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A B S T R A C T   

Omega-3 long-chain polyunsaturated fatty acids (n-3 LC-PUFA) are essential micronutrients for aquatic con
sumers. Synthesized by aquatic primary producers, n-3 LC-PUFA are transferred across trophic levels and may 
eventually end up accumulating in fish. However, if short in dietary supply, fish may also biosynthesize n-3 LC- 
PUFA from dietary precursors (i.e., n-3 C18-PUFA). We applied compound-specific hydrogen stable isotope 
analysis (CSIA) of fatty acids to investigate sources and metabolic processes of n-3 LC-PUFA, and in particular of 
docosahexaenoic acid (22:6n-3, DHA), in common carp (Cyprinus carpio) raised in semi-intensive aquaculture 
ponds. Carp were feeding on natural pond zooplankton and benthic macroinvertebrates rich in n-3 LC-PUFA and 
cereal-based pellet feeds rich in C18-PUFA. Results provide isotopic evidence that carp obtained a significant 
amount of dietary lipids and nitrogen from added cereal-based feeds, while n-3 LC-PUFA were generally acquired 
by feeding on benthic macroinvertebrates and zooplankton. However, DHA retained in carp was also generated 
endogenously via bioconversion from dietary PUFA precursors, such as EPA. DHA was isotopically lighter than 
EPA and likely not supplied in sufficient quantities to meet the physiological requirements for DHA in carp. Our 
data show that depending on the natural abundance of dietary DHA in these eutrophic ponds, farmed carp can 
obtain DHA by two different pathways; i.e., directly via dietary uptake and indirectly via bioconversion. This 
field study highlights the importance of dietary LC-PUFA supply in eutrophic aquatic ecosystems and the ability 
of carp to biosynthesize highly valuable LC-PUFA, eventually also benefiting human health.   

1. Introduction 

Omega-3 long-chain (≥ 20C) polyunsaturated fatty acids (n-3 LC- 
PUFA), in particular eicosapentaenoic acid (20:5n-3; EPA) and docosa
hexaenoic acid (22:6n-3; DHA), are essential structural components of 
cell membranes. Long-chain PUFA support somatic growth as well as 
cognitive traits and potentially behaviour in vertebrates, including fish 
(Salin et al., 2021; Tocher, 2010; Závorka et al., 2021) and humans 

(Pilecky et al., 2021b). Long-chain PUFA are mainly produced by 
aquatic primary producers from which they are transferred and accu
mulated across various trophic levels (Arts et al., 2001). However, 
eutrophication as well as global warming are expected to favour cya
nobacteria, which do not contain n-3 LC-PUFA (Galloway and Winder, 
2015; Hixson and Arts, 2016), thus decreasing the availability of dietary 
n-3 LC-PUFA in primary producers and subsequent trophic transfer of n- 
3 LC-PUFA to higher trophic levels (Müller-Navarra et al., 2004). 
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Cyprinids, such as Common carp (Cyprinus carpio), belong to the 
most consumed fish in the world (FAO, 2018) and are typically raised in 
warm, eutrophic aquaculture ponds (Roy et al., 2019). Common carp 
raised in eutrophic aquaculture ponds is a relatively lean fish with total 
lipid content of ~5–10% dry weight− 1 in muscle tissue (Böhm et al., 
2014) and a diet-dependent total n-3 PUFA content of ~5–20 mg g dry 
weight− 1 and a DHA content of ~3–10 mg g dry weight− 1 (Schultz et al., 
2015). Experimental evidence suggests that increasing dietary DHA 
supply results in increasing DHA accumulation in carp muscle tissues 
(Schultz et al., 2015). Experimental evidence suggests that, depending 
on their diet, carp can adjust their Fad6-a and Elovl5-a gene expression 
levels (Ren et al., 2012; Monroig et al., 2022), and that they can 
potentially convert DHA from its precursors, i.e., EPA and potentially 
even α-linolenic acid (18:3n-3; ALA) (Tocher, 2003; Zheng et al., 2004). 
However, it remains uncertain how carp raised in semi-intensive aqua
culture ponds obtain and maintain their n-3 PUFA and particularly DHA 
contents. For example, it is unclear which dietary source is the main 
supply of DHA and if carp raised and exposed to a variety of diet sources 
is able to endogenously convert dietary PUFA to DHA, and by which 
proportion these processes contribute to the DHA content in the muscles. 

The potentially large dichotomy between dietary DHA supply and 
endogenous DHA production is highly relevant for semi-intensive carp 
aquaculture in eutrophic ponds. Carp obtain their dietary energy and 
nutrients by consumption of zooplankton and benthic macro
invertebrates naturally occurring in ponds and by consumption of 
human-supplied cereal-based feeds (Schultz et al., 2015). Copepods are 
a major dietary source of DHA for carp in aquaculture ponds (Antón- 
Pardo and Adámek, 2015), while cladocerans and benthic invertebrates 
or cereal-based feeds contain only traces of DHA (Kainz et al., 2004; 
Schultz et al., 2015, Fehlinger et al., 2022). The addition of plant in
gredients (i.e., cereals), containing less n-3 LC-PUFA, reduces the use of 
fish products in aquaculture (Adarme-Vega et al., 2014; Tocher et al., 
2019) and is more relevant for aquaculture of non-piscivorous fish 
species, such as carp, which may accumulate DHA from natural food 
sources and/or are able to convert DHA from precursors obtained 
directly from the environment (Pauly and Christensen, 1995; Rodrigues 
et al., 2017). Thus, to maintain sufficient DHA carp must selectively 
retain DHA from consumed natural dietary sources (e.g., copepods and/ 
or Chaoborus larvae), or convert dietary precursor PUFA (e.g., ALA or 
EPA) to DHA as suggested by Mráz et al. (2012). 

Tracing methods, such as bulk stable isotope ratios (e.g., carbon, 
nitrogen, hydrogen) and fatty acid composition, are commonly used in 
trophic studies and food web reconstructions (Arts et al., 2009; Fry, 
2006; Perga et al., 2006). However, these methods face inherent 
methodological limitations, such as low resolution or food resources 
having overlapping isotopic values (Burian et al., 2020; Twining et al., 
2020). Compound-specific stable isotope analysis (CSIA) of carbon and 
hydrogen of fatty acids are newly developed methods in trophic studies 
and can help disentangle aquatic and terrestrial diet sources (Twining 
et al., 2020; Pilecky et al., 2021a; Mathieu-Resuge et al., 2021b). It has 
been shown that the essential fatty acids ALA and linoleic acid (LIN; 
18:2n-6) show only little isotopic fractionation in consumers, due to the 
lack of de novo biosynthesis, and thus reflect the isotopic values of their 
diet (Twining et al., 2020; Pilecky et al., 2022). On the other hand, 
hydrogen stable isotopes (δ2H) are susceptible to alteration if fatty acids 
(FA) are bioconverted, such as from ALA to EPA and further to DHA 
(Pilecky et al., 2022). Thus, it is expected that δ2H values from dietary 
DHA retention differ from δ2H obtained by metabolic conversion. Such 
differentiation assumes that if the isotopic hydrogen values of DHA 
remain unaltered between dietary and retained DHA, carp do not 
convert dietary PUFA to DHA. Alternatively, if DHA in carp is synthe
sized from dietary precursors, δ2H values of DHA in carp are expected to 
be isotopically lighter than the diet, or, if dietary DHA is absent, lighter 
than dietary EPA (Mathieu-Resuge et al., 2021b; Pilecky et al., 2022). 

