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Abstract

Projecting future response of biological systems to global change requires a mechanistic 

understanding of how climate and ecology jointly drive species demography and range dynamics. 

Such knowledge is particularly crucial when it comes to invasive species, which expansion may 

have far-reaching consequences for recipient ecosystems. Here, we use mark-recapture in replicated

outdoor mesocosms to examine how survival and dispersal, two key drivers of population and range

dynamics, respond to climate and ecology in the invasive red swamp crayfish (Procambarus 

clarkii) along an invasion gradient. We show that crayfish survival probability increased with (i) 

increasing body size at high (but not low) crayfish density and (ii) with warmer temperatures, and 

decreased (i) with increasing body condition and (ii) under higher crayfish density. Overland 

dispersal probability by crayfish increased with increasing (i) body-size, (ii) body condition and (iii)

temperatures. In contrast, crayfish from range-edge and range-core habitats had similar survival and

overland dispersal probabilities, suggesting no evolution of the crayfish expansion potential along 

the invasion gradient. Our results highlight that species population dynamics and range shifts in a 

changing world are driven by joint contributions from both climate and ecology. In P. clarkii, global

warming will simultaneously promote both a demographic increase and a geographic range 

expansion, especially in populations dominated by large-bodied individuals. 

Key words : Biological invasions, Body size, Condition-dependent dispersal, Invasion 

management, Mesocosms, Multistate mark-recapture model, Population density, Procambarus 

clarkii, Survival-dispersal trade off, Temperature.
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INTRODUCTION

How species geographic distributions will change in a near future is a central question in ecology, 

evolution, conservation and the management of biological invasions. To date, our ability to answer 

this question often rests on correlative species distribution models, which provide a poor 

mechanistic understanding and, arguably, have a low power to predict how organisms will respond 

to global change. A recent approach to addressing these questions consists in explicitly modelling 

the ecological and evolutionary processes that control geographic distributions in so-called process-

explicit models (Briscoe et al., 2019; Townsend Peterson et al., 2015; Travis & Dytham, 2012). 

These models draw heavily on population-dynamic models, and on how demographic rates, i.e., 

survival, reproduction and dispersal, respond to environmental change (Fig. 1). 

Fig. 1. Conceptual framework for process-

explicit models of species range dynamics. 

Global change may select upon individual 

state variables such as sex, body size, body 

condition or genotype (arrow 1a), or alter the 

environment (arrow 1b) which includes 

climate (e.g., temperature) and ecological 

variables (e.g., competitor density). Individual

state (arrow 2) and environment variables 

(arrow 3) both influence demographic rates, 

which ultimately drive the dynamics of both 

populations and geographic ranges (arrow 4). 

In turn, population and range dynamics entail 

environmental alterations (arrow 5), which influence individual states through both phenotypic plasticity and

selection experienced by individuals (arrow 6). Bold arrows show the causality links that are specifically 

investigated in the present study.

The complexity of mechanistically predicting how demographic rates respond to environmental 

change may be usefully tackled by separating the changes that act directly onto demographic rates, 

or indirectly through a modification of individual state variables (Fig. 1). Global change may select 

upon individual state variables that, in turn, influence demographic rates (arrow 1a-2 sequence in 
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Fig. 1, Table 1). For instance, a number of human activities, such as harvesting, are selective on sex 

and/or body size (Biro & Post, 2008; Edeline, 2016; Kuparinen & Festa-Bianchet, 2017), which are 

state variables that typically have strong effects on survival, reproduction or dispersal 

(Charlesworth, 1994; Clobert et al., 2009; Clobert, Baguette, et al., 2012; Roff, 2002). At the same 

time, global change disrupts a host of abiotic (e.g., climate) and ecological (i.e., density-dependent) 

factors which have long been known to strongly influence demographic rates, including survival 

and dispersal either through ecological processes (arrow 1b-3 sequence in Fig. 1, Begon et al., 

2005; Clobert, Baguette, et al., 2012; Kendall et al., 1999; Krebs, 2014; Stenseth et al., 2002), or 

through an alteration of individual state variables (arrow 1b-4-2 sequence Fig. 1 Le Galliard et al., 

2012; Matthysen, 2012).

An additional complexity layer comes from demography and range dynamics responding not only 

respond to direct and indirect effects of anthropogenic selection, climate and ecology, but also to 

feedbacks between these different components: as both the population size and geographic range 

change, so do the environmental conditions and selective pressures and/or plastic effects 

experienced by individuals (e.g., competition, predation, habitat quality, arrow 5-6 sequence in Fig. 

1). In particular, emigration from the core habitat, or from the introduction point in the case of 

biological invasions, selects for increased dispersal propensity through spatial sorting, and is further

possibly a competition-avoidance response where poorer competitors disperse from high-density 

core habitats to low-density marginal habitats (Burton et al., 2010; Chuang & Peterson, 2016; 

Messager & Olden, 2019; Phillips, 2016; Phillips et al., 2010). Hence, high dispersers and poor 

competitors are likely to be overrepresented among immigrants at range edges. Accordingly, results 

from spread experiments support the prediction that increased dispersal evolves at range edges 

(Fronhofer & Altermatt, 2015; Ochocki & Miller, 2017; J. L. Williams et al., 2016), but evidence 

for reduced competitive ability is mixed (Duckworth, 2008; Hudina et al., 2015). 
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Unfortunately, however, the development of process-explicit models of geographic ranges that 

would integrate both direct and indirect effects of global change and feedbacks is impeded by 

serious logistical and knowledge limitations. The data needed to estimate demographic rates, as 

well as their state- and environment-dependency, are hard and costly to acquire in the wild, and are 

thus typically lacking (Briscoe et al., 2019; Gaston, 2009). Even when present, such data may be 

poor if detection or recapture rates are low, or if population size is small, resulting in inaccurate 

parameter estimation. A further obstacle to implementing process-explicit models of species ranges 

is that the eco-evolutionary feedback loops that may operate during range expansion (Fig. 1, arrow 

5; see below) remain a frontier in biology and are poorly understood empirically (Angert et al., 

2020; Clobert, Massot, et al., 2012; Miller et al., 2020; Travis & Dytham, 2012), which makes it 

uncertain which mechanisms should be incorporated into models.

In the present study, we propose to circumvent these logistical and knowledge limitations using, in 

outdoor mesocosms, mark-recapture of wild-caught range-core and range-edge animals. 

Specifically, we quantified the effects of key individual state variables (sex, body size, body 

condition), climate (temperature), ecology (population density) and geographic range (core vs. edge

of an invaded area) on both survival and overland dispersal propensity in red swamp crayfish 

(Procambarus clarkii). This species, well known for dispersing through overland movements (Cruz 

& Rebelo, 2007; Huner & Barr, 1991; Ramalho & Anastácio, 2015), is considered as one of the 

most invasive aquatic species worldwide (Oficialdegui et al., 2019; Savini et al., 2010), and poses 

very serious management problems due to the profound reorganizations they cause in recipient 

ecosystems (Lodge et al., 2012; Souty-Grosset et al., 2016; Twardochleb et al., 2013). From a 

literature review, we formed detailed predictions for the state, temperature-, density- and range-

dependency of P. clarkii survival and dispersal (Table 1). Our experimental approach allowed us to 

fully test all of these predictions.
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Table 1. Predicted and experimentally-observed in the present study effects of sex, body size, body condition, geographic range (core vs. edge), as well as 

population density and temperature on both survival and dispersal in the red swamp crayfish (Procambarus clarkii). Detailed statistics for observed effects 

are provided in Table 2.

Factor
Relationship to Survival Relationship to Dispersal

Effect sign Explanation of
predicted sign References

Effect sign Explanation of
predicted sign References

Predicted Observed Predicted Observed

Sex male - 0

Males invest less than
females in maintenance
and future reproduction
due to higher hazards

(Kirkwood, 
2001; G. C. 
Williams, 1957)

+ or - 0

Sign depends on
relative strengths of
opposing selective

forces. Male-biased in
Pacifastacus
leniusculus

(Gros et al., 
2008; Hudina 
et al., 2012; 
Wutz & Geist, 
2013)

Body size + 0
Larger-bodied

individuals dominate
competition

(Figler et al. 
1999; Edeline 
and Loeuille 
2021 and 
references 
therein)

+ +

Sign depends on
relative strengths of
opposing selective
forces. In crayfish,

overland and in-stream
dispersal is often

favoured by a large
body size. 

