our
model tends to underestimate erosion in forests and grass-
lands compared to the external sources, with our values lying
on the lower tail of the distribution of Panagos et al. (2015e)
and Cerdan et al. (2010).

3.2 Model calibration

The NEWUOA algorithm performed several hundred func-
tion evaluations until stopping. Using averaged annual in-
stead of monthly forcings and performing the calculation
only for the catchments areas of stations, each evaluation
took around 6 min of processing time. The vertical discretiza-
tion parameter obtained was γ1 = 0.1, approximately the left
pattern from Fig. 2. Calibration also indicated that the in-
put of sediments from hillslopes into valley bottoms varies
from 0.4 % to 11.8 % in croplands, from 4.9 % to 10.9 %
in forests, and from 0.3 % to 3.8 % in grasslands (Fig. 8a).
These values can be interpreted in several ways. First, the
absolute magnitude of the values is relatively small, follow-
ing what was suggested by Hoffmann et al. (2013a), with the
maximum values being comparable to the 15 % of on-site
erosion reaching riverine systems presented by Borrelli et al.
(2018) for the same study area. However, the direct compar-
ison of these values should be read with caution because of
the large methodological differences between works. For ex-
ample, the authors defined the rivers explicitly and used a
higher spatial resolution for a single moment in time, char-
acteristics that contrast with those of CE-DYNAM (Naipal
et al., 2020). Furthermore, despite the similar interpretation,
the quantities compared may themselves differ between the
models adopted (Rompaey et al., 2001). Second, regarding
the shape of the curves, there is an increasing relation in pa-
rameter gf as a function of slope for forests and croplands but
a decreasing relation for grasslands. The increase in two of
the three land-use classes can be readily explained by the im-
portant effect of gravity on sediment transport (Bridge, 2003;
Huggett, 2017), while its generally low range of values can
partially explain the unexpected decrease in grasslands com-
pared to that of forests and croplands. Third, with respect to
the ordering of the curves, two patterns are observed. In flat
areas, with a slope less than 1.5◦, the pattern is forests having
higher transport than grasslands, followed by croplands. In
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Figure 5. Annual erosion rates calculated in this work. In the top subfigure, the top-left map shows the erosion rates for 1860 and four points
(P1, P2, P3, and P4), while the top-right, bottom-left, and bottom-right maps show the anomalies for 1910, 1960, and 2010, respectively. The
bottom subfigure shows the changes in erosion rates due to variations in the monthly rainfall and erosivity for P1, P2, P3, P4, and the whole
study area (WSA) within the same year, 1860.
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Figure 6. The average impact of the reconstructed R and C factors on the erosion rates for the period 1860–2018.

Figure 7. Comparison between the average erosion rates calculated by external sources versus the values calculated in our work, along with
an identity line (left), and the comparison of the distribution of erosion rates per land cover (right). In the right plot, the values for our work
are the average for the period 1970–2018, and the values for Cerdan et al. (2010) are the reported mean ± standard deviation.

steeper areas, with slopes above 1.5◦, there is a rapid change
in the ordering, leading to a situation where croplands gen-
erally have higher sediment transport than forests and grass-
lands. The low influence of this region on sediment produc-
tion can explain the non-intuitive relationship between the
classes. For example, areas with slopes less than 1.5◦ were
responsible for only 5.43 % of Europe’s total erosion in 2018,
with the remaining 94.57 % occurring in the steeper areas.
Therefore, it is reasonable to expect that the steeper areas
will be better represented in the model. Thus, the later pat-

tern of Fig. 8 can be explained by the lower cohesive proper-
ties of the less vegetated covers relative to the more vegetated
ones, consequently offering less resistance to water and sed-
iment flow (Osterkamp et al., 2011; Hoffmann et al., 2013a;
Huggett, 2017). Figure 8b, also shows the sediment residence
time, which was estimated to vary from 0.5 years (180 d) to
24.5 years, indicating that sediment retention increases with
watershed size, in agreement with that described by Hoff-
mann et al. (2013b).
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Figure 8. Results from the calibration procedure: the fraction of sediments that go from hillslopes to valley bottoms (a) and sediment
residence time (b).

