

Flavour formation in foods

José A. Piornos

▶ To cite this version:

José A. Piornos. Flavour formation in foods. Master. M2 P2food, Dijon, France. 2022, 43 p. hal-03839547

HAL Id: hal-03839547 https://hal.inrae.fr/hal-03839547

Submitted on 4 Nov 2022

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Flavour formation in foods

José Piornos, PhD

What are we learning today?

- How does flavour arise in foods?
- The chemistry of flavour formation
- How to identify the possible origin of a flavour compound

Some basic chemistry

Centre des Sciences

du Goût et de l'Alimentation

3

Origins of aroma compounds in foods

• Biosynthesis

• Fermentation

- Foods consumed raw: fruits, vegetables, salads, spices
- What is flavour for us are attractants or repellents for other animals
- <u>Primary</u> aroma compounds: Those formed via the plant's metabolism (growth, maturation, ripening).
- <u>Secondary</u> aroma compounds: Those formed after cell damage (chopping, peeling, squeezing, etc.).

Biosynthesis. Primary aroma compounds. Esters

- <u>Primary</u> aroma compounds: Those formed via the plant's metabolism (growth, maturation, ripening).
- Mostly esters and terpenes. Very important in fruit aroma

Esters

from the alcohol (first word)

Table of esters and	d their smells	methyl 1 carbon	ethyl 2 carbons	propyl 3 carbons	2-methyl propyl-	butyl 4 carbons	pentyl 5 carbons	hexyl 6 carbons	benzyl benzene ring	heptyl 7 carbons	octyl 8 carbons	nonyl 9 carbons
	methanoate 1 carbon	ETHEREAL	BACARDÍ	9	ETHEREAL	*					Ó.	?
rd)	ethanoate 2 carbons	BUILD	· KEE	6		0			- 10		0	1
	propanoate 3 carbons				1g	0					0	?
	2-methyl propanoate 4 carbons, branched		ETHEREAL	BACARDÍ.	<u> </u>	<u> </u>				0	Ó	?
w puo:	butanoate 4 carbons			60	J			0	1)T	Ż	- Marine	?
id (sec	pentanoate 5 carbons		Ne			ETHEREAL	1	Å	<u> </u>		?	?
nedymo tom/201	hexanoate 6 carbons	**				<u>.</u>	0					1
	benzanoate benzene ring	×	×	-	HILL	HIGH	HAR	HIGH	H		?	1
	heptanoate 7 carbons			A) ?				0	?
	salicylate from salicylic acid		***	M	*	STRONG	(mug		DIFFERENT PEOPLE PERCEIVE DIFFERENT AROMAS!	?		?
	octanoate 8 carbons	6	۲			0		-		Ó	5	0
	nonanoate 9 carbons				0						?	
	cinnamate		16	HAR	HILL					T		?
nd-their-	decanoate 10 carbons	-	0	-	-	JNCK DANIELS		?	?	?	?	?

https://jameskennedymo nash.wordpress.com/201 3/12/13/infographictable-of-esters-and-theirsmells/

Biosynthesis of esters from amino acids

Biosynthesis of esters from amino acids

A GUIDE TO THE TWENTY COMMON AMINO ACIDS

AMINO ACIDS ARE THE BUILDING BLOCKS OF PROTEINS IN LIVING ORGANISMS. THERE ARE OVER 500 AMINO ACIDS FOUND IN NATURE - HOWEVER, THE HUMAN GENETIC CODE ONLY DIRECTLY ENCODES 20. 'ESSENTIAL' AMINO ACIDS MUST BE OBTAINED FROM THE DIET, WHILST NON-ESSENTIAL AMINO ACIDS CAN BE SYNTHESISED IN THE BODY.

Note: This chart only shows those amino acids for which the human genetic code directly codes for. Selenocysteine is often referred to as the 21st amino acid, but is encoded in a special manner. In some cases, distinguishing between asparagine/aspartic acid and glutamine/glutamic acid is difficult. In these cases, the codes asx (B) and glx (Z) are respectively used.