(Claussen et 
al., 2000; 
Clobert et al., 
2009; Kisdi et
al., 2012; 
Moorhouse &
MacDonald, 
2011; 
Ramalho & 
Anastácio, 
2015; Thomas
et al., 2018; 
Wutz & Geist,
2013)

Body condition + - Higher physical quality
increases survival

Multiple 
evidence, see e.g.
Blums et al. 
(2005)

+ or - +

Sign depends on
relative strengths of
opposing selective

forces.

(Bonte & 
Peña, 2009; 
Clobert et al., 
2009; Kisdi et
al., 2012)

High population
density - - Increased competition

decreases average
(Burton et al., 
2010; Phillips, + 0 Competition

avoidance favours
(Clobert et al., 
2009; Galib et 
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survival

2016; Phillips et 
al., 2010) see 
also Appendix 8 
for crayfish-
specific studies

increased dispersal al., 2022)

Temperature - +

Higher metabolic rate
elevates mortality, but
sign should depend on
temperature relative to

thermal optimum

(Angilletta Jr., 
2009; Brown et 
al., 2004; Knies 
& Kingsolver, 
2010; Westhoff 
& Rosenberger, 
2016)

+ or - + Sign depends on
thermal preference 

(Angilletta Jr.,
2009; 
Claussen et 
al., 2000; Le 
Galliard et al.,
2012; 
Ramalho & 
Anastácio, 
2015)

Range edge - 0

A survival-dispersal
trade off makes

dispersers less able to
survive

(Angert et al., 
2020; Burton et 
al., 2010; 
Messager & 
Olden, 2019; 
Miller et al., 
2020; Phillips, 
2016; Phillips et 
al., 2010)

+ 0

Spatial filtering leads
to more dispersive

individuals at range
edges

(Angert et al.,
2020; Burton 
et al., 2010; 
Miller et al., 
2020; 
Phillips, 
2016; Phillips
et al., 2010)

High density-by-
size interaction + +

Benefits from a large
body size increase under

elevated competition

(Burton et al., 
2010; Edeline & 
Loeuille, 2021; 
Phillips, 2016; 
Phillips et al., 
2010)

- 0

Competition at high
density favours

dispersal in small,
competitively-

dominated individuals

(Clobert et al., 
2009)

Range edge-by-
size interaction

- 0 Lower competitive
ability in Range-edge

crayfish make body size
less important to

survival

(Burton et al., 
2010; Edeline & 
Loeuille, 2021; 
Messager & 
Olden, 2019; 
Phillips, 2016; 
Phillips et al., 

- 0 Lower competitive
ability in Range-edge

crayfish makes
dispersal less size-

dependent

(Clobert et al., 
2009; Phillips 
et al., 2010)
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2010)

Range edge-by-
density

interaction
- 0

Negative effect of high
density on survival

stronger in less
competitive Range-edge

crayfish

(Burton et al., 
2010; Edeline 
& Loeuille, 
2021; Messager
& Olden, 2019; 
Phillips, 2016; 
Phillips et al., 
2010)

+ 0

Lower competitive
ability in Range-edge
crayfish makes them
more sensitive to the

positive effect of
density 

(Clobert et al.,
2009; Phillips
et al., 2010)

Range edge-by-
density-by-size

interaction
- 0

Weaker size-dependency
of survival in Range-
edge crayfish is more

pronounced under high
density

(Burton et al., 
2010; Edeline 
& Loeuille, 
2021; Phillips, 
2016; Phillips et
al., 2010)

- 0

Weaker size-
dependency of

dispersal in Range-
edge crayfish is more

pronounced under
high density

(Clobert et al.,
2009; Phillips
et al., 2010)
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MATERIALS AND METHODS

Crayfish populations

P. clarkii originates from south-central USA (Louisiana and Texas) and was introduced to Europe 

through both USA-to-Kenya-to-Europe and USA-to-Spain routes (Oficialdegui et al., 2019). The 

species is highly fecund, tolerant to a large range of environmental conditions (including drought), 

generally spreads rapidly once introduced either through secondary human-mediated introductions 

(Oficialdegui et al., 2020) or through active in-stream and overland dispersal (Cruz & Rebelo, 2007;

Tréguier et al., 2018), and often has major impacts on the invaded ecosystems (Souty-Grosset et al., 

2016; Twardochleb et al., 2013). 

In this study, we used crayfish sampled from natural populations in the Brière area, north-western 

France (47°23′N, 02°12′W) where crayfish belonging to the USA-to-Kenya-to-Europe introduction 

route were introduced during the early 1980’s (Bélouard et al., 2019; Oficialdegui et al., 2019). 

Crayfish escaped from a farm and invaded the nearby marsh (90 km2), where they now form a large 

and genetically-homogeneous population (Bélouard et al., 2019). From this range core, dispersers 

used streams, ditches and, secondarily, overland dispersal to colonize ponds embedded in the 

surrounding hedgerow landscape, where they founded multiple new populations that may be 

considered as range-edge populations (Bélouard et al., 2019; Tréguier et al., 2018).

We sampled crayfish from three different range-core locations in the marsh, hereafter collectively 

referred to as “Range-core crayfish”, and from three range-edge pond populations genetically 

differentiated from the marsh source at neutral markers (CB7, I6 and I10 ponds as named in 

Bélouard et al. 2019), and hereafter collectively referred to as “Range-edge crayfish”. 
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In addition to crayfish from the Brière, we sampled crayfish from a third locality, a pond located in 

Rennes city (48°06′N, 1°42′W, about 80 km away from the Brière), hereafter referred to as an 

“Outgroup”. These Rennes crayfish have a genetic signature typical of the native range, suggestive 

of an introduction route that differs from what has been described for the marsh of Brière 

(Appendix 1). We used these Outgroup crayfish in order to standardize the density treatments in the 

experiment (see below), and also because we were able to capture Range-edge crayfish only in 

limited numbers due to small population sizes (Bélouard et al., 2019). 

Crayfish sampling, marking and maintenance

Crayfish in the Brière were sampled using non-baited traps on May 21st, 22nd and 24th 2019. Upon 

capture, crayfish were determined as male or female from secondary sexual characters (first 

pleopod pair transformed to gonopods in males), measured for body size (cephalothorax length to 

the nearest mm, from the tip of the rostrum to the end of the cephalothorax), weighted to the nearest

10-1g, and individually marked using 8 mm passive integrated transponders (Biomark HPT8 FDX 

PIT tags) inserted in the abdominal musculature of the third abdominal segment in the ventral 

surface. Crayfish were then transported to the PEARL, the INRAE experimental facility for aquatic 

ecology and ecotoxicology in Rennes (https://www6.rennes.inrae.fr/u3e_eng/), and stocked in 8 m2 

mesocosms. The same procedure was applied to Rennes crayfish, that were PIT-tagged on April 

24th. In stocking mesocosms, crayfish were provided with an excess shelters made from PVC tubes, 

and were fed with fish food in excess (Le Gouessant, Carpe Extrudée Coul 4). 

Experimental mesocosms

Experimental mesocosms were 28, three-m2 circular tanks covered with nets to prevent avian 

predation, and equipped with six artificial refuge traps (ART, Green et al. 2018). ARTs consisted in 

five PVC tubes (250 mm length) glued together and closed by a grid at one end (Appendix 2A), 

using either 26.5 or 32.5 mm tubes (inner diameter) so as to fit with the needs of both small- and 
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large-bodied crayfish. ARTs sank on the bottom of the mesocosms and provided crayfish with 

shelters in excess (i.e., one tube provided one shelter, 30 tubes per mesocosm). 

Each experimental mesocosm was further equipped with an exit trap requiring for trapping that 

crayfish actively walk out from water, i.e., that crayfish start overland dispersal. Specifically, exit 

traps were made from a 50L bucket attached to the inner wall of the mesocosm and hanging 30 cm 

underwater. Trapping required crayfish to climb a ramp made from a plastic net and extending from 

the bottom of the mescososm up to the rim of the bucket (Appendix 2B). Hence, exit traps captured 

crayfish that clearly expressed active, out-of-water movements which may be interpreted as the 

onset of overland dispersal. Crayfish falling into the trap could not escape back to the mesocosm. 

