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Abstract: The availability of omics data providing information from different layers of complex
biological processes that link nutrition to human health would benefit from the development of
integrated approaches combining holistically individual omics data, including those associated with
the microbiota that impacts the metabolisation and bioavailability of food components. Microbiota
must be considered as a set of populations of interconnected consortia, with compensatory capacities
to adapt to different nutritional intake. To study the consortium nature of the microbiome, we must
rely on specially designed data analysis tools. The purpose of this work is to propose the construction
of a general correlation network-based explorative tool, suitable for nutritional clinical trials, by
integrating omics data from faecal microbial taxa, stool metabolome (1H NMR spectra) and GC-MS
for stool volatilome. The presented approach exploits a descriptive paradigm necessary for a true
multiomics integration of data, which is a powerful tool to investigate the complex physiological
effects of nutritional interventions.

Keywords: faecal metabolomics; metagenomics; volatilome; machine learning; network of
interactions; k-clique communities

1. Introduction

In recent years, high-throughput techniques and availability of multiomics data have
revolutionised the study of complex biological processes that link nutrients, bioactive
compounds, food, and the whole diet to human health. On one side, variations occurring at
multiple levels, such as the genome, epigenome, transcriptome, proteome, and metabolome
levels, alongside clinical information after nutritional clinical intervention provide useful in-
sights to better understand the aetiopathogenesis of diseases and to formulate a nutritional
strategy to reduce disease risk. On the other side, the availability of omics data providing
information from different layers highlights the need to develop integrated approaches
combining individual omics data, in a sequential or simultaneous manner.

Tools and methods that perform the integration of multiple omics data generated from
the human genome, proteome, transcriptome, metabolome, and epigenome have been
recently reviewed [1,2], among others. This complex scenario is further complicated when
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the relationships linking diet/foods and human beings are considered alongside the role of
the microbiota.

Nowadays, the reciprocal interaction between diet/food/food components and the
gut microbiota is scientifically evident. A recent bioinformatics study using a machine
learning framework (based on the scikit-learn Python package) screened 1203 different
gut microbiomes and found many significant associations between a group of microbes
and specific nutrients, foods, and food groups [3]. The correlation between diet and the
modulation of gut microbiota has been scientifically strengthened [4,5], as has the impact
of the microbiota on the metabolisation and bioavailability of food components [6,7].

It is now clear that evaluation of the diet–microbiota interaction cannot be ignored
when deciphering systematically and holistically the effects of the diet/food/food compo-
nents on human health. The nature of the microbiota cannot be described by a simple set
of differently abundant microbes, but the theory of consortia has gained more and more
ground, in which the presence of patterns of linked microbes has a decisive biological
function. Therefore, the study of the effect, if any, of a food intervention on the micro-
biota should consider the latter as a set of populations of interconnected consortia with
compensatory capacities to adapt to the different nutritional intake.

As an example, shotgun metagenomic sequencing of 595 faecal samples showed that a
certain lactose intolerant population genotype can balance the lower host’s β-glucosidases
expression due to a greater abundance of bacterial taxa expressing β-glucosidases [8]. To
study the consortium nature of the microbiome, we must rely on specially designed data
analysis tools of different origins, metagenomic or metamolecular, capable of evaluating
the existence of interconnections between populations of microbial individuals. The term
metamolecular, in this context, is used to refer to those molecules that are generated by
consortia in which some species can utilise, as a carbon source, substrates generated by
other species, releasing otherwise inaccessible metabolites.

The intertwined nature of these omics has been studied as such in recent years. One
of the first works investigating metabolome–microbiome crosstalk with correlation maps
and networks was by Mc Hardy et al. [9]. This work set a framework to investigate the
metabolome (mass spectrometry) and microbiome (OTUs) from cecum and sigmoid colon
tissues. To find dependencies between microbes and gut epithelial metabolites, they used
clustering and correlation maps of features to build a network. The resulting network is,
however, characterised by simple measures (e.g., total number of links, average number
of links per type of features) without taking its topology into account. Recently, another
work [10] studied the links between gut microbiome and stool metabolome profiles in
patient with lung cancer using the WCGNA framework [11]. The resulting correlation
networks are characterised by topological measures such as the betweenness centrality
and clustering coefficient. This allowed for a study focused on modularity and communal
structures of the networks, without, however, taking communal overlap into account.

To this aim, omics data from faecal microbial taxa, stool metabolome (1H NMR spectra),
and stool volatilome (GC-MS) were integrated to achieve an efficient crosstalk between
inter-omics features (Figure 1). For visualisation and methodological discussion purposes,
networks were generated from datasets obtained from faecal samples coming from the
nutritional intervention trial performed within the framework of the EU-funded project
PATHWAY-27 (grant agreement n◦ 311876).
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Figure 1. Visualisation of the omics networks: construction and analysis pipeline.

2. Methods

In this section, the methodologies applied to obtain data used to test and visualise
the proposed framework are also described (Sections 2.1 and 2.2). The intervention trial
providing the stool samples used to generate the datasets was a randomised, parallel,
double-blind, placebo-controlled intervention trial including 325 participants. These char-
acteristics are considered the gold standard for the network’s construction. Participants
were randomly divided into 4 groups, each 1 receiving: (1) placebo; (2) dairy food enriched
with docosahexaenoic acid (DHA) plus beta-glucan; (3) egg-based food enriched with DHA
plus anthocyanins (AC); or (4) bakery food enriched with DHA plus AC. The intervention
study lasted 12 weeks. Volunteers were asked to participate in a sub-study on a voluntary
basis. In the sub-study, stool samples were collected in the beginning and at the end of
the trial. For data analysis, only volunteers that completed the study with a compliance
to the treatment >70% and provided stool samples at the beginning and end of the trial
were considered (N = 90). Further details of the intervention study are reported in [12]. The
following methods are presented as standard operating procedures.
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2.1. Sampling and Data Collection

Material Stool samples, once collected, are aliquoted in duplicate at baseline (T0) and
at the end of the trial (Te), and are labelled as the test group (indicated as A diet) and the
placebo (indicated as P diet).