SCOMPOUND INTEREST 2014 - WWW.COMPOUNDCHEM.COM | Twitter: @compoundchem | Facebook: www.facebook.com/compoundchem
Shared under a Creative Commons Attribution-NonCommercial-NoDerivatives licence.

- Biosynthesised from isoprene (5 carbons) ______
- Usually have 10 carbons (terpenes) or 15 carbons (sesquiterpenes)
- Called terpenoids when contain a heteroatom (other than C and H)
- Provide characteristic aroma to **herbs**, **spices**, **fruits** (specially citrus).

Some terpenes and terpenoids found in citrus fruits

12

Other terpenes and terpenoids

1,8-cineol (eucaliptol) eucaliptus

Cuminaldehyde (p-isopropylbenzaldehyde) cumin

α-caryophyllene (humulene) hops

Centre des Sciences

du Goût et de l'Alimentation Two stereoisomers, two different aroma qualities:

R-(-)-carvone spearmint S-(+)-carvone caraway

Formation of terpenes in citrus fruits

- Isoprene units (5 carbons) are present as isopentyl pyrophosphate
- Two isopentyl units can bind to form a longer 10-carbon chain

Biosynthesis. Secondary aroma compounds

- <u>Secondary</u> aroma compounds: Those formed after cell damage.
- When cells are broken, enzymes get in touch with substrates and initiate the enzymatic reaction.
- Before cell disruption, enzymes and substrates were **physically separated**.
- Two examples: formation of aroma in *Allium* and formation of "green" odour aldehydes.

Allium species

Allium cepa onion

Centre des Sciences

du Goût et de l'Alimentation

Allium sativum garlic

Allium cepa var. aggregatum shallots

Allium schoenoprasum

chives

Allium ampeloprasum leek

Sulfur compounds in Allium

- Formed from alkyl or alkenyl (double bound) sulfoxide derivatives of the amino acid cysteine
- Enzyme: alliinase. Physically separated from the substrates; they get in contact after cell breakage.
- Alliin dominates in garlic (2 g/kg); isoalliin in onion (2.4 g/kg).

Centre des Sciences

du Goût et de l'Alimentation

https://link.springer.com/chapter/10.1007/978-3-319-56526-2 5

Figure 2. Organosulfur Derivatives of Alliin in the Process of Garlic Product Preparation

allyl methyl disulfide

variety of compounds. Also form di- (-S-S-), tri- (-S-S-S-) and tetrasulphides (-S-S-S-). The longer, the more unstable.

Sulphur aroma compounds

- Very potent aroma compounds. We can perceived them even at extremely low concentrations.
- They have a very characteristic aroma: garlic, onion, but also faecal.
- Unstable compounds. They decompose easily.
- Can form sulphides, disulphide, trisulphides...

Formation of "green" aromas. Enzymatic lipid oxidation

- Formed by the oxidation of lipids caused by **lipoxygenase** activity. It requires the presence of **oxygen**!
- The result is **linear** aldehydes and alcohols with usually **6 or 9 carbons**, with very potent "green" or "fresh cut grass" aroma.
- Very potent; they can be perceived even in foods with very low fat content.
- Key aroma compounds in legumes (green peas, soya, etc.), cucumber, herbs, vegetables in general, oils (in excess, they are perceived as rancid*).

*Rancidification of oils can occur by other chemical processes, not only lipoxygenase activity, although the aroma compounds formed are similar.

- Fermentative processes not only help degrade proteins, carbohydrates and other macromolecules to make them more easily digestible.
- Lots of aroma compounds are formed in **enzymatic** reactions.
- From **amino acids**, we obtain mostly alcohols, esters and organic acids (Similar to the aroma compounds found in fruits by biosynthesis).

Fig. 3 A scheme of the chemical reactions involving the biosynthesis of acetate esters (a) and medium-chain fatty acid ethyl esters (b). The main genes involved in each reaction are presented above the reaction arrows

Esters and alcohols in beer

- Beer fermentation by yeast produces a huge variety of fruity alcohols and esters that give their characteristic aroma.
- Esters are predominant in beer and are responsible for the fruity flavour.
- These compounds are also present in other fermented beverages, such as rum, whiskey, wine, sake, etc.
- Also present in other fermented foods like cheese and bread.