The bottom of the bucket was pierced with holes to allow water circulation, and PVC tubes 

provided trapped crayfish with shelters.

Throughout the experiment, crayfish were mildly fed with 418 ± 11 mg (mean ± SD) of fish food 

per experimental mesocosm per week.

Experimental treatments and recapture

On June 3rd 2019, we started the experiment by transferring crayfish into experimental mesocosms. 

We introduced randomly-chosen Range-core and Range-edge crayfish at a constant density of 7 

crayfish per mesocosm, and varied density using either 2 or 12 Outgroup crayfish per mesocosm, 

yielding two density treatments (9 or 19 crayfish per mesocosm) and two range treatments (Range-

core with Outgroup or Range-edge with Outgroup) in a factorial design (7 replicate mesocosms per 

treatment, 392 crayfish in total).

Experimental densities (3.0 vs. 6.3 individuals m-2) were relatively high compared to naturally-

observed densities in several crayfish species, which range from 9.3 10-3 to 20.0 individuals m-2 (n =
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29, mean 2.5, median 1.0, SD 4.7, Bubb et al., 2004; Coignet et al., 2012; Correia & Bandeira, 

2004; Galib et al., 2022; Guan, 2000; Lamontagne & Rasmussen, 1993; Pilotto et al., 2008; Wutz &

Geist, 2013), and in line with experimentally-manipulated densities in enclosures or mesocosms, 

which range from 0.8 to 14.0 individuals m-2 (mean 4.3, median 3.6, SD 3.3, Lodge et al. 1994; 

Angeler et al. 2003; Rodríguez et al. 2003; Gherardi and Lazzara 2006; Gherardi and Acquistapace 

2007; Correia and Anastácio 2008; Matsuzaki et al. 2009; Jackson et al. 2014; Rodríguez-Pérez et 

al. 2016; Závorka et al. 2020).

At 1-7 days intervals (mean ± SD = 2.4 ± 0.8 days) starting from June 5th, both ARTs and exit traps 

were cleared, and recaptured crayfish were recorded for PIT tag number and returned to their 

mesocosm. Two crayfish lost their tags during the course of the experiment. These were identified 

based on their sex, size and previous capture histories, and re-tagged. On November 5th, mesocosms

were drained and all surviving crayfish were recaptured and recorded for PIT tag number. In total, 

there were 63 recapture occasions.

Temperature

Hourly air temperature data for the entire duration of the experiment was obtained from a 5km-

distant Meteo France weather station (Station météorologique de Rennes-St Jacques, 48°07′N, 

1°74′W). Additionally, during 90 % of the duration of the experiment (from June 17th to November 

5th) we recorded hourly water temperature in six of 28 experimental mesocosms using HOBO Tidbit

v2 temperature loggers. A cross-correlation analysis shows that water temperature in the mesocosms

was highly correlated with air temperature at the weather station with a 5-hour lag (Appendix 3). 

For our analyses, we computed mean hourly air temperature during the transition interval between 

two successive capture occasions.

Multistate capture-recapture model
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We estimated the effects of individual and environmental factors on crayfish survival and overland 

dispersal probabilities using a multistate mark-recapture model (Lebreton et al., 2009), separating 

among three states: A for crayfish present in the mesocosm, B for crayfish present in the exit trap 

(i.e., overland dispersal), and Dead. We assumed that crayfish survived in state A between capture 

occasions t and t+1, and dispersed to B just prior to t+1. Hence, only survival in state A is 

considered. This assumption was justified by the fact that we did not find any dead crayfish in an 

exit trap. The state process can be represented by a transition matrix with departure states (time t) in

rows and arrival states (time t+1) in columns:

State A State B Dead
State A ϕA(1−ψA→B) ϕ A ψA→B 1−ϕA

State B ϕA ψB→A ϕA(1−ψB→A) 1−ϕA

Dead 0 0 1

(1),

with ϕA  = survival probability, ψA→B  = transition probability from state A to state B (i.e., 

dispersal from mesocosm to exit trap), and ψB→A  = transition probability from state B to state A. 

Although all crayfish captured in an exit trap (state B) were in fact effectively returned to their 

experimental mesocosm (state A), i.e., although the experimental design made state B effectively 

absent in the rows of the state transition matrix (1), we chose to use this model parametrization so 

as to separate dispersal performed by previously-dispersing individuals. That is, ψB→ A  

represented probability of settlement in the mesocosm for a crayfish having dispersed to the exit 

trap at the previous occasion, hereafter referred to as “post-dispersal settlement” probability. Non-

symmetric patterns of ψA→B  and ψB→ A  would be suggestive of a cost of dispersal. Note that 

we also ran a model in which transition probabilities were the same for the “state A” and “state B” 
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lines in the transition matrix (i.e., with ψB→A  absent), with no change on posterior parameter 

estimates for ϕA  and ψA→B .

The observation process is conditional on underlying states, and is described via detection 

probabilities in each state pA  and pB . In our experiment, ARTs provided imperfect detection 

(crayfish present in a mesocosm but not in ARTs when cleared), such that 0< pA<1 , but crayfish 

present in exit traps were seen for sure, such that PB=1 . These observations can be summarized 

by a row-stochastic observation matrix (i.e., probabilities in a row sum up to one):

Seen state A Seen state B Not seen
State A pA 0 1−pA

State B 0 1 0
Dead 0 0 1

(2).

Our multistate model included a “full-detection” formulation with one independent pA  

parameter estimated at each occasion t for each individual i. The model further included three 

independent Bernoulli GLMMs for the effects of individual- and environment-level factors on 

probabilities ϕA , ψA→B , and ψB→A  (generically symbolized by Ω ):

logit (Ω i ,t)=α0+βSex[i ]+α1⋅BSi+α2⋅Cond i+ γDensity [i ]+α3⋅Tempt+δRange [i ]+ϵDensity [i]⋅BSi

+ζRange[ i]⋅BS i+ηRange[i ], Density [i]+θRange[ i] ,Density [i ]⋅BSi+α4⋅Time t+ι[Meso [i]]+κi

ι[Meso [i ]]∼N (0 ,σι)
κi∼N (0 ,σκ)

(3),

where subscripts i and t stand for crayfish individuals and capture occasions, respectively, α0  is 

model intercept (see below), Sex is a two-level factor (Male or Female), Range has three levels 

(Range-core, Range-edge, Outgroup), Density has two levels (9 or 19 crayfish per mesocosm), BS is

body size (cephalothorax length, mm), Cond is individual body condition measured as the residual 
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from the ln(Massi) / ln(BSi) linear regression, Temp is the mean of hourly air temperature during the 

transition interval between two capture occasions, Time is duration of the transition interval in days,

and Meso is mesocosm identity (numbered from 1 to 28). The ι  and κ  random effects 

accounted for mesocosm and individual (overdispersion) effects. Note that ϕA  was not 

overdispersed and, hence, its GLMM did not include a κ  parameter. Eq. 3 was fitted using an 

“effect” parametrization as is the default in R, such that the intercept α0  corresponds to mean 

response in Range-core females at low density. To evaluate the main effects of covariates, we also 

fitted a version of Eq. 3 with no interaction term.

To test for nonlinearities in the effects of temperature on crayfish survival and dispersal, we also 

fitted a version of the model in which Eq. 3 included a Density-by-Temp, a BS-by-Temp and a 

Density-by-BS-by-Temp interactions. None of these interactions were statistically significant, and 

we thus discarded this version of the model from our subsequent analyses.

We fitted the multistate model using a state-space formulation (Gimenez et al., 2012; Kéry & 

Schaub, 2012) and Markov chain Monte Carlo (MCMC) in JAGS (Plummer, 2003) through the 

jagsUI package (Kellner, 2019) for R 4.2.1 (R Core Team, 2022). All numeric covariates were 

centred to zero mean and 0.5 standard deviation as recommended by Gelman (2008) for logistic 

regressions. We used vague priors on all parameter distributions. Specifically, we chose Cauchy 

robust priors with scale 2.5 for regression parameters (Gelman et al., 2008), uniform distributions 

on the [0,1] interval for probabilities, and uniform distributions on the [0,5] interval for variance 

parameters. Additionally, to test posterior sensitivity to the priors, we also ran the model using as 

priors uniform distributions on the [-10,10] interval for regression parameters in Eq. 3.
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We ran three parallel MCMC chains for 10000 iterations (burnin of 2000 iterations) thinned at a 4-

iteration interval. We assessed parameter convergence using the Gelman-Rubin statistic which 

compares the within- to the between-variability of chains started at different and dispersed initial 

values (Gelman & Rubin, 1992). We tested for the significance of effects in Eq. (3) through 

computing MCMC p-values as twice the proportion of the posterior which sign was opposite to the 

sign of the posterior mode. We further evaluated the identifiability of model parameters by 

computing the overlap between prior and posterior distributions using the BEST package in R 

(Kruschke & Meredith, 2021). A high prior-posterior overlap (PPO) indicates that information from 

the data is weak, such that the posterior parameter distribution is strongly dependent on the prior 

distribution. A PPO greater than 35 % is considered as indicative of a weak parameter identifiability

(Gimenez et al., 2009).

