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Abstract
1.	 Estimating plasticity of leaf silicon (Si) in response to abiotic and biotic factors 

underpins our comprehension of plant defences and stress resistance in natu-
ral and agroecosystems. However, how nitrogen (N) addition and intraspecific 
plant–plant interactions affect Si concentration remains unclear.

2.	 We grew 19 durum wheat genotypes (Triticum turgidum ssp. durum) in pots, ei-
ther alone or in intra- or intergenotypic cultures of two individuals, and with or 
without N. Above-ground biomass, plant height and leaf [Si] were quantified at 
the beginning of the flowering stage.

3.	 Nitrogen addition decreased leaf [Si] for most genotypes, proportionally to the 
biomass increase. Si plasticity to plant–plant interactions varied significantly 
among genotypes, with both increases and decreases in leaf [Si] when mixed 
with a neighbour, regardless of the mixture type (intra-/intergenotype). Besides, 
increased leaf [Si] in response to plant–plant interactions was associated with 
increased plant height.

4.	 Our results suggest the occurrence of both facilitation and competition for Si 
uptake from the rhizosphere in wheat mixtures. Future research should identify 
which leaf and root traits characterise facilitating neighbours for Si acquisition. 
We also show that Si could be involved in height gain in response to intraspecific 
competition, possibly for increasing light capture. This important finding opens 
up new research directions on Si and plant–plant interactions in both natural 
ecosystems and agroecosystems. More generally, our results stress the need to 
explore leaf Si plasticity in responses to both abiotic and biotic factors to under-
stand plant stress resistance.

K E Y W O R D S
agroecology, facilitation, genotype mixture, intraspecific variation, nutrient limitation, 
phenotypic plasticity, plant competition, plant height
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1  |  INTRODUC TION

Silicon (Si), taken up from soil as monosilicic acid and deposited in 
plant tissues as silica (SiO2·nH2O), increases plant resistance to a 
wide range of biotic and abiotic stresses (e.g. water stress, metal tox-
icity, pathogens and herbivory) (Cooke & Leishman, 2016; Debona 
et al., 2017; Hartley & DeGabriel, 2016; Massey & Hartley, 2006) and 
confers mechanical strength to plants (Epstein, 1994; Raven, 1983). 
The essentiality of Si for plants remains challenging to assess (Coskun 
et al.,  2019; Epstein, 1994) but increased resistance to herbivores 
and stress alleviation following Si fertilisation can lead to increased 
plant primary productivity and crop yields (Liang et al., 2015; Savant 
et al., 1999; Tubana et al., 2016; Xu et al., 2020). Because graminoid 
crop species can exhibit very high Si concentrations ([Si]) (e.g. up 
to 20% of SiO2 in rice; Klotzbücher et al., 2018), the beneficial role 
of Si in agriculture is well recognised, and Si is routinely applied to 
croplands in many countries (e.g. China, Japan, USA, Brazil) (Datnoff 
et al., 2001; Yan et al., 2018). Thus, it is important to understand the 
factors affecting plant Si nutrition but, to date, we still have limited 
knowledge of how soil nutrient availability and interactions between 
plants affect Si concentration.

Increasing evidence suggests that plant Si concentration depends 
on soil nutrient status (de Tombeur, Laliberté, et al., 2021; Johnson 
et al., 2021; Minden et al., 2021; Quigley et al., 2020). In particu-
lar, decreases in Si concentration and resulting Si-based defences 
following nitrogen (N) fertilisation have recently been reported for 
different grassland/pasture species (Johnson et al.,  2021; Minden 
et al., 2021; Quigley et al., 2020) (but see Moise et al., 2019). This 
has been attributed to the investment in ‘cheap’ Si versus relatively 
‘more expensive’ carbon (C) (Raven, 1983) during N stress (Johnson 
et al.,  2021; Minden et al.,  2021) and reflects trade-offs between 
plant growth rate and carbon- or Si-based defences within Poaceae 
family (Massey et al.,  2007). However, past studies have gener-
ally focused only on a single, non-cultivated genotype (Johnson 
et al., 2021; Minden et al., 2021). Significant genotypic variation in Si 
concentration has been reported in rice and wheat (Ma et al., 2007; 
Merah et al., 1999; Talukdar et al., 2019), so the plasticity (i.e. pro-
duction of multiple phenotypes from a single genotype depending 
on environmental conditions; Miner et al.,  2005) of leaf [Si] in re-
sponse to N fertilisation might differ among genotypes, but this has 
not yet been tested.