For the sequencing data analysis, the QIIME pipeline version 1.5.0 [13] is used. Within-
community diversity (alpha-diversity) is calculated using observed OTUs, and the Chao1,
Shannon, Simpson, and Good’s coverage indices with 10 sampling repetitions at each
sampling depth. Student’s t-test is applied to compare the latest sequence/sample values of
different treatments within an index. An analysis of similarity (ANOSIM) and the ADONIS
test are used to determine statistical differences between samples (beta-diversity) following
the QIIME compare_categories.py script by using weighted and unweighted phylogenetic
UniFrac distance matrices. Principal coordinate analysis (PCoA) plots are generated using
the QIIME beta-diversity plots workflow [14]. For the volatilome dataset, normality is
checked with the Shapiro–Wilk test, whereas homoscedasticity is evaluated with Levene’s
test [15]. Differences between all samples are evaluated with an untargeted analysis of
variance (ANOVA) set at p < 0.05. Additionally, for the data analyses, Statistica version 8.0
(Tibco Inc., Palo Alto, CA, USA) is used. Normalisation of datasets is performed with the
mean centring method. The outliers’ values that stand out from the pattern of the values in
the dataset are discarded.

2.2. Microbiota Characterisation
2.2.1. DNA Extraction, Amplification, and Sequencing

Stool samples are received frozen from the recruitment centre and kept at −80 ◦C for
short-term storage. DNA is extracted from stool samples using the Purelink Microbiome
DNA Purification Kit (Invitrogen, Thermo Fisher Scientific, Carlsbad, CA, USA). Nucleic
acid purity is tested on the BioDrop Spectrophotometer (Biochrom Ltd., Cambridge, UK).
The baseline and the endpoint are used for MiSeq sequencing (Illumina Inc, San Diego,
CA, USA). Considering the MiSeq approach, bacterial diversity is obtained through li-
brary preparation and sequencing of the 16S rRNA gene. The following two amplification
steps are performed: an initial PCR amplification using 16S (V3-V4) locus-specific PCR
primers (16S-341F 5′-CCTACGGGNGGCWGCAG-3′ and 16S-805R 5′-GACTACHVGGG
TATCTAATCC-3′) and a subsequent amplification integrating relevant flow-cell binding do-
mains (5′-TCGTCG GCAGCGTCAGATGTGTATAAGAGACAG-3′ for the forward primer
and 5′-GTCTCGTGGGCTCGGAGATGTG TATAAGAGACAG-3′ for the reverse overhang);
lastly, unique indices are selected among those available.

Nextera XT Index Kits are used according to manufacturer’s instructions (Illumina
Inc., San Diego, CA, USA). Both input and final libraries are quantified with the Qubit 2.0
Fluorometer (Invitrogen, Thermo Fisher Scientific, Carlsbad, CA, USA). In addition, the
libraries are quality-tested by the Agilent 2100 Bioanalyzer High Sensitivity DNA assay
(Agilent technologies, Santa Clara, CA, USA). Libraries are sequenced in an MiSeq (Illumina
Inc, San Diego, CA, USA) at the paired ends with 300 bp read length [14]. Reads are
demultiplexed based on the Illumina indexing system. Sequences are analysed using QIIME
1.5.0 [13]. After filtering based on read quality and length (minimum quality = 25 and
minimum length = 200), operational taxonomic units (OTUs) defined by a 97% similarity
are picked using the Uclust v1.2.22 q method [16], and the representative sequences are
submitted to the RDP classifier [17] to obtain the taxonomy assignment and the relative
abundance (RA) of each OTU using the Greengenes 16S rRNA gene database [18]. Alpha-
and beta-diversity analyses are performed using QIIME 1.5.0 and used as a quality control
for the microbiome dataset.

2.2.2. Gas Chromatography-Mass Spectrometry for Volatilome

Experimental data of volatile metabolomic profiles in faeces are obtained by solid-
phase microextraction–gas chromatography–mass spectrometry (SPME–GC–MS) analysis.
For the volatilome analyses, the same samples used for microbiota analyses are extracted.
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Volatile organic compound (VOC) evaluation is carried out on an Agilent 7890A Gas
Chromatograph (Agilent Technologies, Santa Clara, CA, USA) coupled to an Agilent Tech-
nologies 5975 mass spectrometer operating in the electron impact mode (ionisation voltage
of 70 eV) equipped with a Chrompack CP-Wax 52 CB capillary column (50 m length,
0.32 mm ID) (Chrompack, Middelburg, The Netherlands). The solid-phase microextrac-
tion (SPME)–GC–MS protocol is followed and the identification of volatile compounds is
performed according to previous reports, with minor modifications [19–23].

Briefly, 3 mL of vessel content or faecal slurry is placed into 10 mL glass vials and
added to 10 µL of the internal standard (4-methyl-2-pentanol) to reach a final concentration
of 4 mg/L. Samples are then equilibrated for 10 min at 45 ◦C. SPME fibre, coated with
carboxen-polydimethylsiloxane (85 µm), is exposed to each sample for 40 min. Precondi-
tioning, absorption, and desorption phases of SPME–GC analysis and all data-processing
procedures are carried out according to previous publications [21–23]. Briefly, before each
headspace sampling, the fibre is exposed to the GC inlet for 10 min for thermal desorption
at 250 ◦C in a blank sample. The samples are then equilibrated for 10 min at 40 ◦C. The
SPME fibre is exposed to each sample for 40 min, and finally, the fibre is inserted into
the injection port of the GC for a 10 min sample desorption. The temperature program is:
50 ◦C for 1 min, then programmed at 1.5 ◦C/min to 65 ◦C, and finally, at 3.5 ◦C/min to
220 ◦C, which is maintained for 25 min. Injector, interface, and ion source temperatures are
250, 250, and 230 ◦C, respectively. Injections are carried out in splitless mode and helium
(3 mL/min) is used as a carrier gas. Identification of molecules is carried out by searching
mass spectra in the available databases (NIST 11 MSMS library and the NIST MS Search
program 2.0 (NIST, Gaithersburg, MD, USA)).