RESULTS

Phenotypes

Crayfish had a balanced sex ratio (51 % females). Cephalothorax length ranged from 24.9 to 66.2 

mm (mean ± SD = 44.7 ± 6.8 mm), and was similar among Range-core (42.7 ± 7.1 mm) and Range-

edge crayfish (42.2 ± 6.4 mm), but was significantly larger in Outgroup crayfish (46.9 ± 6.2 mm, 

Appendix 4; estimate = 4.22, ddl = 392, res. ddl = 389, t-value = 5.01, p-value < 0.001). Outgroup 

crayfish also had a significantly higher body condition than Brière crayfish (estimate = 0.10, ddl = 

392, res. ddl = 389, t-value = 7.31,  p-value < 0.001).

Temperature
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Mean air temperature during a recapture interval ranged from 9.3 to 26.9°C (Fig. 2). Maximum air 

temperature was 39.4°C. There was a high positive correlation between mean and maximum 

temperature (cor = 0.93) and between mean and variance temperature (cor = 0.68, data not shown).

Fig. 2. Daily air temperature during the experiment. Red, solid line: median daily temperature. Red 

ribbon: 95 % confidence intervals.

Survival

Posteriors for regression parameters in Eq. 3 were insensitive to the choice of Cauchy or uniform 

priors (compare Table 2 with Appendix 5). Prior-posterior overlaps (PPOs) for survival parameters 

were below 35 %, except for η[Range edge, HD] (PPO = 36 %), indicating no major identifiability 

problem (Appendix 6A). In particular, none of the posteriors associated with significant effects 

were weakly identifiable.

Crayfish survival probability during a time interval ranged from 0.9 to 1 (Figs. 3a-d). These high 

probabilities were due to the short duration of a time interval (2.4 days on average). Over the entire 

duration of experiment (153 days), 51.5 % of crayfish survived.

Larger-bodied crayfish had increased survival probability under high (but not low) density 

conditions, a trend mostly present in Range-core crayfish (Figs. 3b vs. 3a, α[1] vs. ε[HD] parameters
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in Table 2). Specifically, average survival probability during a 2.4-day time interval was 9.57 10-1 in

the smallest crayfish (24.9 mm thorax length) and 9.98 10-1 in the largest crayfish (66.2 mm, 

probabilities predicted for Range-core female crayfish under high density, all other quantitative 

covariates fixed to their average value).

Fig. 3. Predicted effects of body size-by-density interaction, body condition and temperature on 

crayfish survival probability ΦA , dispersal probability ΨA→B  and post-dispersal settlement 

probability ΨB→ A . Lines represent median prediction, ribbons indicate 95 % credibility intervals. Green,

solid lines: Range-core crayfish. Red, dashed lines: Range-edge crayfish. Blue, dotted lines: Outgroup 

crayfish. LD and HD stand for low and high crayfish density, respectively. All probabilities are for a 

transition interval of 2.4 ± 0.8 days (mean ± SD). Predictions were made from parameters estimates of Eq. 3 

by setting the Sex factor to female crayfish, and predictions for the effects of body condition and temperature

were further made by setting the Density factor to HD. Credible intervals are not displayed for clarity 

reasons.

Higher crayfish density (Figs. 3b vs. 3a, γ[HD] parameter in Table 2) and higher individual body 

condition (Fig. 3c, α[2] parameter in Table 2) both decreased crayfish survival probability. Note that
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the negative effect of density on crayfish survival was weaker and not significant when evaluated as

a main effect in a model that did not include any interaction (Appendix 7).

Warmer temperatures had a positive effect on crayfish survival probability (Fig. 3d, α[3] parameter 

in Table 2). When all other quantitative covariates were fixed to their average value, raising mean 

temperature from its minimum (9.3°C) to its maximum (26.9°C) increased mean survival 

probability during a 2.4-day time interval from 9.81 10-1 to 9.95 10-1 (predictions computed for a 

Range-core female crayfish at low density).

There was no significant effect of the geographic range on crayfish survival probability (δ[Range 

edge] parameter in Table 2), nor there was any significant range-by-body size (ζ[Range edge] 

parameter in Table 2), range-by-density (η[Range edge, HD] parameter in Table 2, a weakly 

identifiable parameter) or range-by-body size-by-density interaction (θ[Range edge, HD] parameter 

in Table 2). Note that we also tested for range-by-temperature and range-by-temperature-by-density 

interactions and did not find any significant interaction (results not shown).
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Table 2. Parameter estimates from the multistate mark-recapture model. ΦA: survival probability, ψA→B: 

dispersal probability, ψB→A: post-dispersal settlement probability. The model is described in Eq. 3 and was 

fitted using an “effect” parametrization as the default in R. MCMC p-values were computed as twice the 

proportion of the posterior which sign was opposite to the sign of the posterior mode. P-values significant at 

the 5 % risk are bold faced. MCMC p-values are not relevant for variance parameters (random effects) that 

are constrained to be non-zero. HD: High density, LD: Low density. Parameter estimates for a model 

including only main effects in Eq. 3 (i.e., no interaction) are provided in Appendix 7. NB: The survival 

model for ΦA was not overdispersed and did not include an “individual” random effect. Quantitative 

covariates were standardized to zero mean and 0.5 standard deviation.

Transition
probability Link Covariate Parameter mean sd Rhat MCMC p-

value

ΦA logit

Intercept α[0] 4.50 0.25 1.00 0.000
Male α[Sex Male] -0.04 0.15 1.00 0.809
Outgroup β[Outgroup] 0.25 0.38 1.00 0.534
Range edge β[Range edge] -0.02 0.33 1.00 0.952
High density γ[HD] -0.62 0.31 1.01 0.046

Outgroup-by-HD interaction δ[Outgroup, 
HD] 0.58 0.43 1.01 0.185

Range edge-by-HD interaction δ[Range edge, 
HD] 0.57 0.45 1.01 0.222

Body size in Range core α[1] -0.08 0.35 1.00 0.806
Outgroup on Body-size effect ε[Outgroup] -0.55 0.68 1.01 0.412
Range edge on Body-size effect ε[Range edge] 0.44 0.57 1.00 0.450
HD on Body-size effect in range 
core ζ[HD] 1.02 0.49 1.00 0.033

Outgroup-by-HD interaction on 
Body-size effect

η[Outgroup, 
HD] -1.38 0.77 1.01 0.069

Range edge-by-HD interaction on 
Body-size effect

η[Range edge, 
HD] -0.90 0.75 1.00 0.225

Body condition α[2] -0.51 0.17 1.00 0.004
Temperature α[3] 0.54 0.18 1.00 0.002
Time interval α[4] -0.43 0.17 1.01 0.033
Mesocosm σ[θ] 0.25 0.14 1.05

ψA→B logit Intercept α[0] -3.44 0.20 1.00 0.000
Male α[Sex Male] -0.10 0.14 1.00 0.507
Outgroup β[Outgroup] -0.61 0.33 1.00 0.056
Range edge β[Range edge] -0.10 0.27 1.00 0.726
High density γ[HD] 0.08 0.28 1.01 0.776

Outgroup-by-HD interaction δ[Outgroup, 
HD] 0.06 0.40 1.01 0.894

Range edge-by-HD interaction δ[Range edge, 
HD] -0.15 0.40 1.01 0.698

Body size in Range core α[1] 1.58 0.34 1.00 0.000
Outgroup on Body-size effect ε[Outgroup] -0.04 0.60 1.01 0.952
Range edge on Body-size effect ε[Range edge] 0.06 0.58 1.00 0.931
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HD on Body-size effect in range 
core ζ[HD] -0.15 0.52 1.00 0.739