Centre des Science du Goût et de l'Alimentation

Table 1 Threshold values of most important esters and higher alcohols present in lager beer (Engan 1974; Meilgaard 1975b; Engan 1981)									
Compound	Threshold $(mg L^{-1})$	Concentration range (mg L^{-1})	Aroma impression						
Acetate esters									
Ethyl acetate	25-30	8–32	Fruity, solvent						
Isoamyl acetate	1.2-2	0.3–3.8	Banana						
Phenylethyl acetate	0.2–3.8	0.1-0.73	Roses, honey						
MCFA ethyl esters									
Ethyl hexanoate	0.2-0.23	0.05-0.21	Apple, fruity						
Ethyl octanoate	0.9–1.0	0.04-0.53	Apple, aniseed						
Higher alcohols									
n-Propanol	600	4–17	Alcohol, sweet						
Isobutanol	100	4–57	Solvent						
Isoamyl alcohol	50-65	25–123	Alcoholic, banana						
Amyl alcohol	50-70	7–34	Alcoholic, solvent						
2-Phenylethanol	40	5-102	Roses						

Pires et al. 2014 DOI: 10.1007/s00253-013-5470-0 What aroma compounds can we get from <u>phenylalanine</u> and <u>leucine</u> (together in the same system) by fermentation? Take into account the presence of ethanol and acetyl-SCoA

THERMAL PROCESSING

Formation of a huge variety of aroma, taste and colour compounds.

Caramelisation

Centre des Sciences

du Goût et de l'Alimentation

• Maillard reaction

Caramelisation

- Occurs in food products with a **high sugar** content.
- Requires high temperature, above 120 °C.
- It involves the thermal degradation of sugars, usually mono- but also di- and trisaccharides.
- Since sugars contain only C, H and O, the compounds formed thereafter will only contain these atoms.
- Linear but also cyclic compounds are formed.

Caramelisation

REDUCING SUGAR + AMINO COMPOUND

in food, usually an amino acid

- All monosaccharides
- **However**, not all other bigger sugars are reducing sugars

Lactose

Centre des Sciences

du Goût et de **l'Alimentation**

It cannot initiate the Maillard reaction.

Maillard reaction

- It is a very complex network of parallel and consecutive reactions.
- The final product, melanoidins, are a pool of heterogenous compounds with yellow or brown colour (Maillard reaction → Nonenzymatic browning)

Centre des Sciences du Goût et de

l'Alimentation

Maillard reaction: Early stages

- The amino compound is released and a very reactive dicarbonyl is formed.
- This dicarbonyls reacts further with other compounds like amino compounds or it breaks down into other products.

Centre des Sciences

du Goût et de

l'Alimentation

Strecker degradation: Formation of aldehydes

- When the dicarbonyls reacts with an amino acid, an aldehyde is formed via the Strecker degradation.
- This aldehyde will have one carbon less than the amino acid of origin.

Sulphur compounds from cysteine

- Formation of character impact meaty compounds
- Ribose is a monosaccharide present in meat. Cysteine is an amino acid containing sulphur.
- These compounds are also key in coffee aroma.
- Vegetables and fruits do not contain cysteine and ribose, that is why they do not produce meaty aromas.

Centre des Sciences

du Goût et de l'Alimentation

furfurylthiol another important aroma compound in meat and coffee

- Although the Maillard reaction is usually associated with thermal processes, it is a spontaneous reaction.
- It can happen <u>very slowly</u> at room temperature. Higher temperatures increase the reaction rate.
- Ripened cheeses, aged Port wine

Centre des Science

du Goût et de l'Alimentation

How can we guess the origin of an aroma compound?