The validation for the best set of parameters is summa-
rized in Fig. 9, which shows a plot of actual against predicted
values (using annual forcings) for the observed and the un-
observed locations. In all cases, the prediction value used for
this comparison are those from the same year as the observa-
tion. The red diagonal is a 1 : 1 line, and each group of dots
connected by a line represents a different station. The best
set of parameters found yielded ME= 0.603 and R2

= 0.666
for the observed stations and ME= 0.152 and R2

= 0.438
for the unobserved stations. Overall, for the full dataset, the
model has ME= 0.578 and R2

= 0.640. The values obtained
are relatively high when compared to similar studies. Works
such as that of Feng et al. (2010) and Rompaey et al. (2005)
in China and Italy, respectively, reported negative ME values,
which indicate that sometimes distributed models are un-
able to represent sediment dynamics, especially when there
is high heterogeneity in the data (Rompaey et al., 2005). In
Quijano et al. (2016), where the authors studied four adjacent
hydrological units at a local scale in Spain, distributed mod-
els could represent well the dynamics involved. The overall
value obtained for the study region was ME= 0.11, while
the value calculated individually per hydrological unit ranged
from ME=−0.11 to ME= 0.49. In what is probably the
most similar to our work in terms of the study area, Bor-
relli et al. (2018) initially considered a total of 24 semi-
natural and agricultural basins in Europe, for which they ob-
tained ME= 0.38. The result motivated the authors to fur-
ther remove basins as a fine-tuning of the model calibration
used, which led to ME= 0.89 for 10 basins. The results from
these other studies help us to compare the performance of
the model presented in the current work. It can be noted that
the present work uses more observations and calibrates the
model with time-varying data (i.e., not long-term averages),

which requires a more complex model architecture and high-
lights the robustness of the calibration performed. It is also
an important remark that the comparison with other works
was only possible after the methodological improvements in
the new version of CE-DYNAM compared to that of Naipal
et al. (2020): (i) the possibility of calibrating the lateral fluxes
using sediment data collected in the field and relatively abun-
dant in the literature (see United Nations Environment Pro-
gramme, 2018); and (ii) the possibility of performing valida-
tion with field data, using the model as a basis for prediction
for locations unobserved during its fit.

We also used the same best set of parameters with monthly
forcings to quantify how distant the simplified calibration
with annual forcings is from the optimal condition. Using
monthly forcings for a full calibration remains precluded,
since a single function evaluation took almost 1 d to com-
plete. In that experiment, values dropped to ME= 0.464
and R2

= 0.616 for the entire dataset, indicating a relatively
small change in predictions compared to the simplification
using annual forcings.

3.3 Simulations

In both scenarios, the two A matrices (i.e., one for hillslopes
and the other for valley bottom calculations) are square with
a size equal to the product between the number of cells, the
number of PFTs, the number of soil layers, and the num-
ber of soil carbon pools, which for the setting used in the
present work equals 1.85× 107 rows and columns. In S1,
where all fluxes are considered, the average number of non-
zero elements on the A matrices of hillslopes and valley bot-
toms were 7.4×106 and 1.7×107, respectively, correspond-
ing to densities of 21.6 ppb (i.e., 10−9) and 49.7 ppb. In S2,
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Figure 9. Plot of the predicted annual averages against the observed
annual sediment discharge values in log scale. Each dot or triangle
corresponds to 1 of the 241 observations, and the connected icons
correspond to 1 of the 30 different stations of the database. The red
line is an identity line.

where fewer fluxes are simulated, the A matrices for hill-
slopes and valley bottoms contained 5.9×106 and 7.4×106,
yielding a density of 17.2 and 21.6 ppb, respectively. Sim-
ulations were run on a high-performance computer having
19 Intel(R) Xeon(R) CPU E5-2640 v4 2.40 GHz processors.
The number of cores used for calculations varied, as speci-
fied next. In both scenarios, the generation of A and B took
around 3 to 6 min for each simulation month at the continent
scale. After the generation of all matrices, equilibrium calcu-
lation took around 10 min on a single core. As a comparison,
the calculation for the non-alpine region of the Rhine basin
of Naipal et al. (2020) used to take 2 d in seven cores of the
same machine. The drastic reduction is a consequence of the
matrix approach adopted. While in their work all fluxes had
to be recalculated for each month of equilibrium calculation,
in our case we just had to precalculate A and B once.