Outgroup-by-HD interaction on 
Body-size effect

η[Outgroup, 
HD] -0.23 0.73 1.00 0.767

Range edge-by-HD interaction on 
Body-size effect

η[Range edge, 
HD] -0.40 0.80 1.00 0.626

Body condition α[2] 0.58 0.16 1.00 0.001
Temperature α[3] 0.92 0.08 1.00 0.000
Time interval α[4] -0.23 0.11 1.00 0.034
Mesocosm σ[θ] 0.12 0.10 1.02
Individual σ[ι] 0.84 0.07 1.00

ψB→A logit

Intercept α[0] 1.79 0.57 1.01 0.000
Male α[Sex Male] -0.11 0.40 1.01 0.847
Outgroup β[Outgroup] 1.81 0.97 1.02 0.038
Range edge β[Range edge] 0.64 0.73 1.00 0.369
High density γ[HD] 0.55 0.70 1.01 0.352

Outgroup-by-HD interaction δ[Outgroup, 
HD] -0.30 1.00 1.02 0.730

Range edge-by-HD interaction δ[Range edge, 
HD] 0.51 0.98 1.00 0.611

Body size in Range core α[1] -1.68 0.67 1.00 0.012
Outgroup on Body-size effect ε[Outgroup] -0.59 1.18 1.01 0.595
Range edge on Body-size effect ε[Range edge] -0.40 1.25 1.00 0.781
HD on Body-size effect in range 
core ζ[HD] 0.23 1.02 1.01 0.851

Outgroup-by-HD interaction on 
Body-size effect

η[Outgroup, 
HD] -0.41 1.39 1.00 0.869

Range edge-by-HD interaction on 
Body-size effect

η[Range edge, 
HD] 1.33 1.80 1.00 0.440

Body condition α[2] -1.18 0.46 1.00 0.006
Temperature α[3] -1.17 0.23 1.00 0.000
Time interval α[4] -0.12 0.18 1.00 0.492
Mesocosm σ[θ] 0.71 0.36 1.00
Individual σ[ι] 1.39 0.25 1.00

Dispersal

PPOs were below 35 % for all dispersal parameters except for η[Outgroup, HD] (PPO = 37 %) and 

for η[Range edge, HD] (PPO = 40 %), indicating that the identifiability of our model parameters 

was generally satisfying (Appendix 6B). The probability for an individual crayfish to disperse to an 

exit trap during a time interval ranged from 0 to 0.3 (Figs. 3 e-h), while post-dispersal settlement 
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probability ranged from 0.3 to 1 (Figs. 3 i-l). Hence, crayfish were mainly sedentary during our 

experiment. 

Dispersal probability was almost 0 in crayfish smaller than 45 mm in cephalothorax length, but 

increased up to 0.1-0.3 in the largest-bodied individuals, a significant body-size effect (Figs. 3e and 

3f, α[1] parameter in Table 2). Specifically, mean dispersal probability increased from 3.07 10-3 in a 

small-bodied (25 mm cephalothorax length) crayfish to 2.86 10-1 in a large-bodied crayfish (66 mm,

predictions computed for a Range-core female at low density, all other covariates were fixed to their

average value).

Increasing body condition, as well as warmer temperatures, also had significantly positive effects 

on crayfish dispersal probability (Figs. 3g and 3h, respectively, α[2] and α[3] parameters in Table 

2). When all other quantitative covariates were fixed to their average value, raising mean 

temperature from its minimum (9.3°C) to its maximum (26.9°C) increased mean dispersal 

probability during a 2.4-day time interval from 1.17 10-2 to 9.46 10-2 (predictions computed for a 

Range-core female at low density)

Neither crayfish density nor geographic range did influence crayfish dispersal probability, either 

directly or in interaction with body size (Figs 3e and 3f, Table 2). Interestingly, however, Outgroup 

crayfish, which had an overall higher survival probability when “Range” was included only as a 

main effect in the non-interaction model, were also those having the lowest dispersal probability 

(Appendix 7).

The identifiability of model parameters for post-dispersal settlement probability was low, since 9 

over 16 parameters had prior-posterior overlaps exceeding 35 % (Appendix 6C). However, the 

specific response of post-dispersal settlement to major covariates (body size, body condition and 
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temperature, as displayed in Fig. 3) was identifiable (α[1], α[2] and α[3] parameters, PPOs ranging 

from 13 to 27 %, Appendix 6C), and seemed generally symmetric to the response of dispersal 

probability (Figs. 3i-l vs 3e-h, Table 2), suggesting that dispersing at time t did not alter dispersal 

probability at time t+1 with respect to covariates.

DISCUSSION

Our study shows in the red swamp crayfish that survival and dispersal are under the control of both 

individual- and environment-level factors (Fig. 1). Below, we first discuss these results separately 

for each set of factors, and then we discuss the benefits of our findings for range-dynamics 

modelling and applied issues with invasive P. clarkii.

Individual state variables

As predicted (Table 1), a larger body size increased crayfish survival probability, but this effect was 

significant only under a high density and in Range-core crayfish. This result highlights density-

dependent selection for a larger body size in P. clarkii, as previously reported in other taxa 

(collembolans, fish and lizards), and presumably resulting from a dominance of large-bodied 

individuals in interference competition and cannibalism (see Edeline and Loeuille 2021 and 

references therein). Accordingly, larger-bodied crayfish dominate in competition for shelters (Figler 

et al., 1999; Rabeni, 1985; Ranta & Lindström, 1993), and crayfish with larger chela have a higher 

probability of winning agonistic encounters (Graham & Angilletta, 2020). 

A larger body size further had a strong positive effect on crayfish dispersal probability in our 

experiment, a finding that is in line with a previous report of overland movements being 

predominantly performed by sexually mature (i.e., adult) individuals in P. clarkii (Ramalho & 

Anastácio, 2015). In P. leniusculus, both overland and in-stream dispersal also increase with 
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increasing body size (Bubb et al., 2004; Moorhouse & MacDonald, 2011; Thomas et al., 2018; 

Wutz & Geist, 2013), suggesting that a larger body size elevates a general propensity for 

movements, and might represent a major component of dispersal syndromes in crayfish.

This strong and taxonomically-conserved positive effect of body size on crayfish movements is 

probably a response to multiple convergent selective pressures, in link with physiological and 

ecological constraints. The mass-specific energetic cost of transport (in J kg-1 m-1) of walking or 

running animals decreases with body size (Peters, 1983), and a larger body size further confers a 

higher body volume-to-surface ratio and, consequently, increases resistance to dessication during 

overland movements (Antoł et al., 2021; Claussen et al., 2000). Additionally, walking speed also 

increases with body size (Claussen et al., 2000), and larger-bodied dispersers thus have increased 

probability to find a water body before dessication. Finally, larger-bodied individuals dominate in 

interference competition for food and contests for shelters (see above), and thus probably also enjoy

reduced costs of settlement during the colonization of novel habitats. Hence, larger-bodied crayfish 

thus probably enjoy a strongly decreased cost-to-benefit ratio of dispersal.

In accordance with the general expectation that increased energy stores decrease the survival cost of

long-distance movements (Table 1), we found that body condition was positively linked to dispersal

probability in crayfish. However, in contrast with our predictions we found that a higher body 

condition was associated with a lower survival probability. In shrimps, a higher nutritional status is 

associated with increased moulting probability (Lemos & Weissman, 2021; Sharawy et al., 2019). 

Maybe, in crayfish also a higher body condition was possibly indicative of a higher energetic status 

and of a higher probability of moulting, which entails increased mortality in crayfish (Taugbøl & 

Skurdal, 1992). In particular, newly-moulted crayfish have a soft shell and are strongly exposed to 

cannibalism (E.E. pers. obs.).
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Also contrary to our expectations (Table 1), survival and dispersal were both sex-independent. This 

result suggests that, in P. clarkii, hazards and costs of dispersal are similar among males and 

females. In P. leniusculus, dispersal was reported to be sometimes sex-independent (Bubb et al., 

2004; Galib et al., 2022), and sometimes male-biased (Wutz & Geist, 2013), which might suggest 

that, in crayfish in general, the sex-dependency of dispersal is context-dependent and versatile.