- Ingredients
 - Composition. Sugar? Fats? Proteins?
- Processing
 - Is there a thermal process involved?
 - Is the product fermented?
 - Both?
- Nature of the aroma molecule
 - Functional groups. Aldehyde? Ester? Terpene? Cyclic compound?
 - Could it be formed from an amino acid?

Summary

- Biosynthesis
 - Primary: Esters, terpenes, terpenoids
 - Secondary: Linear aldehydes (saturated and unsaturated, usually C6 and C9), sulphides in *Allium*

• Fermentation

- Alcohols, organic acids, esters from amino acids
- Thermal processing
 - Caramelisation: a variety of linear, branched and cyclic compounds (C,H,O)
 - Maillard reaction: Aldehydes from amino acids, heterocyclic compounds (C,H,O,N,S), ketones, sulphur compounds...

Example: Aroma compounds in beer

Could you identify where aroma compounds can be potentially formed?

			RI ^a on							RI ^a on		
no. ^b	odorant ^c	odor quality ^d	FFAP	SE-54	FD factor ^e	no. ^b	odorant ^c	odor quality ^d	FFAP	SE-54	FD factor ^e	
1	methylpropanol	malty	1100	<700	1024	20	2-methoxyphenol	smoky, woody	1863	1093	1024	
2	3-methylbutyl acetate	fruity, banana-like	1130	881	512	21	unknown	fruity	1884	1354	16	
3	3-methylbutanol	malty	1225	758	2048	22	2-phenylethanol	flowery	1922	1125	4096	
4	ethyl hexanoate	fruity	1246	1007	32	23	unknown ^g	earthy, fatty	2000	nd	256	
5	1-octen-3-one ^f	mushroom-like	1300	969	16	24	4-ethyl-2-	smoky	2012	1154	256	
6	2-acetyl-1-pyrroline ^f	roasty, popcorn-	1317	923	64		methoxyphenol					
		like				25a	γ-nonalactone	coconut-like	2029	1367	128	
7	ethyl octanoate	fruity	1430	1168	64	25b	4-hydroxy-2,5-	caramel-like	2029	1075	32	
8	acetic acid ^g	sour, pungent	1435	<700	2048		dimethyl-3(2H)-					
9	3-(methylthio)propanal	cooked potato-like	1452	915	1024	26	octanoic acid ^g	sweaty goat-like	2056	1283	16	
10	linalool	flowery, citrus-like	1533	1107	32	20	unknow ^g	caramal like	2030	1022	16	
11	methylpropanoic acid ^g	sweaty	1559	823	16	27	2 hydroxy 4.5	caramer-nke	2127	1110	512	
12	butanoic acid ^g	sweaty	1621	862	512	20	dimethyl-2(5H)-	spicy	2200	1119	312	
13	phenylacetaldehyde	honey-like	1662	1048	64		furanone ^g	1 /				
14	2- and 3- methylbutanoic acid ^g	sweaty	1663	881	2048	29	2-methoxy-4- vinylphenol	clove-like	2212	1321	4096	
15	3-(methylthio)propanol	cooked potato-like	1710	92	2048	30	2-aminoacetophenone	foxy	2235	1354	128	
16	unknown ^g	earthy	1732	nd ^h	16	31	unknown	metallic, geranium-	2276	1491	256	
17	unknown	roasty	1747	1168	16			like				
18a	2-phenylethyl acetate	flowery	1816	1260	1024	32	4-vinylphenol	smoky, leather-like	2393	1228	512	
18b	(E)- β -damascenone	cooked apple-like	1816	1379	512	33	phenylacetic acid ^g	honey-like	2520	1262	32	
19	hexanoic acid ^g	sweaty, goat-like	1842	1029	16	34	vanillin ^g	vanilla-like	2573	1392	256	

Table 2. Most Odor-Active Volatiles in Bavarian Wheat Beer A (FD Factor ≥ 16)

^aRI, linear retention index. ^bNumbering refers to Figures 1 and 2. ^cCompound was identified by comparison with reference substance on the basis of the following criteria: retention indeces (RI) on the capillaries detailed in the table, mass spectra obtained by MS-EI and MS-CI, odor quality as well as odor intensity perceived at the sniffing port. ^dOdor quality perceived at the sniffing port. ^eFD, flavor dilution factor. ^fMS signals were too weak for an unequivocal interpretation. Compound was identified on the basis of the remaining criteria given in footnote *b*. ^gCompound was identified in the fraction of the acidic volatiles. ^hnd, not determined.