The matrix approach brought several benefits for speed-
ing up the model. First, the analytical representation of the
model allowed the derivation of first-order approximations
for the monthly averages, which are faster to calculate than
summing the daily simulations and dividing by the number
of days. Second, despite the different settings of S1 and S2,
implementation was straightforward thanks to the natural in-
terpretation of each element of A as a flux of carbon from
one to another uniquely identified combination carbon pool.
Third, the calculation of A and B are independent for each
month, which drastically increases the number of possible
concurrent execution threads in comparison to the original
model of Naipal et al. (2020). These results are similar to

those found in the literature. For example, Xia et al. (2012)
and Huang et al. (2018) reported reduced processing time
and computational cost of the calculations. In our case, it is
not possible to compare the processing times as done by Xia
et al. (2012) because the previous version of the CE-DYNAM
from Naipal et al. (2020) does not support the calculation
at a continental scale in a feasible time. In this sense, the
very possibility of applying the model at this scale, now al-
lowed because of the matrix approach, is an indicator of such
improvements. However, the matrix approach may require
changes for applications at even larger scales, such as the
global scale. As shown in Eq. (2), the approach simplifies the
simulation by representing the variation of fluxes with addi-
tions and matrix–vector multiplications. Such operations are
typically efficient in the format known as compressed sparse
row (CSR) (Bai, 2000; Greathouse and Daga, 2014), which
requires the storage of three vectors for its construction. In
global-scale problems, it is possible that the amount of mem-
ory required for such storage is excessively large, so alterna-
tive representations should be explored. A possible solution
may come from an analogous problem in the statistical re-
gression literature, where authors seek low-rank representa-
tions of models in order to reduce the dimensionality of the
problem while still largely preserving the characteristics of
the original model (see Wang and Ranalli, 2006 and Wood,
2006, for two examples). However, while procedures that are
central for dimensionality reduction problems such as singu-
lar value decomposition are well established for dense ma-
trices (Strang, 2016) or even sparse matrices of reasonable
size, the problem can be complicated when the dimensions
are huge. Therefore, further research and work to search for
applicable methods are needed.

The calculation for a depositional site indicates that the ad-
ditional incoming fluxes from its upstream area due to ETD
processes tend to increase the carbon stock at the site from
6800 to 7150 g m−2 at equilibrium, equivalent to a 5.1 % in-
crease (Fig. 10a). Figure 10b, illustrates the ability of the
model to emulate nonlinearities on the impact of ETD fluxes
on the carbon cycle. The results are supposed to represent
the impacts of the ETD fluxes on the carbon cycle of a de-
positional area. According to van Oost et al. (2005), Li et al.
(2007), and Wang et al. (2015), some expected changes in the
dynamics include an increase in the C burial, resulting in an
increase in the soil organic carbon, as well as enhanced res-
piration of the carbon buried with time (Naipal et al., 2020).
In fact, in the early period of the curve, from 1860 to approx-
imately 1940, the curve of the S1 simulation is above that
of the S2 simulation, indicating that the immediate impact of
adding new fluxes to an area is to increase the rates of carbon
burial. However, in the final period of the curve, from 1941
to 2018, the variation curve of S1 moves below the S2 curve,
indicating a decrease in the lateral input and the rate of car-
bon burial, as well as a higher respiration by microorganisms
due to the carbon previously buried.

Geosci. Model Dev., 15, 7835–7857, 2022 https://doi.org/10.5194/gmd-15-7835-2022



A. N. Fendrich et al.: Scaling CE-DYNAM (v2) 7851

Figure 10. Results for the depositional site: absolute values of carbon stock (g m−2) (a) and relative difference (b).

Furthermore, to check the mass balance closure, all
the fluxes from this depositional area were calculated
from 1860 to 2018. On the cell’s hillslope fraction, lit-
ter input added 25 404.47 gC m−2, and land cover added
128.71 gC m−2, of which 25 286.00 gC m−2 were respired,
and 0.39 gC m−2 were sent to the valley bottoms. On the
valley bottom fraction, the inputs were 0.39 gC m−2 com-
ing from the hillslopes, 722.16 gC m−2 from upstream lands,
and 6039.23 gC m−2 from litter. Of this, 6764.07 gC m−2

was respired, and 23.91 gC m−2 was lost due to land cover
change. These values indicate that local erosion at this depo-
sitional area is not relevant to the carbon cycle, in contrast to
the carbon input from upstream lands, which corresponded
to 10.68 % of all the valley bottom fraction inputs.