The relative abundance of volatilome data is expressed as a percentage of the peak
area with respect to the total area of the chromatograms, and, as quality control, some
stool-associated compounds are absolutely quantified in mg/kg (LOQ = 0.03 mg/kg and
LOD = 0.01 mg/kg) [24]. For these latter compounds, samples at the endpoint are compared
to the baseline and values are expressed as shifts. All results are expressed as normalised
mean values obtained from technical duplicates for two independent biological replicates.

2.2.3. 1H Nuclear Magnetic Resonance Spectrometry (Untargeted)

Faecal samples are prepared for nuclear magnetic resonance (NMR) analysis by vortex
mixing for 5 min 80 mg of stool with 1 mL of deionised water, followed by centrifugation
for 10 min at 14,000 rpm and 4 ◦C. About 540 µL of supernatant is added to 60 µL of a
D2O 1.5 M phosphate-buffered solution containing 0.1% TSP (3-(trimethylsilyl) propionic
acid-d4), NaN3 2 mM, set at pH 7.4. Before analysis, samples are centrifuged for 10 min
again, and then, 590 µL is transferred into an NMR tube.

Here we define the NMR parameters. Proton NMR (1H NMR) spectra are recorded
at 298 K with an AVANCE III spectrometer (Bruker, Milan, Italy) operating at a frequency
of 600.13 MHz. The hydrogen deuterium oxide (HOD) residual signal is suppressed by
presaturation, whereas broad signals from slowly tumbling molecules are removed by
including a Carr–Purcell–Meiboom–Gill filter to a free induction decay sequence. The
filter is made of a train of 400 echoes separated by 800 µs, for a total time of 328 ms.
Each spectrum is acquired by summing up 256 transients using 32 K datapoints over
a 7211.54 Hz spectrum (for an acquisition time of 2.27 s). The recycle delay is set to 8 s,
keeping in consideration the longitudinal relaxation time of the protons under investigation.

Spectra are processed with TopSpin 3.0 (Bruker) by using an automatic command
apk0.noe, which performs the baseline and phase correction in one shot, and by applying a
line-broadening factor of 1 Hz. The peaks are assigned by comparing their chemical shift
and multiplicity with the literature [25,26] and by using Chenomx NMR suite 8.1 software.
An in-depth view of the critical aspects related to NMR-based metabolomics could be
appreciated in a pragmatic guide to metabolomics methodologies [27].

Here we define 1H NMR spectra preprocessing. After Fourier transformation, and
phase and baseline correction, spectra are calibrated with reference to the chemical shift of
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0.0 ppm assigned to the internal standard TSP; spectral peripheral regions together with the
water signal are removed. After this, spectra are normalised, employing the probabilistic
quotient algorithm (PQN) [28] on three different regions separately, namely, the aromatic,
hydroxylic, and aliphatic regions (regional scaling), since this works best for these types
of samples. After normalisation and prior to any possible statistical analysis, spectra are
binned into intervals of 150 datapoints. As a result, the new spectral profile consists of
400 binned data and is saved as a text file.

2.3. Merging Omics Datasets
2.3.1. Microbiome Data Processing

To delete features with distributions that may cause spurious effects in feature impor-
tance evaluation with machine learning methods, the relative abundances of taxa at T0
(baseline) and Te (endpoint) are filtered and OTUs with a median abundance <0.5% are
excluded. The remaining taxa abundances, which are characterised by skewed distributions
approaching a log-normal, are log-transformed to approximately conform to normality.
This is a well-known routine to reduce skewness and ensure that features are suitable for
methods that assume normality. All microbial features at species level are kept for the
merged dataset. Note that the 0.5% relative abundance threshold is a very hard one, which
is chosen to generate a relatively small final network of integrated features for visualisation
purposes and to facilitate a clearer appreciation of the proposed methodology.

2.3.2. Volatilome Data Processing

A similar approach is followed for volatilome features obtained from gas chromatog-
raphy/mass spectrometry. Relative abundances (RAs) of compounds are filtered at T0
and Te; therefore, compounds with a relative abundance inferior to 0.5% are filtered out.
The remaining compounds, once again characterised by skewed distributions approaching
a log-normal, are log-transformed to approximately conform to normality. The selected
compounds exceeding an RA >0.5% are kept for the merged dataset.

2.3.3. 1H NMR Feature Selection and Agglomeration

To reduce the number of spectral features and build a final merged dataset with a
lower risk of redundancy and spurious spectral features, we propose a two-step feature
selection. To delete completely uninformative features with respect to the ones linked
to the effect of diets, a self-optimising multi-class logistic regression with L1 penalty is
trained using the scikit-learn package (scikit-learn: machine learning in Python [29]) in
a Python 3.8 environment. The L1 penalty regularises the coefficient of the multivariate
logistic regression, thus features completely uncorrelated with outcomes (the different food
intervention followed by subjects) are assigned a coefficient of 0. In other words, sparsity
in the coefficient matrix is induced by the regularisation.

After this feature selection, approximately one third of the original spectral buckets
along the entire ppm range of the spectra are kept as informative features. To avoid the
risk of still having many correlated spectral features due to adjacent spectral buckets be-
longing to the same signals or different signals belonging to the same molecule, and to
summarise peaks in the spectra belonging to correlated molecules, a feature agglomeration
is introduced. A correlation-based hierarchical clustering is trained to group highly cor-
related features using the sklearn.cluster module of the scikit-learn package in a Python
3.8 environment. The dendrogram is then pruned so that features belonging to the same
cluster has a maximal cophenetic distance of 0.7. This is the minimum cophenetic distance
for which no singleton clusters (clusters with a single member) appear, and the number
of resulting agglomerates is comparable with the number of features from other omics in
the dataset, making for a good threshold that avoids an excessively fine partition of the
spectral features and the formation of giant, uninformative agglomerations.