Exercise 2. Origin of these aroma compounds?

			## -	▶ ┡┛┥ ╺	→ 📥 -		• 🖸 –	0.0.
Alcohols 1. 3. 15. 22.	methylpropanol 3-methylbutanol 3-(methylthio)-propanol 2-phenylethanol		Malting Barley grains are rehydrated, germinated and kilned	Mashing Water is added to malt and starch is hydrolysed	Wort boiling Spent grains are removed, hops are added and the wort is boiled	Centrifuging and cooling Hops are separated from the wort and this is cooled down	Fermentation Wort is fermented by yeast	Post- treatments Maturation, flavour addition and bottling, among others
Aldehydes 9. 13.	3-(methylthio)-propanal phenylacetaldehyde	Esters 2. 4.	3-methy ethyl hex	lbutyl acetate anoate				
Organic acids		7.	ethyl oct	anoate				
8. 11.	methylpropanoic acid	18a.	2-pnenyi	ethyl acetate				
12.	butanoic acid	Terpenes	i 					
14a.	2-methylbutanoic acid	10.	linalool					
140. 19. 26. 33.	hexanoic acid octanoic acid phenylacetic acid	Cyclic coi 6. 25b. 28.	mpounds 2-acetylp 4-hydrox 3-hydrox	oyrroline y-2,5-dimethy y-4,5-dimethy	l-3(<i>2H</i>)-furanone l-2(<i>5H</i>)-furanone	2		

Origin of these aroma compounds?