4 Limitations

Despite the advances presented in this work, there are still
limitations that need to be addressed with future modifica-
tions. Concerning its structure, incorporating sediment data
in CE-DYNAM is only possible by assuming that sediment
and carbon follow the same dynamics. While this is conve-

nient for calibration, it might not be realistic, so further work
is necessary to improve this important assumption. Besides,
the physical representation of the fluxes could be improved.
For example, no transformation of C pools during the trans-
port process is represented, such as the breakdown of ag-
gregates. In practice, they could increase the turnover rates
of soil organic carbon compared to the simulations we pre-
sented.

Regarding the calibration presented here, other limitations
concern the spatial resolution and historical reconstructions.
First, finding the optimal resolution for CE-DYNAM will al-
ways be a problem, since it is halfway between the fine-scale
hydrological processes it represents and the coarse resolution
of the current climate models. Second, the historical recon-
structions presented are highly sensitive to the assumptions
adopted and presented. Even though these assumptions are
properly evaluated during the calibration and validation pro-
cess, better results will be possible with better input maps.

Another important limitation refers to the structure of the
calibration parameters. The structure presented in this work
allows a certain balance between the share of sediments that
move from hillslopes to valley bottoms and the sediment res-
idence time so that the optimization may sometimes tend to
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yield physically unrealistic results. In the present work, this
was solved by using multiple starting points, but a better so-
lution in the future should come from the development of the
model itself to penalize solutions that do not have a mean-
ingful physical interpretation. Finally, our model also natu-
rally inherits the problems of some necessary assumptions.
Even the fundamental assumption that calculations converge
to the pullback attracting trajectory in 1860–1869 might not
be correct and might affect the results greatly (Sanderman
et al., 2017; Dimassi et al., 2018). Analogously, the RUSLE-
based approach for erosion modeling is widely criticized but
remains the sole alternative for large-scale quantitative appli-
cations (Panagos et al., 2016).

5 Conclusions

In this paper, we addressed the challenge of scaling CE-
DYNAM, an erosion–transport–deposition model, in a rela-
tively high spatial resolution and long period at the European
scale. First, we show how the lateral fluxes of CE-DYNAM
can be represented in a matrix form, an alternative that al-
lows the acceleration of the computations performed, making
them feasible for large-scale applications. Our work, there-
fore, enabled the previously precluded possibility of applying
CE-DYNAM to large spatial domains or high spatial resolu-
tions. We also improved the model’s physical representation
of sediment movement to allow for proper calibration and
validation procedures using observations of sediment dis-
charge collected in the field. With these changes, the pre-
sented model can be readily adapted to other study regions,
the main limiting factor being the availability of inputs from
external sources. We also describe how the proposed techni-
cal solution might not work on an even larger scale (global
scale, for example), so further work may be needed to im-
prove the proposed approach, such as the search for the com-
putation of low-rank representations of the model matrices.

Second, a more practical contribution of our work was the
calibration of the model for the whole of Europe from field-
collected data. Our results show that the patterns obtained
are internally consistent and coherent with those previously
reported in the literature in similar work. We expect the pat-
terns obtained in this work to serve as a reference for future
models for this study region. Since the calibration of the lat-
eral fluxes is done using sediment data, the results form the
basis for simulations of the impact of erosion on the carbon
cycle and the future incorporation of other nutrients, such
as nitrogen and phosphorus, into CE-DYNAM. These works
could advance our understanding of the role of ETD pro-
cesses in nutrient cycles.

Third, we used the calibrated model to predict the move-
ment of carbon at a depositional site, the type of site that
tends to be highly affected by incoming lateral fluxes from
upstream lands. This simulation evaluated the model’s im-
pact on soil carbon pools and showed how the effect of ero-

sion on the carbon cycle could be nonlinear in time. In this
sense, this result shows that time-static models can only par-
tially disclose the correct effect of ETD on the carbon cycle.
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