The aim of this study was to investigate how farmed carp, raised in 
semi-intensive aquaculture ponds and fed cereal-based feeds (terrestrial 

diet), emergent insects, and zooplankton in natural abundances, obtain 
LC-PUFA, particularly EPA and DHA. We applied bulk stable isotope and 
FA analyses as well as CSIA of carbon and hydrogen to assess diet sources 
and the origin of n-3 LC-PUFA in carp muscle tissue. 

2. Methods 

2.1. Field sampling 

Samples of potential food sources were taken from 8 fishponds (each 
~1 m deep) around Waidhofen/Thaya, Austria (48◦ 49′ N, 15◦ 17′ E, 
510 m), from June to September 2020. We collected cereal-based carp 
feeds, small plankton (≤ 30 μm; particle size fraction edible for 
zooplankton, Burns, 1968), larger-sized zooplankton (≥ 500 μm; 
zooplankton size fraction, Anton-Pardo and Adámek, 2015), emergent 
insect, and fish samples used for commercial fish farming. 

For seston, three replicates were taken from each pond at different 
spots using a Schindler trap. Pond water was first prefiltered through a 
30 μm sieve and subsequently filtered through pre-weighed, muffled 
GF/C filters (1.2 μm) until they clogged. Triplicates of zooplankton 
samples were taken with a zooplankton net (500 μm mesh size). The net 
was submerged to ~1 m below the pond surface to sample a represen
tative volume of the water column and slowly towed for a few minutes. 
For each replicate, zooplankton were size separated (≥ 500 μm, 
100–250 μm, and < 100 μm), put in sterile falcon tubes (50 mL), and 
subsequently frozen until further analyses. In 6 of the 8 ponds, 
zooplankton also contained Chaoboridae (Chaoborus spp.) larvae. Chi
ronomidae, which were by far the most abundant group, were caught in 
emergence traps placed one week before the sampling, and immediately 
frozen after collecting. Three samples of both artificial foods, pellets and 
cereals have been taken during the sampling period. All samples were 
frozen at − 80 ◦C, freeze dried (Genesis Freeze dryer, Virtis, NYC) and 
stored at − 20 ◦C until further processing. Zooplankton was homoge
nized before analysis to obtain a representative sample as potential fish 
diet. 

2.2. Carp in semi-intensive aquaculture ponds 

During the first couple of months after hatching, young carp are fed 
with pellets, enriched with fish oil rich in n-3 LC-PUFA. Once they are 
released into the ponds, they are fed with cereals (mixture of triticale, 
rye, peas, maize, and barley), which contain only traces of n-3 LC-PUFA, 
until harvesting. In addition to pellets, carp also have access to pond 
zooplankton and benthic invertebrates. Five adult fish (from 1 to 2 yo) 
from each pond were provided together with fish feed (i.e., cereals) for 
analysis at the beginning of the harvest period in October. Fish were 
measured and weighed, and a sample of the dorsal muscle tissue was 
taken for further analyses. All fish samples were frozen at − 80 ◦C, freeze 
dried, and stored at − 20 ◦C until further processing. 

2.3. Elemental analysis and bulk stable isotope 

Freeze-dried and homogenized samples of emergent insects (⁓ 0.4 
mg; n = 3 per pond/month; ntotal = 96), zooplankton (⁓ 0.4 mg; n = 3 of 
the 500 μm size fraction per pond/month; ntotal = 96), seston (half of the 
filter >0.5 mg; n = 3 per pond/month; ntotal = 96), fish (⁓ 0.4 mg; n = 5 
per pond in October; ntotal = 24) and artificial food (i.e., cereals, ⁓ 0.4 
mg; n = 3 of each one; ntotal = 6) were put into tin capsules (IVA Ana
lysetechnik, Meerbusch, Germany). Their bulk stable isotope (δ13C and 
δ15N) values were quantified using an A flash HT Plus CNSOH elemental 
analyzer interfaced with a Conflo IV device (Thermo Co., Bremen, 
Germany) to a continuous flow stable isotope ratio mass spectrometer 
(Delta V Advantage IRMS, Thermo Co.). Values were normalized against 
reference gas injections of N2 and CO2 (Messer, Krefeld, Germany) and 
standardized using international standards IAEA-N-1, and IAEA-N-2 for 
nitrogen, and USGS24, and IAEA-CH-7 (IAEA, Vienna, Austria) for 
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carbon. 

2.4. Gas chromatography (GC) and stable isotope ratio mass 
spectrometry (IRMS) 

Lipids were extracted according to Heissenberger et al. (2010). In 
brief, freeze-dried samples (⁓5 mg of each sample: seston, zooplankton, 
emergent insects, fish and food) were homogenized and mixed with 
chloroform:methanol (2:1 vol/vol) following sonication, vortexing and 
centrifuging 3 times to remove nonlipid materials. Extracted lipids were 
evaporated to a final volume of 1.5 mL under N2. For FAME formation, 
samples were incubated with sulfuric acid:methanol (1:100 vol/vol) for 
16 h at 50 ◦C, following addition of KHCO3 and hexane. Samples were 
shaken, vortexed and centrifuged and the upper organic layers collected, 
pooled and concentrated under N2. 

Fatty acid methyl esters (FAME) were analysed using a gas chro
matograph (TRACE GC, Thermo Co., Detector: FID 260 ◦C, Carrier gas: 
He: 1 mL/min, Detector gases: H2: 40 mL/min, N2: 45 mL/min, air: 450 
mL/min, temperature ramp: 140 ◦C (5 min) – 4 ◦C min− 1–240 ◦C (20 
min) = 50 min) equipped with a temperature-programmable injector 
and an autosampler. A Supelco SP-2560 column (100 m, 25 mm i.d., 0.2 
μm film thickness) was used for FAME separation. Chromeleon 7 was 
used for calculation and, if necessary, manual resetting of the chro
matograms. FAME were identified and quantified by comparison of their 
retention times and signal areas to the concentrations of known stan
dards (37-component FAME mix, 7-point standard curves, 47,885-U, 
Supelco; Sigma-Aldrich, Bellefonte, Pennsylvania). FAME concentra
tions are reported as mg g− 1 dry weight. 