After this step, each agglomeration of features is summarised using the median of the
spectral buckets in the cluster as a pooling function. The result is a limited number of spec-
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tral agglomerates kept for the merged dataset at T0 and Te. As shown in the next section,
this two-step feature selection and transformation is crucial for the final network construc-
tion. In terms of network topology, this procedure ensures the construction of a merged
network without a heavily connected giant component of spectral features. In other terms,
a giant component of spectral features with a high density of links between them would
only reflect, for the most part, the expected high correlation between spectral buckets corre-
sponding to signals of the same molecule. This trivial and uninformative characteristic of
spectral features would, in turn, affect the global network structure, making the emergence
of interesting properties of the networks difficult to study when investigating topology.

2.3.4. Final Merged Dataset

The dataset used to build up the examples presented in the methodological discussion,
resulting from the choice of processing parameters and feature selection, consists of:

• Forty-two log-transformed relative abundances of microbial taxa;
• Log-transformed relative quantifications of fourteen volatile compounds;
• Thirty-four spectral agglomerates summarising metabolomic profiles. These agglomer-

ates represent pooled sets of highly correlated spectral buckets, containing intramolec-
ular resonances or resonances of interdependent molecules.

The same features are compared at T0 and Te for each sex and treatment group.

2.4. Network Construction

For the purposes of the paper, which has a methodologic focus, the networks built from
the merged datasets at T0 and Te are undirected and unweighted to propose a scenario as
simple as possible. To evaluate the effect of diets also considering gender-related differences,
separate networks are generated for males and females at T0 and Te. At T0, each network is
generated using the whole group of females or male subjects, regardless of the following
intervention (A and P). A link between two nodes (the different types of features: volatilome,
microbiome, or stool metabolome) exists if a Spearman correlation greater than 0.5 between
the features is detected. At Te, each network is generated using subjects separated by
sex and nutritional intervention (A or P). A link between two nodes exists if a Spearman
correlation greater than 0.7 between the features is detected. Indeed, since the statistical
significance of a correlation is a function of the sample size for which it is calculated, the
higher sample size at T0 (A + P in each gender) than at Te accounts for a softer threshold.
At Te, when networks are generated considering both gender and dietary intervention (A
or P), a harder threshold is needed to avoid representing unsignificant correlations.

In general, it could be a viable choice to set the minimum correlation threshold to
the minimum value that yields a significance p-value <0.05 for the correlation, whose test
statistics are basically a function of the size of the sample used to estimate such correlations.
In this way, we are immediately guaranteed to build a network with meaningful links
and have a threshold value that increases to detect sets of strongly connected nodes in
the network. Another criterion is given by the soft-thresholding method that is present
in correlation network analysis packages such as WCGNA [11]. The method consists of
elevating correlations to the power that induces the maximum topological overlap with
a scale-free topology for the network. This method is useful when assuming a scale-free
topology is a necessity.

The use of the Spearman correlation allows us to catch nonlinear relationships between
features, as a high Spearman correlation coefficient exists when a general monotonous rela-
tionship function is present between two features [30]. To build the network as unweighted
and undirected, the resulting adjacency matrix is a Nfeats X Nfeats binary matrix of 0s and
1s, where 0 denotes a nonexisting link between two features due to the correlation being
lower than the specified threshold and 1 denotes an existing link between two features
due to the correlation being higher than the specified threshold. Rendering, subnetwork
creation, and topologic analysis is performed using Cytoscape 3.7.2 [31].
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3. Results and Discussion

From a multiomics perspective, building a correlation network from features of var-
ious natures measured in a group of subjects can be seen as a way to grasp a complex
characterisation of that group, with the possibility of studying this characterisation at
many biologically relevant levels. To understand this, it is useful to focus on how the
networks proposed in this work are built and the meaning of a link appearing between
two nodes, which is a representation of the features in the dataset. A link exists between
two nodes when a given Spearman correlation threshold weight is satisfied, meaning that
a monotonous relationship exists between two features that can be of the same type or
of different types. This means that the generated binary network is a snapshot of all the
relationships existing amongst features.

Links among features are undirected, meaning they have no direction and just repre-
sent an existing relationship without a privileged orientation, and are unweighted since
the intensity of the relationship between two nodes is not measured and links just exist
or not. Exploring this ensemble of relationships, which derive from the existence of a
monotonous function of correlation amongst measures in the dataset, means exploring
biologically relevant mechanisms that characterise the group for which the network is built
(e.g., a heavily connected group of microbial species with a metabolite that is known to be
a by-product of their metabolism appearing in a certain group).

Consequently, networks of features generated from two different groups can be com-
pared in terms of the density of their links (how many nodes are connected to each other in
each network) and the topology of the links (which nodes are connected in a group but not
in the others, and where highly connected parts of the network arise, if any exist). When
networks of different groups are generated with the same correlation threshold from the
same features, a difference in link density and connectivity may signify a difference in
detectability of certain patterns and mechanisms, thus somehow characterising the group.

Since the extent to which relationships are represented is dependent on the chosen cor-
relation threshold, a low threshold allows for a representation of the system with an overall
higher complexity, visualising weaker relationships between the features and generating a
more globally interconnected network. Opposite of this, a high threshold conveys a more
fragmented representation of the system, where small but strongly connected components
are more likely to be represented (Figure 2).

Varying the correlation threshold weight when generating a network, depending
on the diversity of the dataset, can be considered similar to zooming in and out with a
microscope when observing something like a composite material; at each level of resolution,
different structural properties are bound to emerge. Once the networks are built, the
following step is the interpretation of their global organisation. For large networks, a
well-known method is based on verifying if the node-degree distribution approaches a
power law [32].