Our predictions were also refuted regarding the effects of spatial sorting on competitive ability and 

dispersal propensity. Range-core and Range-edge crayfish did not differ in either survival or 

dispersal probabilities, nor they did in their response to crayfish density variation. Such an absence 

of any effect of the geographic range contrasts with theoretical expectations (Table 1), and is maybe

surprising given the large genetic divergence of Range-edge crayfish at neutral markers (Bélouard 

et al., 2019), but agrees with previous results showing no divergence among Range-core and Range-

edge crayfish populations in the Brière for the fluctuating asymmetry of morphological traits 

(Bélouard et al., 2019). This apparent paradox may result from both genetic and selective processes.

Without selection, divergence in quantitative traits should equal the divergence at neutral marker 

loci (Leinonen et al., 2008, 2013). However, this equality does not hold for complex traits such as 

dispersal syndromes (Mackay et al., 2009; Saastamoinen et al., 2018), because allelic interactions 

within (dominance) or between (epistasis) loci reduce the divergence at quantitative traits compared

to the neutral expectation (Goudet & Martin, 2007; Whitlock, 2008). Additionally, density-

dependent selection in edge habitats may have rapidly erased the effects of spatial sorting to make 

Range-edge crayfish similarly dispersive and competitive as their Range-core counterparts. Strong 

density-dependent selection is particularly likely to occur in the “boom” phase of large 

demographic increase that sometimes immediately follows a colonization event, due to colonists 

arriving in an empty ecological niche with lots of resources available (Strayer et al., 2017). Which 
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of these different mechanisms best explains phenotypic similarity among Range-core and Range-

edge crayfish in the Brière requires further investigation.

Environmental variables

As expected (Table 1), crayfish density in mesocosms had a marginally-significant negative effect 

on the survival of Range-core crayfish. However, this effect was weaker than expected since it was 

not significant when evaluated simultaneously across all crayfish origins or sex (main-effects 

model, γ[High density] parameter, Appendix 7). This weakness probably reflects limited density 

variation (from 3.0 to 6.3 individuals m-2) in presence of an excess shelters (30 shelters for a 

maximum of 19 crayfish introduced per mesocosm). Accordingly, an average relationship between 

survival probability and stocking density for different experiment durations, as reconstructed from 

literature data (Appendix 8), predicts largely overlapping survival probabilities at these two 

densities and for an average time interval of 153 days corresponding to the duration of our 

experiment (0.64-0.85 at 3.0 individuals m-2 and 0.58-0.80 at 6.3 individuals m-2). Hence, we 

conclude that the density variation we applied in our experiment, although located in the upper 

range of naturally-observed densities, entailed relatively mild changes in competition and, hence, 

resulted in weak effects on survival and no effect on dispersal.

Finally, temperature was the only environmental factor that had consistent effects on crayfish 

demographic rates during our experiment: both survival and dispersal probabilities increased with 

increasing temperature. All biological rates are expectedly maximized at intermediate temperatures 

(Table 1), which correspond to a specific thermal optimum that may vary among species (Angilletta

Jr., 2009; Knies & Kingsolver, 2010). Crayfish are no exception and reach maximal rates of somatic

growth (Westhoff & Rosenberger, 2016) and dispersal (Claussen et al., 2000; Ramalho & Anastácio,

2015) at intermediate temperatures. However, when biological rates are measured over a narrow 

temperature range, their hump-shaped relationship to temperature may not be observed, and authors
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report either a positive or negative relationship. Accordingly, warmer temperatures are reported to 

either increase or decrease rates of crayfish survival rate (Harlıoğlu, 2009; Verhoef & Austin, 1999; 

Webster et al., 2004). In P. clarkii, somatic growth rate, which is a putative surrogate for survival 

rate, is maximal in the 22-30°C temperature range (Westhoff & Rosenberger, 2016), while overland 

dispersal seems maximal at temperatures ranging from 16 to 24°C (Ramalho & Anastácio, 2015). 

These temperatures will more often be met in the future, as hot days will get hotter and more 

frequent (IPCC, 2021).

In Europe for instance, climate projections suggest that, by 2081-2100 and compared to the 1995-

2014 period, temperatures will increase by 1.25 to 2.65°C under the SSP1-2.6 scenario (low GHG 

emissions), and by 2.45 to 4.85°C under the SSP5-8.5 scenario (high GHG emissions, IPCC, 2021, 

page 14). Assuming an annual average reference temperature equal to 14.3°C, the mean summer 

(May-September) temperature in Rennes city1, these two warming scenarios are predicted by our 

model to result in a 1.5 to 5.2 % increase in P. clarkii monthly survival probability, and in a 14 to 44

% decrease in the number of days needed for P. clarkii to reach an overland dispersal probability 

equal to 1 (Appendix 9). Hence, potentially, climate warming will strongly expand the crayfish 

geographic range.

Implications for the projection and management of geographic ranges

Correlative species distribution models based on climate envelopes also predict a geographic range 

expansion of P. clarkii under projected climate change scenarios (Capinha et al., 2013; Liu et al., 

2011; Zhang et al., 2020). Our results are consistent with this prediction and, in addition, provide a 

mechanistic, demography-based understanding of the underlying processes, that may serve as a 

starting point to building process-explicit models of range dynamics for P. clarkii (Fig. 4).

1 https://fr.wikipedia.org/wiki/Rennes  
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In this context of an expanding geographic range of P. clarkii, improvement of containment 

strategies appears as a crucial management target. Our results suggest that crayfish containment 

could be based on manipulating crayfish body size. Specifically, mechanically culling large-bodied 

crayfish through, e.g., selective trapping, might promote an immediate crayfish containment 

through reducing both the average survival and dispersal probabilities in the population (Fig. 4). 

Culling-based containment might become even more efficient over the long term because, after 

several generations, selective removal of large-bodied individuals induces an evolutionary change 

towards smaller body sizes and earlier maturation, which would not only cause crayfish to disperse 

less, but are also traits generally associated with lower population growth rates (Evangelista et al., 

2020, 2021; Heino et al., 2015; Hutchings, 2005). Such harvest-induced evolutionary changes are 

often considered as slowly reversible (Law, 2000), which is desirable from a long-term management

perspective.

Fig. 4. Adaptation of the conceptual framework in 

Fig. 1 to P. clarkii range dynamics. Increased 

survival and dispersal are assumed to both increase the

geographic range. Bold arrows indicate causality links 

that were investigated in the present study. The arrow 

pointing from population density to the positive effect 

of body size on survival indicates that this positive 

effect was present only under high crayfish density. 

However, whether or not long-term culling of large-bodied individuals represents an efficient 

containment strategy remains to be effectively tested in the field. On the short term, removal of 

large-bodied individuals relaxes competition and favours a plastic increase in rates of somatic 

growth and reproduction of survivors, which led some authors to conclude that culling is inefficient 

at controlling crayfish populations (Gherardi et al., 2011). Additionally, locally-lower population 

densities may possibly trigger increased immigration from surrounding, non-culled areas where 
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densities are higher (Moorhouse & MacDonald, 2011). Hence, selective culling of large-bodied 

crayfish might be better envisioned as a large-scale management strategy which, after an initially 

strong culling effort, may provide good results if milder removal may be sustained over temporal 

and spatial scales encompassing multiple crayfish generations across the whole (meta)population 

range.

Conclusions

Our study demonstrates the power of individual mark-recapture in mesocosms to disentangle 

climate, ecological and evolutionary drivers of demographic rates. Our results show that survival 

and overland dispersal in P. clarkii are under the control of both climatic and ecological factors that 

act at both the individual- and population levels, but suggest no rapid trait evolution at range edges. 

Future studies should extend the approach to other demographic rates, i.e., somatic-growth and 

maturation rates, as well as to measuring their dependency to a gradient of environmental 

conditions. Complementary research is also needed to include other means of dispersal, because P. 

clarkii actively disperses not only overland or through waterways (Cruz & Rebelo, 2007; Tréguier 

et al., 2018), but also passively, as evidenced by the role played by humans or animals in their 

current geographic distribution (Acevedo-Limón et al., 2020; Anastácio et al., 2014; Capinha et al., 

2013). Finally, future comprehensive mark-recapture experimental data could be coupled to more 

readily-available count data from natural populations in integrated population models (Briscoe et 

al., 2019; Pagel & Schurr, 2012; Schaub & Kéry, 2021). This new class of models will provide more

robust estimates of demographic rates under a wider range of ecological and climatic scenarios and, 

we hope, will represent high-class tools for the management of established invasive crayfish 

populations under global change. 
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APPENDIX 1. Genetics of the Rennes (“Outgroup”) crayfish population.