13C- and 2H-CSIA was performed using a Thermo Trace 1310 GC 
(ThermoFisher Scientific, Waltham, MA), which was connected via a 
ConFlo IV (ThermoFisher Scientific) to an Isotope Ratio Mass Spec
trometer (IRMS, DELTA V Advantage, ThermoFisher Scientific). FAMEs 
were separated using either a VF-WAXms 60m column, 0.25mm ID,film 
thickness 0.25 μm; or a VF-WAXms 30m column, 0.32mm ID, film 
thickness 1 μm (both Agilent, Santa Clara, CA) and then for δ13C analysis 
oxidized to CO2 in a combustion reactor, filled with Ni, Pt and Cu wires, 
at a temperature of 1000 ◦C, or for δ2H analysis reduced to H2 by passing 
through a high thermal conversion reactor kept at 1200 ◦C. The reactors 
were oxidized, respectively conditioned using 2 × 1 μL hexane before 
each sequence (40–60 samples) following He-flushing for 1 h and 
measurement of 6 standards before running samples. After 15 samples, 
standards were measured again to ensure system stability. 

The injector temperature was kept at 250 ◦C. Up to a maximum 
volume of 3.5 μL of sample were injected in spitless mode, following 
activation of purge flow after 1 min. The injection volumes were 
adjusted in order to obtain amplitudes between 300 and 8000 mV for all 
peaks of interest. The temperature program for the 60 m GC column 
started at 80 ◦C, which was kept for 2min, after which the temperature 
was raised by 30 ◦C min− 1 to 175 ◦C, by 5 ◦C min− 1 to 200 ◦C and finally 
by 2.4 ◦C min− 1 to 250 ◦C, which was maintained for 30min. The total 
run time was 62min. The temperature program for the 30 m GC column 
started at 80 ◦C, which was kept for 2 min, after which the temperature 
was raised by 30 ◦C min− 1 to 175 ◦C, and then by 5 ◦C min− 1 to 240 ◦C, 
which was held for 35min. The total run time was 52min. For δ2H 
measurements, H3

+-factor determination has been performed before and 
after each measurement sequence using a dilution series of reference 
gas. The factor was stable in course of the whole study, which was 
additionally validated using dilution series of samples. 

Samples were run against certified Me-C20:0 standards (USGS70: 
δ13C = − 30.53‰, δ2H = − 183.9‰, USGS71: δ13C = − 10.5‰, δ2H =
− 4.9‰ and USGS72: δ13C = − 1.54‰, δ2H = +348.3‰), which were 
used for drift and linear correction. The δ13C and δ2H value of individual 
FAME were determined by automated integration, defining 0.5 mV/s as 
start and end point of a peak and using individual background values. All 
peaks were validated and corrected manually if necessary. FA δ13C/δ2H 
values (δIFA) were corrected for the methyl group addition during 

methylation according to the formula 

δIFA =
(n + 1)*(δIFAME − δIMeOH)

n  

where δIFAME are the δ2H or δ13C values of the measured FAME and 
δIMeOH the δ2H or δ13C values of the methanol used during methylation 
and n equals the total number of H-/C-atoms of the FAME molecule. 
Values for δ13C are referenced to Vienna PeeDee Belemite (13C:12C =
0.01118) 

δ13CFA =

(
13C
/12CSample

13C
/12CVPDB

− 1

)

× 1000 

Values for δ2H are standardized against Vienna Standard Mean 
Ocean Water (2H:1H = 155.76 ppm) 

δ2HFA =

(
2H
/1HSample

2H
/1HVSMOW

− 1

)

× 1000 

16:1n-7 and 16:1n-9, as well as 18:1n-7 and 18:1n-9 coeluted on the 
column, therefore their isotopic values were simultaneously analysed 
and reported as Σ16:1 and Σ18:1. 

2.5. Data analysis 

Data analysis and graphics design were performed in R (Version 
4.1.0) using the packages rstatix, ggplot2, ggpubr, multcomp, rcom
panion, RVAideMemoir, FactoMineR and lme4. Values were presented 
as means ± standard deviation. Normality was tested using Shapiro- 
Wilks test. Principal component analyses (PCA) were performed to 
investigate the variation in FA composition (%) among fish and their 
potential food sources. To prevent excessive weight of rare species, 
Euclidean distances were applied on FA contents (Legendre and Gal
lagher, 2001), and a test of similarity percentages analysis (SIMPER) 
was carried out to assess the most discriminant FA responsible for the 
difference (>80%) among the groups (i.e., fish, seston, zooplankton, 
emergent insects, and cereals). Ellipses, showing 95% CI for each of 
these groups were added for visualization. Paired t-test has been used for 
direct comparison of dietary and consumer compound specific values. 
Multiple group comparison, using individual sample time points and 
ponds as factors, was performed using Scheirer-Ray-Hare (H) test 
following Dunn’s multiple comparison. Pearson method was used for 
linear correlation analysis. Differences in dual isotopic compositions 
were tested by MANOVA following pairwise comparison by permutation 
and Pillai post-hoc test. Differences in single isotopic compositions were 
tested by ANOVA following Tukey post-hoc test, while accounting for 
pond differences. 

3. Results 

3.1. Fatty acids composition of fish and its potential diets 

Principal component analysis (PCA) clearly separated carp from 
zooplankton and emergent insects as well as from seston (mostly 
phytoplankton) based on their fatty acid composition (Fig. 1). Fish were 
richer in ARA, DHA, LIN and 22:5n-3, while seston had high levels of 
saturated fatty acids (SFA) and 18:4n-3 (SDA). Bulk zooplankton and 
emergent insects had similar FA compositions and seemed more 
enriched in EPA and 16:1n-7 compared to seston and fish. 

Seston FA mass fractions fluctuated over the course of the field study. 
EPA (H3,64 = 21.709, p < 0.0001) and DHA (H3,64 = 28.249, P < 0.0001) 
levels of seston were significantly higher in September (Dunn post-hoc) 
than in other months. Mass fractions of FA of Chironomidae did not 
change significantly during the course of the sampling, except for EPA 
(H3,48 = 16.519, P = 0.0008), which was higher in June compared to the 
other months (Dunn post-hoc). In zooplankton, SDA (H3,54 = 16.878, P 
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= 0.0007), EPA (H3,54 = 18.946, P = 0.0003) and docosapentaenoic acid 
(DPA, 22:5n-3; H3,54 = 8.059, P = 0.045) were higher in September 
compared to the other months (Dunn post-hoc). While the FA mass 
fractions of emergent insects did not significantly differ among ponds, 
FA profiles of zooplankton varied from pond to pond, according to its 
taxonomic composition (cladocerans: Chaoboridae larvae: copepods; 
relative biomass; data not shown), which was particularly evident in 
ALA (H7,54 = 26.480, P = 0.0004), LIN (H7,54 = 19.551, P = 0.00662), 
SDA (H7,54 = 19.291, P = 0.0073), and DHA (H7,54 = 19.187, P =
0.0076). Cereal-based carp feed contained mainly C18 FA, such as 
18:1n-9 (~ 1.4 mg g− 1), LIN (~ 7.5 mg g− 1) and ALA (~ 1.2 mg g− 1). 
Fish muscle tissues did not significantly vary in any PUFA mass fractions 
among ponds (Table 1). 