Briefly, if the characteristic quantities of a network (node-degree distribution, cluster-
ing coefficient distribution, etc.) follow a power law, the network is scale-free, and it can be
assumed that it is generated through preferential attachment, i.e., there is a high probability
that new nodes attach themselves to nodes with an existing high number of links. This
mechanism gives rise to a network with a certain number of nodes with a degree (number
of links) greatly exceeding the average that serve as hubs. The study of these hubs, their
neighbourhood, and which purpose they serve in the network should give information
about the overall structure and functionality of the network. An example of a comparison
of networks from different groups in the dataset, using these types of statistics, is reported
in Figure 3. This is an example of very different networks from a topological point of
view, possibly reflecting the effects of the different nutritional intervention followed by the
two groups.
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Figure 2. Correlation network of omics features generated for the same group (T0, males) at different
correlation coefficient thresholds (t), with an attribute (feature)-grouped layout. (A) Softer correlation
threshold, t = 0.5. High density of links in same feature-type groups and presence of inter-omics
links (links connecting circular groups with different colours). (B) Harder correlation threshold,
t = 0.6. Lower density of links in same feature-type groups, inter-omics links disappear. A more
fragmented network of smaller but more strongly connected communities remains. Node colour
represents different types of features. Blue: NMR spectral features, metabolome. Green: microbial
species, microbiome. Orange: volatilome.
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Figure 3. Comparison of network generated from different female diet groups at Te. (A) Network
of omics interactions at Te for females that underwent the food product intervention. (A.1) List of
general parameters of the network. (A.2) Best fit of the node-degree distribution. Axes are set to
be logarithmic so that the fit of a distribution approximating a power law is a line. (B) Network of
omics interactions at Te for females that underwent the placebo intervention. (B.1) List of general
parameters of the network. (B.2) Best fit of the node-degree distribution. Axes are set to be logarithmic
so that the fit of a distribution approximating a power law is a line. Comparing A.1 and B.1, we can
see that network A is a denser network, with many interconnected neighbourhoods (avg. clustering
coefficient) and lower number of isolated nodes. Its node-degree distribution (A.2) does not follow
a power law and we cannot assume a scale-free structure and discuss its biological implications.
Network B has a relatively high number of nodes with low degree (number of links) and a few nodes
with very high degree (B.2). The node-degree distribution converges to a power law; the fit of the
type y = axb returns R2 = 0.872. Node colour represents different types of features. Blue: NMR
spectral features, metabolome. Green: microbial species, microbiome. Orange: volatilome.
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However, the ideal behaviour of the scale-free properties does not happen as frequently
for smaller natural networks as the networks of omics features that are generated in this
kind of experiments, and it is difficult to infer certain properties of a network when it
is outside the scale-free assumption, let alone compare different networks and ascertain
biological characteristics from topological properties. A much more common feature of
not-so-large networks is the presence of many parts, in which nodes are more highly
connected to each other than to the rest of the network. These sets of nodes are called
clusters, groups, communities, or modules depending on how their presence is detected in
mathematical terms.

In general, the recurrence of a communal structure reflects the hierarchical nature of
complex systems and is an interesting perspective to study patterns of omics features. Com-
munities of different features and overlapping features connecting different communities
are the important pieces of the biochemical snapshot seen through different omics. In this
study, we define a community according to the previous literature [33,34], and also use the
k-clique community finder algorithm proposed by the latter. The core idea of the definition
of a community is that a typical community consists of several complete (fully connected)
subnetworks with a tendency to share many of their nodes.

Rigorously, a k-clique community is a union of the complete subnetworks of size
k (k-cliques), that can be reached from each other through adjacent k-cliques sharing
k-1 nodes [35]. This definition encases two key concepts that can be translated to the
representation of the correlation of omics features of different types: the existence of a
structure of overlapping and nested communities, and the fact that members of the same
community can be reached from each other through subsets of well-connected nodes.
Studying the overlap and nesting of groups of multiomics features, which by definition
and construction are linked as a function of their Spearman correlation, can result in the
identification of multiomics signatures for the group from which the network is generated.

We can identify which well-connected subgraphs exist in the network at a given
order k that serve as a sort of “zooming” parameter and speculate about which group-
defining biochemical mechanisms we are observing in terms of metabolome, volatilome,
and microbiome. Since nodes belonging to more than one community can be considered,
by definition, important elements of the network, and each community is an ensemble
of adjacent cliques, biochemical mechanisms underlying the interactions that constitute a
community can be linked in a hierarchical way.

As an example, if two communities, each one formed by highly connected nodes rep-
resenting different types of omics features, share a single node, through the shared node we
can look at each single mechanism separately and in great detail. At the same time, we can
link the single mechanisms as parts of a super-mechanism, i.e., each community represents
by-products of a metabolic pathway that are shared by different microbial species and can
be identified as parts of a super-pathway through the shared node. Furthermore, exploring
the structures of the communities around overlapping nodes, and comparing which nodes
are emerging as bridge nodes between communities in different treatment groups, allows
for exploring the effects of the nutritional intervention. In Figure 4, an example of overlap-
ping k-clique communities of order three found in the network generated by the group of
female subjects that underwent the food intervention is reported.
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Figure 4. An example of the overlap of two clique communities of order three from a nutritional
intervention in females. We can observe that the two communities are linked through the overlap
of a node containing spectral features. The communities contain a mix of microbial species, volatile
compounds, and spectral features that can identify the biochemical mechanism underlying the inter-
actions amongst these features. Studying each community separately can help identify mechanisms
at a higher detail; the fact that these two communities are linked through a shared node can help
link the identified mechanisms in a hierarchical way. The distribution of nodes linking communities
through overlap can also be used to characterise important aspects of such networks. Node colour
represents different types of features. Blue: NMR spectral features, metabolome. Green: microbial
species, microbiome. Orange: volatilome.