Aim — The invasion history of the pond from which our Outgroup individuals originate was 

unknown. We tested the hypothesis that this invasion followed the same introduction route as red 

swamp crayfish (Procambarus clarkii) from Brière, namely, the USA-Kenya introduction route 

(Oficialdegui et al., 2019). Besides looking for the origin of this specific pond, we also tested new 

ways for obtaining DNA material from crayfish. In that aim, we collected three kinds of samples on 

all individuals: we sampled with sterile cotton swabs (i) the buccal region and (ii) haemolymph 

leaking out of the abdomen while PIT-tagging. We also collected (iii) muscle from the abdomen 

when individuals were sacrificed as a classical way to obtain genomic DNA.

Methods — 30 individuals were collected and stocked in an outdoor mesocosm at the PEARL 

(https://www6.rennes.inrae.fr/u3e_eng/). Swabs were collected on all individuals at two capture 

occasions to check whether results were reproducible. At the first capture event, individuals were 

marked with Biomark HTP8 PIT-tags and leaking haemolymph was collected with a cotton swab. 

At the second capture event three days later, crayfish were jabbed again with a PIT-tag syringe and 

a second haemolymph swab was collected, then individuals were sacrificed and their muscle was 

sampled.

DNA was extracted from all (n=150) samples with the NucleoSpin Tissue kit (Macherey-Nagel), 

following manufacturer’s instructions. This protocol was slightly modified for swabs, for which we 

doubled buffer volumes: we added 360µl of the initial (T1) lysis buffer and 25µl of proteinase K to 

the swab, and then used 400µl of buffer B3 and 420µl of ethanol in the following steps. All extracts 

were quantified using a DS-11 spectrophotometer (DeNovix).

Because at least one of our sampling protocol targeted extra-corporal DNA (buccal swabs), which is

potentially degraded, we chose to amplify and sequence a short mitochondrial DNA fragment 

(Broquet et al., 2007). Primers were designed from the alignment of published CO1 sequences: P. 

clarkii haplotypes from Oficialdegui et al. (2019) (NCBI accession numbers MK026671 to 

MK026718) and six CO1 sequences taken from other crayfish species (species names and NCBI 

accession numbers: Procambarus virginalis, LR884234.1; Procambarus fallax, LC228303.1; 

Procambarus riojae, KX238226.1; Procambarus hoffmanni, KX238193.1; Procambarus geminus, 

JX514457.1; Pacifastacus leniusculus, MK439898.1). The resulting primers, PC-FCO1202 (5’- 

GGGGTATAGTTGAGAGAGGAGT -3’) and PC-RCO1202 (5’- 

1

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 17, 2022. ; https://doi.org/10.1101/2022.09.14.507789doi: bioRxiv preprint 

https://www6.rennes.inrae.fr/u3e_eng/
https://doi.org/10.1101/2022.09.14.507789
http://creativecommons.org/licenses/by-nc-nd/4.0/


GGTATTCGATCCATGGTTATCCC -3’), amplify a 202bp CO1 fragment in P. clarkii. PCR 

amplifications were carried out in a total volume of 50 µl containing 1µM of each primer, 1mM 

MgCL2, 1X GoTaq G2 (Promega) PCR Mix, 1.25 units of GoTaq G2 (Promega) Taq Polymerase, 

2µl DNA, the whole being completed with sterilized water. DNA samples obtained from muscles 

were diluted 10 times to reach DNA concentrations that are comparable to DNA concentrations 

obtained from swabs (see below). Thermocycling used a touchdown approach: one 2-min step at 

95°C, 30 cycles of 30 s at 95°C, 30 s at 65°C to 59°C, 90 s at 72°C and one final 5-min step at 72°C

before incubation at 15°C. The touchdown protocol implies that the first cycle had a hybridization 

temperature at 65°C, the following six cycles with hybridization temperatures decreasing down to 

59°C by steps of 1°C, and the remaining 24 cycles at 59°C. Amplification success was evaluated by

electrophoresis and BET visualization of 5µl of amplification products in 1.75% agarose gels run 30

min at 100V in TAE buffer.

Twelve PCR products issued in balanced numbers (n=4) from muscles, buccal and haemolymph 

swabs from different individuals were then sent to GenoScreen (https://www.genoscreen.fr/) for 

Sanger sequencing. Sequencing was performed from both ends.

Results — Genomic DNA was detectable in all samples. As expected, it was more concentrated 

(but this concentration was also more variable) in samples obtained from muscles (mean +/- 

standard error of the mean: 181,1+/-15,1 ng/µl) as compared to buccal and haemolymph swabs 

(14.5+/-1.4 ng/µl and 37.1+/-3 ng/µl, respectively). These results also show that there is on average 

more than double DNA when swabing haemolymph than when swabing the buccal region.

All DNA samples obtained from muscle and haemolymph yielded a visible band at the expected 

size (202 bp), resulting in a 100% +/- 0% amplification success of this particular locus for these 

samples. By contrast, amplification with the DNA samples obtained from buccal swabs was less 

successful (61%, binomial confidence interval: [47%;73%]).

As explained above, we sequenced twelve samples from the successful amplifications. These 

samples were chosen to represent 12 different individuals and the three types of sampling (muscle, 

haemolymph and buccal swabs), with four samples each.

The twelve samples yielded high quality sequences. Oficialdegui et al. (2019) found only one 

haplotype among the 20 individuals they sequenced for a 701 bp fragment while we obtained three 

different haplotypes from 12 individuals over a 202 bp fragment (data not shown). The first striking 
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result is thus that our pond in Rennes (Outgroup crayfish in the main text) harbours much more 

genetic diversity than the entire marsh of Brière. The three haplotypes we observed were not in 

equal frequencies. A first haplotype, obtained from one individual only, cannot be distinguished 

from Hap_04 and Hap_11 from Oficialdegui et al. (2019). Hap_11 is the only haplotype found in 

Brière. The two other haplotypes, found in 4 and 7 individuals, belong to the group defined by 

Hap_09 in Oficialdegui et al. (2019). This haplotype is found in high frequency in Louisiana but 

also in low frequency in Spain and France.

Conclusion — (1) Genomic DNA can reliably be obtained from haemolymph captured on sterile 

cotton swabs when PIT-tagging crayfish. (2) Crayfish from the pond situated in Rennes display 

more genetic variability than Brière, all sequences but one tracing an origin that is different from 

what has been described for the Brière region.
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APPENDIX 2. Trapping devices used in the mesocosms. 

A: artificial refuge trap (ART) with one crayfish inside. B: exit trap.
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APPENDIX 3. Link between air and water temperature.

Cross-correlation between hourly air temperature at a 5 km-distant weather station and hourly water

temperature in six of the 28 the experimental mesocosms. The horizontal blue, dotted lines show the

values beyond which the autocorrelation is significantly different from zero at a 5 % risk. Water 

temperature was highly correlated with air temperature and maximal at a 5-hour lag. 
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APPENDIX 4. Crayfish body-size distributions in the three groups. 

Range core crayfish are from the Brière marsh, Range edge crayfish are from ponds in the Brière 

area, and Outgroup crayfish are from a pond in Rennes city.
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APPENDIX 5. Parameter estimates from the multistate mark-recapture model using uniform 

priors on the [-10,10] interval for regression parameters in Eq. 3. For more details, see Table 2 

legend in the main text.