Regarding fish muscle tissue, a significant increase in FA mass frac
tions of 

∑
16:1 and 

∑
18:1 in proportion to the fish body weight could be 

observed (Pearson, r(38) = 0.27, P = 0.004 and, r(38) = 0.21, P = 0.008; 
respectively), while no significant changes could be observed for other 
FA including EPA and DHA. 

3.2. Isotopic composition of fish, potential diet sources and their fatty 
acids 

Bulk carbon and nitrogen stable isotopes showed a clear separation 
of fish feed and seston from other sample types (Fig. 2A, MANOVA, 
F5,282 = 46.3, P < 0.001, Pillai post-hoc). However, the separation 
among fish, insects, and zooplankton was less clear and only significant 
between fish and zooplankton (Pillai, P = 0.0415). Overall, the bulk 
stable isotope values of zooplankton, insects and fish were similar in 
both δ13C (− 29.77 ‰ ± 3.41 vs. -28.06 ‰ ± 3.73 vs. -27.79 ‰ ± 1.22 
respectively; Tukey, P > 0.05) and δ15N (8.74 ‰ ± 1.46 vs. 9.30 ‰ ±
2.67 vs. 9.21 ‰ ± 1.52, respectively; Tukey, P > 0.05) (Fig. 2A). The 
δ15N values of the cereal-based feed were significantly lower than those 
of all other sample types (Tukey, P < 0.001), including seston, whose 
δ15N value spanned between 1.98 ‰ and 9.64 ‰ (Fig. 2A). Fish did not 
present any differences in δ13C values among ponds (ANOVA, F7,16 =

2.42, P = 0.068), showing values ranging from − 30.6 ‰ ± 1.5 to − 25.8 
‰ ± 0.7. However, δ15N values of carp were significantly different 
among ponds (ANOVA, F7,16 = 23.64, P < 0.001), ranging from 6.41 ‰ 
± 0.10 in pond Kiebitzteich to 11.15 ‰ ± 0.42 in pond Herrenteich. 

MANOVA revealed a similar isotopic composition between δ13C and 
δ2H of FA in fish and insects, which only differed in 18:0 (MANOVA, 
F4,154 = 81.0, p < 0.001; Pillai, P < 0.001), 18:1 (MANOVA, F5,218 =

135.0, P < 0.001; Pillai, P = 0.013) and EPA (MANOVA, F4,161 = 4.2, P 
= 0.047, Pillai, P = 0.008). Fish and zooplankton had similar δ13C and 
δ2H values in ALA, while EPA (Pillai: P = 0.012) and DHA (MANOVA, 
F3,134 = 153.8, P < 0.001; Pillai: P = 0.058) differed significantly 
(Fig. 2B). 

Isotopic composition of PUFA showed taxa specific differences of 
δ2HLIN (ANOVA, F5,375 = 136.5, P < 0.001), δ2HALA (ANOVA, F5,375 =

10.0, P < 0.001), δ2HEPA (ANOVA, F4,367 = 67.6, P < 0.001) and δ2HDHA 
(ANOVA, F4,253 = 17.8, P < 0.001), as well as in δ13CLIN (ANOVA, F5,109 
= 21.0, P < 0.001), δ13CALA (ANOVA, F5,109 = 5.3, P < 0.001), δ13CEPA 
(ANOVA, F4,109 = 14.1, P < 0.001) and δ13CDHA (ANOVA, F4,79 = 10.3, 
P < 0.001). The isotopic composition of LIN of fish muscle (δ2H: 
− 196.4‰ ± 21.1; δ13C: − 32.9 ‰ ± 4.4) resembled that of cereal feed 
(δ2H: − 240.4‰ ± 2.5; δ13C: − 31.7 ‰ ± 0.2, Tukey, P = 0.11 and P =
0.93) and chironomids (δ2H: − 194.8 ‰ ± 41.6; δ13C: − 32.7 ‰ ± 3.0, 
Tukey, P = 0.16 and P = 0.99), while diverging from zooplankton (δ2H: 
− 80.6 ‰ ± 35.7; δ13C: - 36.4‰ ± 3.0, Tukey, both P < 0.001). δ2HEPA of 
fish (− 258.6 ‰ ± 19.3) resembled both chironomids (− 258.3 ‰ ±
23.9, Tukey, P = 0.99) and zooplankton (− 268.6 ‰ ± 28.3, Tukey, P =
0.77), while their δ13CEPA values (− 33.4 ‰ ± 1.4) were different, lying 
between insects (− 31.3 ‰ ± 3.3, Tukey, P = 0.005) and zooplankton 
(− 36.9 ‰ ± 3.6, Tukey, P < 0.001). Chironomids did not contain DHA. 
δ2HDHA of fish were slightly but not significantly lower than of 
zooplankton (− 239.1 ‰ ± 18.8 vs. -206.9 ‰ ± 25.5, Tukey, P = 0.11), 
while δ13CDHA values were significantly higher (− 34.6 ‰ ± 1.4 vs. -36.5 
‰ ± 3.2, Tukey, P < 0.001). Additionally, the difference of δ2HDHA 
values between fish muscle tissue and zooplankton correlated signifi
cantly with the mass fraction of DHA in bulk zooplankton samples 
(Pearson, r(6) = 0.72, P = 0.04; Fig. 2C). 

4. Discussion 

This study highlights that farmed carp obtain PUFA from macro
invertebrates and zooplankton naturally abundant in carp ponds. Bulk 
δ13C and δ15N values indicated that human-supplied cereal feed are an 
important source of dietary energy and nitrogen for carp. Additionally, 
both δ13CLIN and δ2HLIN values of carp were very similar to those of 
cereals, indicating that carp assimilated a substantial part of these 
essential n-6 PUFA from cereal-based fish feed. However, when looking 
at n-3 and n-6 LC-PUFA, the isotopic values of EPA and ARA suggested 
zooplankton and benthic macroinvertebrates as the main source of these 
essential micronutrients. Carp obtained DHA mainly by feeding on 

Fig. 1. (A) Principal Component Analyses (PCA) of fatty acid (FA) compositions (mass %) of seston, emergent insects, zooplankton, carp, and fish feed (i.e., cereals). 
Only FA that account for >80% of the contribution to dissimilarity between taxa are shown. (B) Mass fractions of FA, except 16:0 and 18:1 in carp muscle tissue were 
not significantly correlating with weight and levels of DHA remained stable. A slight positive trend was observed for ALA and EPA. 
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Table 1 
Fatty acid mass fractions [mean μg/mg dw ± standard deviation] of pooled seston, feed, zooplankton, insects, and fish in the study ponds.   