4. Conclusions

In this work, a novel path for multiomics studies from data sampling to the construc-
tion of networks of integrated features was proposed. The case study proposed to discuss
the methodology involved faecal microbial taxa, stool metabolome (1H NMR spectra), and
GC-MS for stool volatilome. Particular attention must be paid when dealing with 1H NMR
spectral features. To avoid hindering the quality of information in the networks, which can
be impacted by the presence of many correlated parts of the NMR spectra, we introduced a
two-step dimensionality reduction method. Filtering, transforming, and selecting features
from the different omics ensures the building of optimal networks for exploration.

Links in the networks were generated using a Spearman correlation threshold amongst
the features, thus a link between two features (intra-omics and inter-omics alike) exists
if a monotonous relationship exists between them. Building a network of correlations at
baseline and at the end of treatments allows us to investigate the effect of a certain food
intervention as a web of complex interactions rather than variations of single features of
different types. Focusing on detecting the communal structure appearing in the networks
can be a good strategy to characterise the effects of food interventions in a biochemically
meaningful way. Indeed, we can detect densely connected groups of nodes, and translating
this to the dataset is equivalent to finding interacting microbial communities and linking
them to the metabolic by-products that characterise their environment. Furthermore, we
can carry this out to different extents by changing the order of the communities we want to
detect and imposing different correlation thresholds for link generation, such as zooming
in or out with a microscope.

Another perk of the proposed methodology is the possibility of detecting nodes shared
amongst communities to find groups of features belonging to super-pathways or super-
niches, or interacting in a longitudinal way. This is opposed to traditional cluster maps,
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where the existence of an element belonging to multiple clusters is admitted only by hier-
archical ordering. Finally, communal structures can be used to characterise the effects of
food interventions. Baseline, placebo, and interventions can be compared in terms of the
communal topology of their networks: the number of communities, their extension, the
distribution of nodes shared amongst communities, the emergence of similar or dissimilar
communities (communities containing or not containing the same nodes), and the emer-
gence of similar communities but with different level of completeness (communities with
the same nodes, but with missing elements in a group or another) are all interesting aspects
to look at to define what is being impacted by the food intervention.

Although the main advantage of the method is the possibility of studying biochemical
mechanisms and their physiological reflections and preserving their complexity, the shift
of the descriptive paradigm required for this approach is not trivial. Methods applied
to feature processing and network building require user-defined (or self-optimisable)
parameters and thresholds, which must be applied after establishing a good rationale that
depends on extensive knowledge of the dataset. Furthermore, knowledge of topological
measures and operators of network analysis and their interpretation is required. However,
this descriptive paradigm is necessary for a true multiomics integration of data, which is a
powerful tool to investigate the complex physiological effects of nutritional interventions.

Author Contributions: Conceptualisation, C.M., L.N., A.G. and F.C.; methodology, C.M., L.N., A.G.
and F.C.; software, C.M.; validation, C.M., L.N. and F.C.; formal analysis, C.M. and F.C.; investigation,
C.M., L.N., G.P., C.M.-B., C.O., L.R., A.B., A.G. and F.C.; resources, F.C. and C.M.; data curation, C.M.
and L.N.; writing—original draft preparation, C.M. and L.N.; writing—review and editing, C.M.,
L.N., G.P., A.B., A.G. and F.C.; supervision, F.C.; funding acquisition, A.B. All authors have read and
agreed to the published version of the manuscript.

Funding: This research was funded by the European Union Seventh Framework Programme
(FP7/2007-2013) under grant agreement n◦ 311876: Pathway-27.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available at https://github.com/
CarloMengucci/Omic-Networks-Crosstalk (accessed on 26 June 2022).

Acknowledgments: The authors wish to thank Achim Bub from the Department of Physiology and
Biochemistry of Nutrition, Max Rubner-Institut, 76131 Karlsruhe, Germany.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Subramanian, I.; Verma, S.; Kumar, S.; Jere, A.; Anamika, K. Multi-omics data integration, interpretation, and its application.

Bioinform. Biol. Insights 2020, 14, 1177932219899051. [CrossRef] [PubMed]
2. Wu, C.; Zhou, F.; Ren, J.; Li, X.; Jiang, Y.; Ma, S. A selective review of multi-level omics data integration using variable selection.

High-Throughput 2019, 8, 4. [CrossRef] [PubMed]
3. Asnicar, F.; Berry, S.E.; Valdes, A.M.; Nguyen, L.H.; Piccinno, G.; Drew, D.A.; Leeming, E.; Gibson, R.; Le Roy, C.;

Al Khatib, H.; et al. Microbiome connections with host metabolism and habitual diet from 1,098 deeply phenotyped individuals.
Nat. Med. 2021, 27, 321–332. [CrossRef] [PubMed]

4. Mitsuoka, T. Significance of dietary modulation of intestinal flora and intestinal environment. Biosci. Microflora 2020, 19, 15–25.
[CrossRef]

5. Fava, F.; Ulaszewska, M.M.; Scholz, M.; Stanstrup, J.; Nissen, L.; Mattivi, F.; Vermeiren, J.; Bosscher, D.; Pedrolli, C.; Tuohy, K.M.
Impact of wheat aleurone on biomarkers of cardiovascular disease, gut microbiota and metabolites in adults with high body mass
index: A double-blind, placebo-controlled, randomized clinical trial. Eur. J. Nutr. 2022, 61, 2651–2671. [CrossRef]

6. Kawabata, K.; Yoshioka, Y.; Terao, J. Role of Intestinal Microbiota in the Bioavailability and Physiological Functions of Dietary
Polyphenols. Molecules 2019, 24, 370. [CrossRef]