So far, the influence of plant–plant interactions on plant Si nu-
trition has received surprisingly little attention in the literature (but 
see Garbuzov et al., 2011; Ning et al., 2017, 2021), especially com-
pared with other nutrients (Li et al., 2014). At the interspecific level, 
Ning et al.  (2021) showed that rice accumulates significantly more 
Si when grown with water spinach (Ipomoea aquatica Forsk)—a low 
Si-accumulating species—compared with a rice monoculture, possi-
bly through the effect of root exudates on soil Si mobilisation (de 
Tombeur, Cornelis, et al., 2021; Ning et al., 2021). However, when 
two grasses with high Si-concentration (Poa annua and Lolium pe-
renne) were investigated, such interspecific facilitation on Si con-
centration was not observed (Garbuzov et al., 2011). The influence 

of plant–plant interactions on Si concentration at the intraspecific 
level, to our knowledge, has received no attention, either in intra-
genotypic cultures or intergenotypic mixtures. It is important to con-
sider both intra- and intergenotypic cultures because facilitation for 
Si uptake in the rhizosphere might prevail over competition when 
genotypes are functionally different (e.g. they contrast in nutrient-
acquisition strategies and/or Si demand). Furthermore, both types 
of genotypic cultures should be considered because intragenotypic 
stands are typical of modern agriculture, but there is increasing in-
terest in the role of genetic diversity in increasing the sustainability 
of agriculture as greater intraspecific diversity may increase pro-
ductivity and resistance to pests and pathogens (Barot et al., 2017; 
Hajjar et al., 2008; Litrico & Violle, 2015; Montazeaud et al., 2022).

Finally, leaf Si has been linked to different plant architecture 
traits that could in turn influence competition for light capture, in-
cluding decreasing leaf insertion angle and leaf arc/straightness 
(Ando et al.,  2002; de Tombeur, Cooke, et al.,  2021; Yamamoto 
et al., 2012; Zanão Júnior et al., 2010), and increasing plant height 
(Gong et al.,  2003; Ma et al.,  1989; Zanão Júnior et al.,  2010). As 
such, we might expect some relationships between the Si concen-
tration of a genotype and the outcomes of plant–plant interactions 
(i.e. in this case, biomass loss or gain when mixed with a neighbour). 
It remains challenging to predict potential links between Si and com-
petition outcomes, since greater plant height might increase com-
petition intensity (Falster & Westoby, 2003; Violle et al., 2009), but 
decreasing leaf insertion angle and arc reduces the light extinction 
coefficient inside the canopy and may thus decrease competition 
intensity (Ando et al.,  2002). Nevertheless, studies on Si benefits 
against biotic and abiotic stresses have greatly expanded during 
the last 10 years (Coskun et al., 2019), and investigating previously 
overlooked functions of silicification, such as its influence on plant 
architecture and potential impact on plant–plant interactions, is thus 
needed.

Here, we studied 19 genotypes of durum wheat (Triticum tur-
gidum ssp. durum), a major staple crop, which we grew in pots, either 
alone, in intragenotypic culture or in intergenotypic culture, at two 
levels of N availability. We quantified plant above-ground biomass, 
plant height and leaf [Si] to (a) evaluate intraspecific variation in leaf 
[Si] among the 19 genotypes, (b) estimate plasticity of leaf [Si] in re-
sponse to N fertilisation and plant–plant interactions and (c) explore 
potential relations between leaf [Si] and competition outcomes. The 
variation of leaf [Si] among genotypes, as well as plasticity in leaf [Si] 
in response to N fertilisation, was tested on genotypes grown alone 
to avoid a neighbour effect. How plant–plant interactions affect leaf 
[Si], either in intra- or intergenotypic cultures and with or without 
N addition, was tested by comparing the leaf [Si] of plants alone 
with that of plants in interaction. Finally, we tested correlations be-
tween genotype leaf [Si] and their response to competition in terms 
of biomass/height losses/gains to explore potential links between 
[Si] and competition outcomes. We hypothesised a decrease in leaf 
[Si] following N fertilisation. We further hypothesised that wheat 
genotypes would vary in both their Si concentrations, and in their 
response to N fertilisation and plant–plant interactions.
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2  |  MATERIAL S AND METHODS

2.1  |  Experimental design

We selected 19 durum wheat genotypes [T. turgidum ssp. Durum 
(Desf.)] from the Evolutionary Pre-breeding pOpulation (EPO), a 
population of 180 genotypes with high phenotypic and genotypic 
diversities (David et al.,  2014). The 19 genotypes represented a 
large phenotypic diversity on below- and above-ground traits. 
The 19 genotypes were grown either alone in single (alone in the 
pot), in intragenotypic culture (two plants of the same genotype in 
the same pot) or in intergenotypic culture (two plants from differ-
ent genotypes in the same pot), hereafter growth modalities, with 
two levels of N (treatment N+ and N−), and in triplicate. We ran-
domly assembled 26 intergenotypic mixtures among the 171 pos-
sibilities. The modality single thus represents 114 individuals (19 
genotypes × 2  N levels × 3 replicates), intragenotypic culture 228 
individuals (2 plants × 19 genotypes × 2 N levels × 3 replicates) and 
intergenotypic culture 312 individuals (26 mixtures of 2 plants × 2 N 
levels × 3 replicates). In total, 384 pots and 654 wheat individuals 
were considered.