Pond 14:0 16:0 16:1n- 
7 

16:1n- 
9 

18:0 18:1n- 
7 

18:1n-9 LIN GLA ALA SDA 20:1n- 
9 

20:3n- 
6 

ARA 20:3n- 
3 

ETA EPA DPA DHA 

Seston 

Dach 
0.6 ±
0.2 

2.4 ±
0.9 

0.8 ±
0.3 

0.3 ±
0.2 

1.1 ±
0.5 

0.2 ±
0.1 

0.7 ±
0.3 

0.3 ±
0.2 

0.0 ±
0.0 

0.8 ±
0.4 

0.3 ±
0.3 

0.0 ±
0.0 

0.0 ±
0.0 

0.1 ±
0.0 

0.0 ±
0.0 

0.0 ±
0.0 

0.4 ±
0.2 

0.0 ±
0.0 

0.3 ±
0.2 

Eng 
0.5 ±
0.3 

5.8 ±
2.1 

0.6 ±
0.3 

0.5 ±
0.4 

1.9 ±
1.4 

0.3 ±
0.1 

3.5 ±
2.4 

0.9 ±
0.5 

0.1 ±
0.1 

2.9 ±
0.5 

1.8 ±
1.3 

0.1 ±
0.1 

0.1 ±
0.1 

0.1 ±
0.1 

0.0 ±
0.0 

0.1 ±
0.0 

0.9 ±
0.5 

0.0 ±
0.1 

0.3 ±
0.2 

Ger 
1.2 ±
0.7 

6.0 ±
2.7 

1.9 ±
1.2 

0.5 ±
0.1 

1.1 ±
0.5 

0.4 ±
0.2 

1.6 ±
0.6 

1.0 ±
0.7 

0.1 ±
0.0 

3.8 ±
2.3 

1.6 ±
1.9 

0.0 ±
0.0 

0.2 ±
0.2 

0.1 ±
0.1 

0.0 ±
0.0 

0.1 ±
0.0 

1.2 ±
1.0 

0.0 ±
0.0 

0.5 ±
0.4 

Herr 
0.9 ±
0.7 

4.0 ±
1.8 

1.8 ±
1.4 

0.5 ±
0.1 

1.0 ±
0.9 

0.3 ±
0.1 

1.4 ±
0.3 

0.6 ±
0.3 

0.1 ±
0.0 

1.7 ±
0.5 

0.6 ±
0.4 

0.0 ±
0.0 

0.1 ±
0.1 

0.1 ±
0.1 

0.0 ±
0.0 

0.0 ±
0.0 

0.9 ±
0.5 

0.0 ±
0.0 

0.3 ±
0.2 

Jag 
0.5 ±
0.2 

3.3 ±
2.3 

0.8 ±
0.4 

0.3 ±
0.2 

1.2 ±
1.0 

0.3 ±
0.2 

0.9 ±
0.4 

0.5 ±
0.3 

0.0 ±
0.0 

2.0 ±
2.0 

1.3 ±
2.3 

0.1 ±
0.2 

0.1 ±
0.2 

0.1 ±
0.0 

0.0 ±
0.1 

0.0 ±
0.0 

0.8 ±
1.1 

0.0 ±
0.0 

0.3 ±
0.5 

Kieb 
0.4 ±
0.2 

1.8 ±
1.1 

0.5 ±
0.2 

0.2 ±
0.1 

0.9 ±
0.5 

0.1 ±
0.1 

0.3 ±
0.2 

0.2 ±
0.2 

0.0 ±
0.0 

0.6 ±
0.6 

0.3 ±
0.3 

0.0 ±
0.0 

0.0 ±
0.0 

0.0 ±
0.0 

0.0 ±
0.0 

0.0 ±
0.0 

0.2 ±
0.2 

0.0 ±
0.0 

0.1 ±
0.1 

Furt 
1.2 ±
0.7 

3.0 ±
1.5 

1.0 ±
0.4 

0.3 ±
0.2 

1.1 ±
0.4 

0.3 ±
0.2 

0.7 ±
0.6 

0.6 ±
0.4 

0.1 ±
0.0 

1.7 ±
1.0 

0.7 ±
0.8 

0.0 ±
0.0 

0.0 ±
0.0 

0.2 ±
0.2 

0.0 ±
0.0 

0.1 ±
0.0 

0.8 ±
0.4 

0.0 ±
0.0 

0.6 ±
0.4 

Stadt 
0.8 ±
0.4 

3.3 ±
1.3 

1.9 ±
1.3 

0.3 ±
0.1 

1.2 ±
0.8 

0.3 ±
0.1 

0.9 ±
0.6 

0.4 ±
0.2 

0.0 ±
0.0 

0.9 ±
0.4 

0.3 ±
0.1 

0.0 ±
0.0 

0.0 ±
0.0 

0.1 ±
0.0 

0.0 ±
0.0 

0.0 ±
0.0 

0.3 ±
0.2 

0.0 ±
0.0 

0.1 ±
0.1 

Feed 

cereals 
0.0 ±
0.0 

2.1 ±
0.3 

0.0 ±
0.0 

0.0 ±
0.0 

0.2 ±
0.0 

0.1 ±
0.1 

1.4 ±
1.1 

7.5 ±
1.0 

0.0 ±
0.0 

1.2 ±
0.2 

0.0 ±
0.0 

0.1 ±
0.0 

0.0 ±
0.0 

0.0 ±
0.0 

0.0 ±
0.0 

0.0 ±
0.0 

0.0 ±
0.0 

0.0 ±
0.0 

0.0 ±
0.0 

pelletsa 
0.6 ±
0.0 

9.9 ±
0.6 

1.0 ±
0.1 

0.1 ±
0.0 

1.9 ±
0.1 

1.6 ±
0.1 

25.5 ±
1.3 

23.8 ±
1.5 

0.0 ±
0.0 

2.6 ±
0.1 

0.0 ±
0.0 

1.0 ±
0.1 

0.1 ±
0.0 

0.1 ±
0.0 

0.1 ±
0.0 

0.1 ±
0.0 

0.5 ±
0.0 

0.2 ±
0.0 

0.7 ±
0.0 

Zooplankton 

Dach 
2.6 ±
1.7 

10.9 ±
3.4 

3.1 ±
1.5 

0.7 ±
0.3 

2.6 ±
1.0 

1.5 ±
0.6 

5.6 ±
3.0 

2.5 ±
0.8 

0.3 ±
0.1 

6.4 ±
1.9 

2.2 ±
1.4 

0.0 ±
0.1 

0.3 ±
0.1 

2.4 ±
1.0 

0.1 ±
0.1 

0.4 ±
0.2 

7.4 ±
2.3 

0.3 ±
0.2 

4.6 ±
3.3 

Eng 
1.4 ±
0.5 

14.5 ±
4.6 

2.3 ±
1.1 

2.2 ±
1.2 

3.3 ±
1.1 

2.0 ±
0.7 

12.9 ±
5.1 

4.9 ±
2.0 

0.5 ±
0.2 

16.4 ±
4.6 

7.8 ±
4.4 

0.3 ±
0.4 

0.2 ±
0.1 

1.9 ±
0.6 

0.2 ±
0.2 

0.8 ±
0.4 

8.7 ±
4.0 

0.2 ±
0.2 

2.6 ±
2.2 

Ger 
0.9 ±
0.2 

7.7 ±
3.0 

2.2 ±
0.6 

0.9 ±
0.7 

2.0 ±
0.5 

1.4 ±
0.9 

5.2 ±
3.9 

2.4 ±
1.2 

0.2 ±
0.1 

6.3 ±
4.3 

1.9 ±
1.6 

0.0 ±
0.0 

0.1 ±
0.0 

1.3 ±
0.5 

0.1 ±
0.2 

0.5 ±
0.2 

6.1 ±
2.6 

0.4 ±
0.2 

2.8 ±
1.6 

Herr 
2.2 ±
1.3 

13.3 ±
4.0 

8.1 ±
5.4 

2.2 ±
1.3 

3.1 ±
1.2 

2.6 ±
0.9 

9.7 ±
5.3 

3.8 ±
1.6 

0.5 ±
0.2 

11.9 ±
6.3 

3.3 ±
1.2 

0.1 ±
0.1 

0.2 ±
0.1 

2.0 ±
0.6 

0.2 ±
0.2 

0.5 ±
0.2 

10.7 ±
3.9 

0.2 ±
0.1 

0.8 ±
0.9 

Jag 
1.1 ±
0.7 

12.3 ±
7.1 

3.0 ±
3.2 

1.8 ±
0.9 

2.8 ±
1.6 

2.1 ±
1.1 

9.1 ±
5.3 

3.6 ±
1.8 

0.4 ±
0.3 

10.5 ±
8.3 

4.4 ±
3.7 

0.1 ±
0.1 

0.2 ±
0.1 

1.8 ±
0.6 

0.2 ±
0.2 

0.7 ±
0.5 

8.1 ±
5.2 

0.1 ±
0.1 

1.0 ±
0.8 

Kieb 
1.7 ±
0.7 

11.6 ±
4.5 

4.8 ±
1.8 

1.0 ±
0.5 

2.7 ±
1.2 

2.1 ±
0.6 