Centre des Sciences

du Goût et de l'Alimentation

		単単	· •				0.0.		
FERMENTATION methylpropanol 3-methylbutanol 3-(methylthio)-propanol 2-phenylethanol		Malting Barley grains are rehydrated, germinated and kilned	Mashing Water is added to malt and starch is hydrolysed	Wort boiling Spent grains are removed, hops are added and the wort is boiled	Centrifuging and cooling Hops are separated from the wort and this is cooled down	Fermentation Wort is fermented by yeast	Post- treatments Maturation, flavour addition and bottling, among others		
THERMAL (Maillard) 3-(methylthio)-propanal phenylacetaldehyde	Esters 2. 4.	FERMEN 3-methy ethyl hey	TATION lbutyl acetate anoate						
FERMENTATION acetic acid methylpropanoic acid	7. 18a.	ethyl oct 2-phenyl	anoate ethyl acetate						
butanoic acid 2-methylbutanoic acid	Terpene 10.	s BIOSYNT linalool	THESIS						
3-methylbutanoic acid hexanoic acid octanoic acid phenylacetic acid	Cyclic co 6. 25b. 28.	mpounds 2-acetylp 4-hydrox 3-hydrox	oyrroline xy-2,5-dimethyl xy-4,5-dimethyl	-3(<i>2H</i>)-furanone -2(<i>5H</i>)-furanone	THERMAL Maillard Maillard c Maillard c	THERMAL Maillard Maillard or caramelisation Maillard or caramelisation			
	FERMENTATION methylpropanol 3-methylbutanol 3-(methylthio)-propanol 2-phenylethanol THERMAL (Maillard) 3-(methylthio)-propanal phenylacetaldehyde FERMENTATION acetic acid methylpropanoic acid butanoic acid 2-methylbutanoic acid 3-methylbutanoic acid hexanoic acid octanoic acid phenylacetic acid	FERMENTATIONmethylpropanol3-methylbutanol3-(methylthio)-propanol2-phenylethanolTHERMAL (Maillard)3-(methylthio)-propanalphenylacetaldehyde4.FERMENTATIONacetic acidmethylpropanoic acidbutanoic acid2-methylbutanoic acid3-methylbutanoic acid6.octanoic acid25b.phenylacetic acid	FERMENTATION methylpropanol 3-methylbutanol 3-(methylthio)-propanol 2-phenylethanolMalting Barley grains are rehydrated, germinated and kilnedTHERMAL (Maillard) 3-(methylthio)-propanal phenylacetaldehydeEstersFERMENTATION 2.3-(methylthio)-propanal phenylacetaldehydeEstersSermethyl head 2.FERMENTATION acetic acid butanoic acid 2-methylbutanoic acid hexanoic acid octanoic acid phenylacetic acidTerpenesBIOSYNT 10.10.Linalool 2-acetylp 25b.Cyclic compounds 4-hydrox 28.Seretylp 3-hydrox	FERMENTATION methylpropanol 3-methylbutanol 3-(methylthio)-propanol 2-phenylethanolMalting Barley grains are rehydrated, germinated and kilnedMashing Water is added to malt and starch is hydrolysedTHERMAL (Maillard) 3-(methylthio)-propanal phenylacetaldehydeEstersFERMENTATION 2. 3-methylbutyl acetate 4.FERMENTATION 2. 3-methylbutyl acetate 4.FERMENTATION acetic acid butanoic acid 2-methylbutanoic acid 3-methylbutanoic acid butanoic acid 3-methylbutanoic acid acetic acidEstersFERMENTATION 2. 3-methylbutyl acetate 4.Terpenes bloSYNTHESIS 10.BIOSYNTHESIS linaloolCyclic compounds cotanoic acid phenylacetic acidCyclic compounds 4-hydroxy-2,5-dimethyl 28.	FERMENTATION methylpropanol 3-methylbutanol 3-(methylthio)-propanol 2-phenylethanolMalting Barley grains are rehydrated, germinated and kilnedMashing Water is added to malt and starch is hydrolysedWort boiling Spent grains are removed, hops are added and the wort is boiledTHERMAL (Maillard) 3-(methylthio)-propanal phenylacetaldehydeEstersFERMENTATION 2. 3-methylbutyl acetate 4. ethyl hexanoateSomethylbutyl acetate 4. ethyl octanoateFERMENTATION acetic acidIsa. 2-phenylethyl acetate2-phenylethyl acetate 10. linaloolTerpenesBIOSYNTHESIS 2-methylbutanoic acid 3-methylbutanoic acidCyclic compounds 6. 2-acetylpyrrolineOctanoic acid phenylacetic acid2. 2. 3-hydroxy-4,5-dimethyl-3(2H)-furanone	FERMENTATION Malting Barley grains are rehydrated, 2-phenylethanol Malting Barley grains are rehydrated, germinated and kilned Mashing Water is added to malt and starch is hydrolysed Wort boiling Spent grains are removed, hops are added and the wort is boiled Centrifuging and cooling THERMAL (Maillard)	FERMENTATION Malting Mashing Wort boiling Centrifuging and Fermentation 3-methylbutanol are rehydrated, butanis starch is Spent grains are cooling Wort is fermented 3-(methylthio)-propanol are rehydrated, starch is hydrolysed the wort is boiled Hops are separated from Wort is fermented by yeast 3-(methylthio)-propanol 2-phenylethanol Esters FERMENTATION scooled down the wort and this is cooled down Wort is fermented by yeast 3-(methylthio)-propanal phenylacetaldehyde FERMENTATION 3-methylbutyl acetate 4. ethyl hexanoate 7. ethyl hexanoate 7. ethyl octanoate 4. 18a. 2-phenylethyl acetate 4. 10. linalool 2-methylbutanoic acid Terpenes BIOSYNTHESIS 10. linalool Maillard 3-methylbutanoic acid 2. 2-acetylpyrroline Maillard Maillard 2-methylbutanoic acid 2. 2-acetylpyrroline Maillard Maillard 3-methylbutanoic acid 2. 2-acetylpyrroline Maillard		

<u>.</u>

Origin of these aroma compounds?