7. Gois, M.B.; Sinha, T.; Spreckels, J.E.; Vila, A.V.; Bolte, L.A.; Weersma, R.K.; Wijmenga, C.; Fu, J.; Zhernakova, A.; Kurilshikov, A.
Role of the gut microbiome in mediating lactose intolerance symptoms. Gut 2022, 71, 215–217. [CrossRef]

https://github.com/CarloMengucci/Omic-Networks-Crosstalk
https://github.com/CarloMengucci/Omic-Networks-Crosstalk
http://doi.org/10.1177/1177932219899051
http://www.ncbi.nlm.nih.gov/pubmed/32076369
http://doi.org/10.3390/ht8010004
http://www.ncbi.nlm.nih.gov/pubmed/30669303
http://doi.org/10.1038/s41591-020-01183-8
http://www.ncbi.nlm.nih.gov/pubmed/33432175
http://doi.org/10.12938/bifidus1996.19.15
http://doi.org/10.1007/s00394-022-02836-9
http://doi.org/10.3390/molecules24020370
http://doi.org/10.1136/gutjnl-2020-323911


Metabolites 2022, 12, 736 13 of 14

8. van Duynhoven, J.; Vaughan, E.E.; Jacobs, D.M.; Kemperman, R.A.; van Velzen, E.J.; Gross, G.; Roger, L.C.; Possemiers, S.;
Smilde, A.K.; Doré, J.; et al. Metabolic fate of polyphenols in the human superorganism. Proc. Natl. Acad. Sci. USA 2011, 108
(Suppl. 1), 4531–4538. [CrossRef]

9. McHardy, I.H.; Goudarzi, M.; Tong, M.; Ruegger, P.M.; Schwager, E.; Weger, J.R.; Graeber, T.G.; Sonnenburg, J.L.; Horvath, S.;
Huttenhower, C.; et al. Integrative analysis of the microbiome and metabolome of the human intestinal mucosal surface reveals
exquisite inter-relationships. Microbiome 2013, 1, 17. [CrossRef]

10. Vernocchi, P.; Gili, T.; Conte, F.; Del Chierico, F.; Conta, G.; Miccheli, A.; Botticelli, A.; Paci, P.; Caldarelli, G.; Nuti, M.; et al.
Network Analysis of Gut Microbiome and Metabolome to Discover Microbiota-Linked Biomarkers in Patients Affected by
Non-Small Cell Lung Cancer. Int. J. Mol. Sci. 2020, 21, 8730. [CrossRef]

11. Langfelder, P.; Horvath, S. WGCNA: An R package for weighted correlation network analysis. BMC Bioinform. 2008, 9, 559.
[CrossRef]

12. Danesi, F.; Mengucci, C.; Vita, S.; Bub, A.; Seifert, S.; Malpuech-Brugère, C.; Richard, R.; Orfila, C.; Sutulic, S.; Ricciardiello, L.; et al.
Unveiling the Correlation between Inadequate Energy/Macronutrient Intake and Clinical Alterations in Volunteers at Risk of
Metabolic Syndrome by a Predictive Model. Nutrients 2021, 13, 1377. [CrossRef] [PubMed]

13. Caporaso, J.G.; Kuczynski, J.; Stombaugh, J.; Bittinger, K.; Bushman, F.D.; Costello, E.K.; Fierer, N.; Gonzalez Peña, A.;
Goodrich, J.K.; Gordon, J.I.; et al. QIIME Allows Analysis of High-Throughput Community Sequencing data. Nat. Methods 2010,
7, 335–336. [CrossRef] [PubMed]

14. Marino, M.; de Wittenau, G.D.; Saccà, E.; Cattonaro, F.; Spadotto, A.; Innocente, N.; Radovic, S.; Piasentier, E.; Marroni, F.
Metagenomic profiles of different types of Italian high-moisture Mozzarella cheese. Food Microbiol. 2019, 79, 123–131. [CrossRef]
[PubMed]

15. Granato, D.; de Araujo Calado, M.V.; Jarvis, B. Observations on the use of statistical methods in food science and technology. Food
Res. Int. 2014, 55, 137–149.

16. Edgar, R.C. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 2010, 26, 2460–2461. [CrossRef]
17. Wang, Q.; Garrity, G.M.; Tiedje, J.M.; Cole, J.R. Naïve Bayesian Classifier for Rapid Assignment of rRNA Sequences into the New

Bacterial Taxonomy. Appl. Environ. Microbiol. 2007, 73, 5261–5267. [CrossRef]
18. McDonald, D.; Price, M.N.; Goodrich, J.; Nawrocki, E.P.; DeSantis, T.Z.; Probst, A.; Andersen, G.L.; Knight, R.; Hugenholtz, P. An

improved Greengenes taxonomy with explicit ranks for ecological and evolutionary analyses of bacteria and archaea. ISME J.
2011, 6, 610–618. [CrossRef]

19. Guerzoni, M.E.; Vernocchi, P.; Ndagijimana, M.; Gianotti, A.; Lanciotti, R. Generation of aroma compounds in sourdough: Effects
of stress exposure and lactobacilli-yeasts interactions. Food Microbiol. 2007, 24, 139–148. [CrossRef]

20. Saa, D.T.; Di Silvestro, R.; Nissen, L.; Dinelli, G.; Gianotti, A. Effect of sourdough fermentation and baking process severity on
bioactive fiber compounds in immature and ripe wheat flour bread. LWT 2018, 89, 322–328. [CrossRef]

21. Di Cagno, R.; De Angelis, M.; De Pasquale, I.; Ndagijimana, M.; Vernocchi, P.; Ricciuti, P.; Gagliardi, F.; Laghi, L.; Crecchio, C.;
Elisabetta Guerzoni, M.; et al. Duodenal and faecal microbiota of celiac children: Molecular, phenotype and metabolome
characterization. BMC Microbiol. 2011, 11, 219. [CrossRef] [PubMed]

22. Nissen, L.; Casciano, F.; Chiarello, E.; Di Nunzio, M.; Bordoni, A.; Gianotti, A. Colonic in vitro model assessment of the prebiotic
potential of bread fortified with polyphenols rich olive fiber. Nutrients 2021, 13, 787. [CrossRef] [PubMed]