4.9 ±
2.1 

3.1 ±
1.3 

0.4 ±
0.1 

8.6 ±
4.0 

3.3 ±
3.2 

0.0 ±
0.0 

0.2 ±
0.2 

2.1 ±
0.7 

0.1 ±
0.1 

0.5 ±
0.2 

8.1 ±
2.9 

0.2 ±
0.2 

2.3 ±
1.8 

Furt 
2.1 ±
1.1 

7.1 ±
4.7 

3.2 ±
3.8 

0.5 ±
0.5 

1.9 ±
1.0 

1.8 ±
1.5 

2.9 ±
2.2 

1.6 ±
1.1 

0.3 ±
0.3 

5.3 ±
3.9 

1.9 ±
2.4 

0.0 ±
0.0 

0.2 ±
0.1 

1.8 ±
1.3 

0.0 ±
0.1 

0.4 ±
0.2 

4.8 ±
2.8 

0.2 ±
0.1 

2.0 ±
1.7 

Stadt 
2.5 ±
1.3 

12.2 ±
5.5 

8.4 ±
4.4 

1.4 ±
0.9 

3.1 ±
1.4 

3.0 ±
1.8 

6.5 ±
3.2 

4.0 ±
1.9 

0.6 ±
0.3 

8.3 ±
4.1 

2.3 ±
1.2 

0.0 ±
0.0 

0.2 ±
0.1 

2.8 ±
1.5 

0.1 ±
0.1 

0.4 ±
0.2 

7.5 ±
3.0 

0.2 ±
0.1 

1.4 ±
1.4 

Insect 

Dach 
1.4 ±
1.1 

9.8 ±
5.0 

2.4 ±
1.1 

0.2 ±
0.1 

3.9 ±
1.2 

1.6 ±
0.7 

7.0 ±
3.4 

6.3 ±
4.1 

0.2 ±
0.2 

4.1 ±
1.8 

0.7 ±
0.8 

0.0 ±
0.0 

0.1 ±
0.0 

1.4 ±
0.6 

0.0 ±
0.0 

0.1 ±
0.1 

5.2 ±
2.3 

0.1 ±
0.1 

0.3 ±
0.4 

Eng 
1.2 ±
0.8 

11.9 ±
10.2 

3.2 ±
2.3 

0.4 ±
0.4 

5.0 ±
3.3 

2.1 ±
1.4 

6.2 ±
4.2 

6.8 ±
1.8 

0.4 ±
0.4 

7.3 ±
7.6 

1.2 ±
2.2 

0.0 ±
0.0 

0.0 ±
0.0 

1.2 ±
0.4 

0.0 ±
0.0 

0.2 ±
0.1 

5.7 ±
3.4 

0.0 ±
0.0 

0.0 ±
0.0 

Ger 
2.3 ±
2.0 

14.8 ±
6.2 

6.0 ±
5.7 

0.5 ±
0.3 

5.3 ±
2.0 

2.7 ±
2.1 

6.6 ±
2.1 

7.4 ±
2.4 

0.3 ±
0.2 

5.4 ±
2.6 

0.6 ±
0.2 

0.0 ±
0.0 

0.1 ±
0.1 

1.2 ±
0.4 

0.1 ±
0.1 

0.2 ±
0.1 

4.8 ±
1.6 

0.0 ±
0.0 

0.1 ±
0.2 

Herr 
1.2 ±
0.6 

10.0 ±
4.9 

3.6 ±
2.6 

0.4 ±
0.3 

4.4 ±
2.4 

3.0 ±
1.9 

5.7 ±
3.3 

5.6 ±
2.1 

0.3 ±
0.2 

5.5 ±
3.0 

0.7 ±
0.5 

0.0 ±
0.0 

0.0 ±
0.0 

1.3 ±
0.9 

0.1 ±
0.1 

0.1 ±
0.1 

6.0 ±
3.0 

0.0 ±
0.1 

0.1 ±
0.1 

Jag 
1.2 ±
0.7 

10.5 ±
6.8 

3.5 ±
2.3 

0.3 ±
0.2 

4.2 ±
2.3 

2.7 ±
1.7 

5.6 ±
3.4 

5.9 ±
2.0 

0.3 ±
0.1 

5.6 ±
3.1 

0.7 ±
0.4 

0.0 ±
0.0 

0.1 ±
0.0 

1.0 ±
0.6 

0.0 ±
0.1 

0.1 ±
0.0 

5.0 ±
2.2 

0.0 ±
0.0 

0.1 ±
0.2 

Kieb 
1.4 ±
0.9 

11.9 ±
6.0 

2.9 ±
1.5 

0.3 ±
0.2 

5.2 ±
3.1 

1.8 ±
0.8 

5.8 ±
3.0 

7.7 ±
3.3 

0.2 ±
0.1 

11.4 ±
7.3 

0.4 ±
0.2 

0.0 ±
0.0 

0.1 ±
0.1 

1.4 ±
0.7 

0.1 ±
0.1 

0.2 ±
0.1 

6.0 ±
4.0 

0.0 ±
0.1 

0.3 ±
1.0 

Furt 
2.0 ±
1.4 

14.7 ±
6.6 

3.5 ±
1.8 

0.4 ±
0.3 

5.8 ±
2.7 

3.3 ±
1.2 

6.4 ±
3.4 

6.7 ±
2.3 

0.3 ±
0.2 

7.4 ±
4.9 

0.6 ±
0.3 

0.0 ±
0.0 

0.1 ±
0.0 

1.5 ±
0.9 

0.1 ±
0.1 

0.2 ±
0.1 

4.7 ±
3.1 

0.0 ±
0.0 

0.1 ±
0.0 

Stadt 
1.0 ±
0.5 

9.1 ±
4.0 

2.7 ±
1.7 

0.3 ±
0.2 

3.8 ±
1.7 

2.4 ±
1.6 

4.9 ±
2.2 

5.3 ±
2.6 

0.2 ±
0.2 

3.9 ±
2.2 

0.5 ±
0.7 

0.0 ±
0.0 

0.1 ±
0.0 

1.5 ±
0.8 

0.0 ±
0.0 

0.1 ±
0.1 

4.9 ±
3.7 

0.0 ±
0.0 

0.1 ±
0.1 

Fish 

(continued on next page) 
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zooplankton (i.e., copepods and Chaoborus larvae), but also bio
converted EPA from benthic macroinvertebrates (e.g., chironomids) to 
DHA, when DHA-rich zooplankton was not sufficiently abundant in the 
pond. 

Bulk stable isotope analysis could not resolve the food web structure 
in these study ponds and no isotopic separation between zooplankton, 
emergent insects, and fish was apparent. Therefore, we used CSIA to 
disentangle and identify the importance of each diet source for carp. In 
semi-intensive aquaculture systems, cereals are one of the main sources 
of nutrients and energy required to improve fish growth and production 
(Abdelghany and Ahmad, 2002). This was substantiated by the δ13CLIN 
and δ2HLIN values of fish that showed close similarity with the ones of 
cereals, suggesting direct dietary retention of C18-PUFA from cereals 
(Twining et al., 2020). However, as cereal-based feeds do not contain 
any LC-PUFA, they cannot be the source of n-3 LC-PUFA for carp, which 
thus may be provided by other natural food sources, such as zooplankton 
(Anton-Pardo and Adámek, 2015). 

Omega-3 LC-PUFA mass fractions of carp muscle tissues did not vary 