2.2  |  Growth conditions

The experiment was conducted at the CEFE experimental field 
(Montpellier, France) from January to May 2021, in outdoor condi-
tions. We used a randomised complete block design using three 
blocks (one replicate in each block). Plants were grown in 4-L 
plastic pots (18.5 cm diameter; 21.5 cm depth) filled with approxi-
mately 4.5 kg of local soil (52% sand, 27% silt and 21% clay; 6.9% 
CaCO3; 4.1% organic carbon; 0.21% total N; pH 8.0), and amended 
with PK fertiliser (0.38 g per pot; P2O5 and K2O). The effect of 
plant–plant interactions on plant Si uptake might be influenced by 
soil Si availability (Ning et al., 2021). Here, although not quantified, 
we expect Si availability to be rather high in this young, high-pH 
and clay + silt-rich soil (Cornelis & Delvaux, 2016). Indeed, a recent 
analysis of soil Si availability in French soils shows that this soil 
type exhibits the highest Si concentrations extracted with CaCl2 
and is unlikely to be Si limited (Caubet et al., 2020). Two seeds per 
plant were sown in each pot and the largest plant was kept after 
germination. Pots of the N+ treatment received N four times dur-
ing the experiment, for a total input of 0.94 g N per pot, whereas 
pots of the N− treatment did not receive any N fertilisation. Plants 
were not protected from the rain and were watered with amounts 
to avoid water excess or deficit.

2.3  |  Plant height, biomass and leaf [Si] 
measurements

Vegetative plant height, plant above-ground biomass and leaf 
[Si] were quantified at the beginning of the flowering stage. 

Vegetative height was measured as the distance between the soil 
surface and the tallest leaf without stretching the plant leaf. The 
leaf [Si] was quantified with an X-ray fluorescence spectrometer 
(Reidinger et al.,  2012). Briefly, three most recent ligulate adult 
leaves were sampled on each individual, dried at 60°C for 72 h and 
ball-milled (Retsch MM400 Mixer mill) for 3 min at a frequency of 
20 Hz. Ground samples were pressed at 10 tons into pellets using 
a manual hydraulic press (Specac). Si analyses were performed 
using a Nitron XL3t900 GOLDD XRF analyser (Thermo Scientific). 
Silicon-spiked synthetic cellulose was used for calibration, and 
analyses were performed under helium atmosphere to avoid signal 
loss by air absorption (Reidinger et al., 2012). A reading was taken 
of each side of the pellet, approximately 1 h apart, to account for 
u-drift in the instrument (Johnson,  2014). The concentration of 
Si in these three most recent ligulate adult leaves (in % of Si by 
dry weight) was considered to capture the intraspecific variation 
in leaf [Si] among the genotypes, the response to N fertilisation 
and plant–plant interactions, and potential relations between leaf 
[Si] and competition outcomes. Finally, all plant materials were 
harvested, dried at 60°C for 72 h and weighed to obtain above-
ground biomass.

2.4  |  Statistical analyses

2.4.1  |  Variation in leaf [Si] among genotypes and 
response to N fertilisation

Variation in leaf [Si] among the 19 wheat genotypes and their plas-
ticity to N fertilisation were assessed only for the single plants to 
discriminate it from the neighbour effect. For both N treatments, 
differences in leaf Si across the 19 genotypes were tested by a one-
way analysis of variance (ANOVA). To quantify the plasticity of leaf 
[Si] in response to N fertilisation among the 19 genotypes, we calcu-
lated log response-ratios (hereafter logRR) as the logarithm of ratios 
between individual trait values and corresponding genotype-mean 
values in N−, as follows:

Differences in logRR among genotypes were tested by ANOVA, and 
genotype-mean logRR significantly different from zero were assessed 
with Student's t-tests. A logRR below zero means that the treatment 
significantly decreased the trait values, while the opposite is true for 
logRR above zero.