Transition
probability Link Covariate Parameter mean sd Rhat MCMC

P-val

ΦA logit

Intercept α[0] 4.57 0.26 1.00 0.000
Male α[Sex Male] -0.06 0.16 1.00 0.701
Outgroup β[Outgroup] 0.19 0.42 1.00 0.658

Range edge β[Range 
edge] -0.07 0.34 1.00 0.841

High density γ[HD] -0.69 0.32 1.00 0.032
Outgroup-by-HD 
interaction

δ[Outgroup, 
HD] 0.66 0.47 1.00 0.165

Range edge-by-HD 
interaction

δ[Range 
edge, HD] 0.64 0.47 1.00 0.164

Body size in Range core α[1] -0.12 0.39 1.01 0.760
Outgroup on Body-size 
effect ε[Outgroup] -0.50 0.74 1.02 0.503

Range edge on Body-size 
effect

ε[Range 
edge] 0.56 0.64 1.00 0.370

HD on Body-size effect in
range core ζ[HD] 1.17 0.56 1.01 0.034

Outgroup-by-HD 
interaction on Body-size 
effect

η[Outgroup, 
HD] -1.56 0.87 1.02 0.072

Range edge-by-HD 
interaction on Body-size 
effect

η[Range 
edge, HD] -1.14 0.86 1.00 0.176

Body condition α[2] -0.50 0.17 1.00 0.003
Temperature α[3] 0.55 0.18 1.00 0.002
Time interval α[4] -0.43 0.19 1.01 0.048
Mesocosm σ[θ] 0.26 0.13 1.007

ψA→B logit

Intercept α[0] -3.43 0.21 1.00 0.000
Male α[Sex Male] -0.09 0.15 1.00 0.520
Outgroup β[Outgroup] -0.68 0.36 1.00 0.054

Range edge β[Range 
edge] -0.13 0.28 1.00 0.639

High density γ[HD] 0.05 0.29 1.00 0.881
Outgroup-by-HD 
interaction

δ[Outgroup, 
HD]

0.13 0.43 1.00 0.769

Range edge-by-HD 
interaction

δ[Range 
edge, HD]

-0.11 0.40 1.00 0.802
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Body size in Range core α[1] 1.65 0.38 1.05 0.000
Outgroup on Body-size 
effect ε[Outgroup] -0.08 0.69 1.09 0.932

Range edge on Body-size 
effect

ε[Range 
edge] 0.02 0.67 1.01 0.982

HD on Body-size effect in
range core ζ[HD] -0.20 0.62 1.04 0.741

Outgroup-by-HD 
interaction on Body-size 
effect

η[Outgroup, 
HD] -0.22 0.88 1.08 0.788

Range edge-by-HD 
interaction on Body-size 
effect

η[Range 
edge, HD] -0.42 0.95 1.02 0.660

Body condition α[2] 0.59 0.16 1.00 0.000
Temperature α[3] 0.92 0.08 1.00 0.000
Time interval α[4] -0.23 0.11 1.00 0.038
Mesocosm σ[θ] 0.12 0.09 1.01
Individual σ[ι] 0.84 0.07 1.00

ψB→A logit

Intercept α[0] 1.795 0.666 1.015 0.000
Male α[Sex Male] -0.092 0.425 1.007 0.847
Outgroup β[Outgroup] 3.030 1.367 1.007 0.038

Range edge β[Range 
edge] 0.850 0.937 1.015 0.369

High density γ[HD] 0.734 0.876 1.024 0.352
Outgroup-by-HD 
interaction

δ[Outgroup, 
HD] -1.599 1.464 1.014 0.730

Range edge-by-HD 
interaction

δ[Range 
edge, HD] 0.302 1.342 1.022 0.611

Body size in Range core α[1] -1.777 0.840 1.028 0.012
Outgroup on Body-size 
effect ε[Outgroup] -1.910 1.913 1.006 0.595

Range edge on Body-size 
effect

ε[Range 
edge] -1.205 1.770 1.019 0.781

HD on Body-size effect in 
range core ζ[HD] 0.013 1.426 1.039 0.851

Outgroup-by-HD 
interaction on Body-size 
effect

η[Outgroup, 
HD] 1.204 2.306 1.014 0.869

Range edge-by-HD 
interaction on Body-size 
effect

η[Range 
edge, HD] 3.172 2.651 1.022 0.440

Body condition α[2] -1.415 0.495 1.005 0.006
Temperature α[3] -1.222 0.233 1.005 0.000
Time interval α[4] -0.131 0.177 1.000 0.492
Mesocosm σ[θ] 0.802 0.411 1.017
Individual σ[ι] 1.441 0.277 1.043
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APPENDIX 6. Densities of prior (yellow bars) and posterior (blue bars) distributions for all 

main parameters in Eq. (3). The green colour shows overlap areas. HD = high-density 

treatment.

A. Survival model parameters.
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B. Dispersal model parameters.
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C. Post-dispersal settlement probability.
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APPENDIX 7. Parameter estimates for a model including only main effects on crayfish 

probabilities of survival ΦA, dispersal ψA→B and post-dispersal settlement ψB→A. For more 

details, see Table 2 legend. 

Transition Link Covariate Parameter mean sd Rhat
MCMC p-

value

ΦA logit

Intercept α[0] 4.291 0.199 1.001 0.000

Male β[Sex Male] 0.020 0.151 1.001 0.886

Body size α[1] -0.217 0.150 1.000 0.147

Body condition α[2] -0.452 0.172 1.000 0.008

High density γ[HD] -0.322 0.198 1.000 0.103

Temperature α[3] 0.564 0.182 1.004 0.001

Outgroup δ[Outgroup] 0.484 0.191 1.001 0.012

Range edge δ[Range edge] 0.191 0.217 1.001 0.373

Time interval α[4] -0.407 0.176 1.008 0.056

Mesocosm σ[ι] 0.242 0.128 1.002

ψA→B logit

Intercept α[0] -3.404 0.185 1.000 0.000

Male β[Sex Male] -0.114 0.139 1.002 0.402

Body size α[1] 1.324 0.146 1.000 0.000

Body condition α[2] 0.554 0.152 1.002 0.000

High density γ[HD] 0.033 0.168 1.002 0.834

Temperature α[3] 0.918 0.082 1.000 0.000

Outgroup δ[Outgroup] -0.564 0.192 1.002 0.002

Range edge δ[Range edge] -0.135 0.201 1.001 0.493
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Time interval α[4] -0.231 0.112 1.002 0.037

Mesocosm σ[ι] 0.128 0.089 1.023

Individual σ[κ] 0.824 0.068 1.002

ψB→A logit

Intercept α[0] 1.809 0.528 1.011 0.000

Male β[Sex Male] -0.119 0.368 1.003 0.734

Body size α[1] -1.917 0.378 1.002 0.000

Body condition α[2] -1.066 0.413 1.004 0.010

High density γ[HD] 0.576 0.473 1.005 0.216

Temperature α[3] -1.151 0.223 1.001 0.000

Outgroup δ[Outgroup] 1.167 0.473 1.001 0.015

Range edge δ[Range edge] 0.654 0.541 1.000 0.219

Time interval α[4] -0.125 0.181 1.000 0.492

Mesocosm σ[ι] 0.701 0.349 1.008

Individual σ[κ] 1.308 0.240 1.019
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APPENDIX 8. Effects of stocking density and experiment duration on crayfish survival rate

in aquaculture studies.

Density varied from 1 to 1200 individuals m-2, and duration from 3 to 306 days. N = 436 

observations from 29 studies. Species included: Astacus leptodactylus: n = 107, Austropotamobius 

pallipes: n = 32, Cherax destructor: n = 55, Cherax quadricarinatus: n = 110, Pacifastacus 

leniusculus: n = 45, Pontastacus leptodactylus: n = 3, Procambarus clarkii: n = 84. Relationship 

modelled from a beta GLMM (logit link) with log(density) and duration and their interaction as 

fixed effects, and with the study as random intercept in the glmmTMB library of R (Brooks et al., 

2017). The effect of crayfish species increased model AIC and was thus discarded. Reference list 

cited below.
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APPENDIX 9. Predicted crayfish survival and overland dispersal probabilities by 2071-2100

under the SSP1-2.6 and SSP5-8.5 scenarios of IPCC.

Predictions were formed from parameter estimates for the multistate mark-recapture model (Table 

2), for an average-sized Range-core female at low crayfish density. Annual mean reference 

temperature was 10.7°C (“Historical” situation), which is average summer (May-September) 

temperature in Rennes city France for the 1981-2010 period (https://fr.wikipedia.org/wiki/Rennes).
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Historical SSP1-2.6 scenario SSP5-8.5 scenario
Low High Low High

0.84 0.86 0.87 0.87 0.89

111 95 81 83 62

Monthly survival 
probability
Time to dispersal 
probability = 1 (days)

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 17, 2022. ; https://doi.org/10.1101/2022.09.14.507789doi: bioRxiv preprint 

https://fr.wikipedia.org/wiki/Rennes
https://doi.org/10.1101/2022.09.14.507789
http://creativecommons.org/licenses/by-nc-nd/4.0/