in these study ponds, irrespective of the variation of food sources. The 
levels of n-3 LC-PUFA in carp are sustained by dietary sources or internal 
bioconversion throughout their somatic growth. The isotopic evidence 
in our study points at carp to use both aquatic insects and zooplankton as 
main dietary sources of EPA and ARA, as suggested by fish isotopic 
values which were close to those of both invertebrate groups (Bec et al., 
2011; Burian et al., 2020; Twining et al., 2020). It is well known that 
benthic invertebrates are important sources of EPA for aquatic 
(Scharnweber et al., 2019) and riparian consumers (Twining et al., 
2016; Mathieu-Resuge et al., 2021b), and it is likely that carp feed on 
invertebrates at the water-sediment interface. Compared to zooplankton 
and benthic invertebrates, seston δ2HARA and δ2HEPA values of fish were 
higher. This phenomenon has previously been described in zooplankton 
communities switching from strict dietary allocation to bioconversion, 
due to a decrease of n-3 LC-PUFA availability in dietary seston. The 
capacity to bioconvert dietary PUFA precursors to LC-PUFA may provide 
some resilience to higher trophic levels in regard to LC-PUFA fluctua
tions in primary producers (Pilecky et al., 2022). In carp ponds, eutro
phication may be accelerated by the addition of cereal-based feeds 
(Rahman, 2015), favouring cyanobacteria-dominated phytoplankton 
communities that are nutritionally less suitable for zooplankton and 
higher trophic levels due to the lack of sterols and LC-PUFA (De Sen
erpont Domis et al., 2014; Lürling et al., 2017; Martin-Creuzburg and 
von Elert, 2009). Under these conditions, the capacity of zooplankton to 
compensate for n-3 LC-PUFA-poor diets is required (Pilecky et al., 2022). 
This PUFA conversion ability highlights the pivotal role of zooplankton 
in eutrophic carp ponds to provide n-3 LC-PUFA to carp. 

Carp obtained DHA from two distinct sources. The only natural 
source of DHA were copepods and Chaoborus larvae, as the majority of 
the emergent insects consisted of chironomids that lack DHA (Martin- 
Creuzburg et al., 2017; Mathieu-Resuge et al., 2021a). Importantly, the 
isotopic difference in δ2HDHA values between zooplankton and fish 
significantly correlated with the average zooplankton DHA mass frac
tion in ponds, indicating that DHA in fish is obtained by different 
pathways. In cases of sufficient dietary DHA supply, the isotopic dif
ferences in δ2HDHA values between fish and zooplankton are very low, 
suggesting direct dietary assimilation (Bec et al., 2011; Twining et al., 
2020). However, when zooplankton is poor in DHA, the isotopic dif
ference in δ2HDHA values increases and carp are more 2H-depleted 
compared to zooplankton, indicating endogenous bioconversion from 
dietary precursors. Using natural variabilities of fatty acid-specific δ2H 
values had the advantage to resolve the food web structure while 
simultaneously tracking bioconversion activity without the requirement 
for any pre-emptive intervention (e.g., labelling). This study supports 
previous experimental findings in carp and perch, showing that dietary 
n-3 LC-PUFA depletion increases their capacity to bioconvert these nu
trients from precursors (Henrotte et al., 2011; Scharnweber et al., 2021). 
To our knowledge, this is the first study to demonstrate, using Ta

bl
e 

1 
(c

on
tin

ue
d)

  

Po
nd

 
14

:0
 

16
:0

 
16

:1
n-

 
7 

16
:1

n-
 

9 
18

:0
 

18
:1

n-
 

7 
18

:1
n-

9 
LI

N
 

G
LA

 
A

LA
 

SD
A

 
20

:1
n-

 
9 

20
:3

n-
 

6 
A

RA
 

20
:3

n-
 

3 
ET

A
 

EP
A

 
D

PA
 

D
H

A
 

D
ac

h 
(1

) 
0.

7 
±

0.
5 

10
.4

 ±
4.

3 
2.

7 
±

1.
8 

0.
3 
±

0.
1 

3.
2 
±

1.
2 

1.
6 
±

1.
0 

10
.1

 ±
5.

4 
5.