23. Casciano, F.; Nissen, L.; Gianotti, A. Effect of formulations and fermentation processes on volatile organic compounds and
prebiotic potential of gluten-free bread fortified by spirulina (Arthrospira platensis). Food Funct. 2021, 12, 10226–10238. [CrossRef]

24. Bonfrate, L.; Di Palo, D.M.; Celano, G.; Albert, A.; Vitellio, P.; De Angelis, M.; Portincasa, P. Effects of Bifidobacterium longum BB536
and Lactobacillus rhamnosus HN001 in IBS patients. Eur. J. Clin. Investig. 2020, 50, e13201. [CrossRef]

25. Jacobs, D.M.; Deltimple, N.; van Velzen, E.; van Dorsten, F.A.; Bingham, M.; Vaughan, E.E.; van Duynhoven, J. 1H NMR
metabolite profiling of feces as a tool to assess the impact of nutrition on the human microbiome. NMR Biomed. 2011, 21, 615–626.
[CrossRef] [PubMed]

26. Lin, Y.; Ma, C.; Liu, C.; Wang, Z.; Yang, J.; Liu, X.; Shen, Z.; Wu, R. NMR-based fecal metabolomics fingerprinting as 2008
predictors of earlier diagnosis in patients with colorectal cancer. Oncotarget 2016, 7, 29454. [CrossRef]

27. Ulaszewska, M.M.; Weinert, C.H.; Trimigno, A.; Portmann, R.; Andres Lacueva, C.; Badertscher, R.; Brennan, L.; Brunius, C.;
Bub, A.; Capozzi, F.; et al. Nutrimetabolomics: An Integrative Action for Metabolomic Analyses in Human Nutritional Studies.
Mol. Nutr. Food Res. 2019, 63, e1800384. [CrossRef] [PubMed]

28. Dieterle, F.; Ross, A.; Schlotterbeck, G.; Senn, H. Probabilistic quotient normalization as robust method to account for dilution of
complex biological mixtures. Application in 1H NMR metabonomics. Anal. Chem. 2006, 78, 4281–4290. [CrossRef]

29. Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.;
Dubourg, V.; et al. Scikit-learn: Machine learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830.

30. Kendall, M.G.; Stuart, A. The Advanced Theory of Statistics, Volume 2, Inference and Relationship; Sections 31.19, 31.21; Griffin & Co.
Ltd.: London, UK, 1961.

31. Shannon, P.; Markiel, A.; Ozier, O.; Baliga, N.S.; Wang, J.T.; Ramage, D.; Amin, N.; Schwikowski, B.; Ideker, T. Cytoscape: A
software environment for integrated models of biomolecular interaction networks. Genome Res. 2003, 13, 2498–2504. [CrossRef]

32. Albert, R.; Barabási, A.L. Statistical mechanics of complex networks. Rev. Mod. Phys. 2002, 74, 47. [CrossRef]
33. Everett, M.G.; Borgatti, S.P. Analyzing clique overlap. Connections 1998, 21, 49–61.

http://doi.org/10.1073/pnas.1000098107
http://doi.org/10.1186/2049-2618-1-17
http://doi.org/10.3390/ijms21228730
http://doi.org/10.1186/1471-2105-9-559
http://doi.org/10.3390/nu13041377
http://www.ncbi.nlm.nih.gov/pubmed/33923923
http://doi.org/10.1038/nmeth.f.303
http://www.ncbi.nlm.nih.gov/pubmed/20383131
http://doi.org/10.1016/j.fm.2018.12.007
http://www.ncbi.nlm.nih.gov/pubmed/30621867
http://doi.org/10.1093/bioinformatics/btq461
http://doi.org/10.1128/AEM.00062-07
http://doi.org/10.1038/ismej.2011.139
http://doi.org/10.1016/j.fm.2006.07.007
http://doi.org/10.1016/j.lwt.2017.10.046
http://doi.org/10.1186/1471-2180-11-219
http://www.ncbi.nlm.nih.gov/pubmed/21970810
http://doi.org/10.3390/nu13030787
http://www.ncbi.nlm.nih.gov/pubmed/33673592
http://doi.org/10.1039/D1FO01239H
http://doi.org/10.1111/eci.13201
http://doi.org/10.1002/nbm.1233
http://www.ncbi.nlm.nih.gov/pubmed/18085514
http://doi.org/10.18632/oncotarget.8762
http://doi.org/10.1002/mnfr.201800384
http://www.ncbi.nlm.nih.gov/pubmed/30176196
http://doi.org/10.1021/ac051632c
http://doi.org/10.1101/gr.1239303
http://doi.org/10.1103/RevModPhys.74.47


Metabolites 2022, 12, 736 14 of 14

34. Palla, G.; Derényi, I.; Farkas, I.; Vicsek, T. Uncovering the overlapping community structure of complex networks in nature and
society. Nature 2005, 435, 814–818. [CrossRef] [PubMed]

35. Derényi, I.; Palla, G.; Vicsek, T. Clique percolation in random networks. Phys. Rev. Lett. 2005, 94, 160202. [CrossRef] [PubMed]

http://doi.org/10.1038/nature03607
http://www.ncbi.nlm.nih.gov/pubmed/15944704
http://doi.org/10.1103/PhysRevLett.94.160202
http://www.ncbi.nlm.nih.gov/pubmed/15904198

	Introduction 
	Methods 
	Sampling and Data Collection 
	Microbiota Characterisation 
	DNA Extraction, Amplification, and Sequencing 
	Gas Chromatography-Mass Spectrometry for Volatilome 
	1H Nuclear Magnetic Resonance Spectrometry (Untargeted) 

	Merging Omics Datasets 
	Microbiome Data Processing 
	Volatilome Data Processing 
	1H NMR Feature Selection and Agglomeration 
	Final Merged Dataset 

	Network Construction 

	Results and Discussion 
	Conclusions 
	References