8 
±

2.
9 

0.
1 
±

0.
0 

1.
9 
±

1.
2 

0.
0 
±

0.
0 

0.
7 
±

0.
4 

0.
5 
±

0.
3 

2.
7 
±

0.
9 

0.
2 
±

0.
1 

0.
3 
±

0.
1 

2.
8 
±

1.
2 

1.
2 
±

0.
3 

5.
2 
±

1.
3 

En
g 

(1
) 

0.
3 
±

0.
2 

7.
6 
±

2.
8 

1.
3 
±

0.
7 

0.
5 
±

0.
4 

2.
2 
±

1.
4 

1.
4 
±

0.
5 

7.
8 
±

4.
6 

6.
9 
±

5.
4 

0.
1 
±

0.
1 

2.
3 
±

1.
7 

0.
0 
±

0.
0 

0.
6 
±

0.
4 

0.
4 
±

0.
1 

2.
1 
±

0.
6 

0.
2 
±

0.
1 

0.
3 
±

0.
1 

2.
2 
±

0.
4 

1.
1 
±

0.
2 

3.
8 
±

0.
8 

G
er

 (
3)

 
1.

1 
±

1.
2 

14
.3

 ±
9.

7 
4.

3 
±

3.
8 

0.
4 
±

0.
5 

3.
2 
±

2.
7 

2.
7 
±

2.
1 

15
.5

 ±
11

.6
 

8.
8 
±

7.
9 

0.
1 
±

0.
1 

4.
4 
±

5.
2 

0.
0 
±

0.
0 

1.
1 
±

0.
7 

0.
5 
±

0.
2 

2.
3 
±

0.
6 

0.
3 
±

0.
3 

0.
4 
±

0.
3 

2.
8 
±

1.
3 

1.
2 
±

0.
2 

3.
8 
±

0.
9 

H
er

r 
(2

) 
1.

1 
±

0.
9 

15
.5

 ±
8.

8 
5.

3 
±

5.
1 

1.
6 
±

1.
6 

3.
8 
±

1.
9 

3.
2 
±

2.
6 

22
.6

 ±
14

.0
 

7.
3 
±

5.
2 

0.
2 
±

0.
1 

7.
6 
±

6.
1 

0.
0 
±

0.
0 

1.
8 
±

1.
5 

0.
4 
±

0.
3 

2.
8 
±

2.
1 

0.
5 
±

0.
5 

1.
0 
±

0.
8 

4.
3 
±

3.
2 

1.
7 
±

1.
3 

4.
6 
±

3.
3 

Ja
g 

(2
) 

0.
8 
±

0.
4 

13
.7

 ±
4.

0 
4.

8 
±

1.
8 

0.
7 
±

0.
4 

3.
0 
±

0.
7 

1.
9 
±

1.
2 

16
.7

 ±
7.

2 
6.

2 
±

3.
2 

0.
2 
±

0.
1 

5.
3 
±

2.
5 

0.
2 
±

0.
3 

1.
2 
±

0.
4 

0.
3 
±

0.
2 

2.
5 
±

0.
7 

0.
3 
±

0.
2 

0.
9 
±

0.
2 

4.
4 
±

0.
7 

1.
5 
±

0.
4 

4.
2 
±

1.
8 

Ki
eb

 (1
) 

1.
1 
±

1.
4 

11
.0

 ±
8.

1 
2.

9 
±

3.
4 

0.
7 
±

0.
7 

3.
2 
±

1.
7 

2.
4 
±

2.
3 

8.
8 
±

8.
4 

7.
4 
±

8.
6 

0.
2 
±

0.
2 

4.
7 
±

5.
2 

0.
0 
±

0.
0 

0.
6 
±

0.
7 

0.
5 
±

0.
3 

3.
5 
±

1.
2 

0.
4 
±

0.
3 

0.
7 
±

0.
4 

4.
5 
±

1.
5 

1.
6 
±

0.
4 

5.
0 
±

1.
8 

Fu
rt

 (
1)

 
0.

5 
±

0.
5 

10
.0

 ±
5.

7 
2.

8 
±

1.
9 

0.
4 
±

0.
2 

3.
5 
±

1.
9 

1.
4 
±

0.
6 

13
.1

 ±
9.

9 
6.

2 
±

5.
1 

0.
1 
±

0.
1 

1.
5 
±

1.
2 

0.
1 
±

0.
3 

0.
8 
±

0.
5 

0.
4 
±

0.
2 

2.
0 
±

1.
5 

0.
1 
±

0.
0 

0.
2 
±

0.
0 

2.
1 
±

0.
8 

1.
0 
±

0.
5 

4.
4 
±

1.
3 

St
ad

t 
(1

) 
1.

1 
±

0.
6 

13
.6

 ±
4.

7 
3.

7 
±

1.
8 

0.
5 
±

0.
2 

4.
0 
±

1.
2 

3.
0 
±

1.
1 

14
.6

 ±
7.

5 
13

.6
 ±

6.
6 

0.
2 
±

0.
1 

4.
2 
±

1.
9 

0.
0 
±

0.
0 

1.
1 
±

0.
6 

0.
6 
±

0.
2 

3.
3 
±

0.
3 

0.
3 
±

0.
1 

0.
4 
±

0.
2 

3.
2 
±

0.
7 

1.
2 
±

0.
2 

4.
7 
±

1.
4 

 

a
Pe

lle
ts

 w
er

e 
on

ly
 fe

d 
to

 fi
sh

 w
ith

in
 th

e 
fir

st
 m

on
th

s 
af

te
r 

ha
tc

hi
ng

 a
nd

 a
re

 n
ot

 u
se

d 
fo

r 
fe

ed
in

g 
fis

h 
in

 th
e 

po
nd

s;
 N

um
be

r 
in

 p
ar

en
th

es
is

 a
fte

r 
po

nd
s 

re
pr

es
en

ts
 m

ea
n 

ag
e 

of
 fi

sh
 in

 y
ea

rs
. 

M. Pilecky et al.                                                                                                                                                                                                                                 



Aquaculture 561 (2022) 738731

7

compound-specific stable isotopes, that carp of semi-intensive aqua
culture exposed to different qualitative resources can maintain and 
bioconvert n-3 LC-PUFA at different life stages. The new method pre
sented here is likely also applicable for other fishes and study systems. 

5. Conclusion 

This study shows that, in addition to sufficient energy delivered by 
cereal feeds (i.e., nitrogen and short chain FA), natural occurrence of 
zooplankton and emergent insects in carp ponds is necessary for the 
production of high quality, DHA-rich carp in semi-intensive pond 
aquaculture. In contrast to cladocerans and many other invertebrates, 
fish rely more on DHA than EPA as the key LC-PUFA potentially limiting 
their growth (Nehra et al., 2012; Tocher, 2010). By using natural vari
ability in compound-specific deuterium values, we were able to show 
that in addition to dietary allocation of zooplankton DHA (from co
pepods and/or Chaoborus larvae), farmed carp likely convert dietary 
EPA to DHA, especially if the zooplankton consists primarily of cla
docerans, which contain EPA, but lack DHA. Thus, food quantity and 
quality (e.g., n-3 LC-PUFA) is important for carp production in eutrophic 
aquaculture ponds. Therefore, preserving primary producer and con
sumer diversity in fish ponds can help promote the transfer of highly 
valuable nutrients in natural pond food webs, and eventually to humans. 
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