2.4.2  |  Plasticity to plant–plant interactions

We first tested differences in leaf [Si] among the treatments single, 
intra- and intergenotypic cultures by ANOVA followed by post hoc 
tests using the ‘multcomp’ package (Hothorn et al., 2008) for both 

logRR = log10

(

leaf
[

Si
]

N+

leaf
[

Si
]

N−

)

.
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N treatments. To quantify the plasticity of leaf [Si] to plant–plant 
interactions, we calculated logRR as the logarithm of ratios be-
tween individual trait values and corresponding genotype-mean 
values in single, independently for both N treatments. Intra- and 
intergenotypic culture treatments were considered either sepa-
rately or pooled together as a global factor ‘plant–plant interac-
tions’ to contrast single versus two-plant cultures in the analyses. 
Spearman rank correlation coefficients were calculated to test 
whether the ranking in genotype-mean logRR were conserved 
between both N treatments and between intra- and intergeno-
typic cultures. For the intergenotypic culture treatment, we further 
tested if neighbour identity influenced leaf [Si] by ANOVA, and for 
both N treatments.

2.4.3  |  Relationships between leaf [Si], plant 
height and biomass

We first tested differences in plant above-ground biomass and 
plant height across the different treatments (N and growth mo-
dality) by ANOVA, followed by post hoc tests. Relationships be-
tween above-ground biomass/plant height (dependent variables) 
and leaf [Si] (independent variable) were then tested through 
mixed-effect models with genotype identity as a random factor, 
using the package ‘nlme’ (Pinheiro et al., 2022). Models involving 
only the single individuals included both N treatments to test if 
a N-induced decrease in biomass affects leaf [Si], while models 
considering only plants with a neighbour were run separately for 
each N treatment.

To test whether high-Si genotypes lost more or gain more bio-
mass as a response to plant–plant interactions, we tested the sig-
nificance of relationships between the logRR of plant biomass in 
response to plant–plant interactions and genotype-mean leaf [Si] in 
single by regression analyses, and for both N treatments.

For each model, residuals were inspected visually to check as-
sumptions. Appropriate variance structures were specified in a 
second model if required (Zuur et al., 2009). All analyses were con-
ducted in the R environment (R Core Team, 2021).

3  |  RESULTS

3.1  |  Intraspecific variation in leaf [Si] and plasticity 
to N fertilisation

Without N fertilisation, genotype-mean leaf [Si] ranged from 1.0% 
to 2.9%, but did not significantly differ among genotypes (p = 0.09, 
Figure 1a). N fertilisation resulted in an overall decrease in leaf [Si] 
of 42%, with genotype-mean ranging from 0.7% to 1.9% and that 
differed significantly among genotypes (Figure 1a). The response of 
leaf [Si] to N fertilisation (logRR) varied significantly among geno-
types, and N fertilisation significantly decreased leaf [Si] for 12 out 
of the 19 genotypes (logRR < 0) (Figure 2a).

3.2  |  Plasticity to plant–plant interactions

We found no overall effect of growth modality (single, intra- or in-
tergenotypic culture) on leaf [Si], whether plants were N-fertilised or 
not (Figure 1b). However, plasticity in leaf [Si] in response to plant–
plant interactions (logRR) varied significantly among genotypes for 
both N treatments (Figure  2b). The presence of a neighbour sig-
nificantly decreased leaf [Si] for seven genotypes in the N− and for 
five genotypes in the N+ treatments (logRR < 0), and significantly 
increased leaf [Si] for three genotypes in the N− and for seven geno-
types in the N+ treatments (logRR > 0) (Figure 2b).

Genotypes varied significantly in their responses to plant–
plant interactions also within the intra- and intergenotypic culture 
treatments and for both N treatments (see Figure S1). Genotype-
mean responses were not consistent between N treatments 
(Spearman's coefficient ρ  =  −0.06 and p  =  0.80 for intrageno-
typic culture; ρ = −0.12 and p = 0.64 for intergenotypic culture) 
but were consistent between the inter- and intragenotypic culture 
treatments (ρ = 0.75 and p < 0.001 for N−; ρ = 0.73 and p < 0.001 
for N+). Despite this, in the intergenotype culture treatment, the 
responses of leaf [Si] to plant–plant interactions significantly var-
ied with neighbour identity in N− (Figure 3). In particular, leaf [Si] 
responses were significantly below 0 for three neighbours and 
above 0 for one neighbour. Interestingly, this latter neighbour 
(GQ4X76) had the highest positive effect of leaf [Si] also in N+ 
(Figure 3).

3.3  |  Plant height, above-ground 
biomass and responses to N fertilisation and plant–
plant interactions

Overall, N fertilisation increased plant biomass and height, while the 
presence of a neighbour decreased biomass for both N treatments 
but had no significant effect on plant height (Figure 1c,d).

We found a strong significant negative relationship between leaf 
[Si] and above-ground biomass, but not plant height, for single plants 
(model including both N treatments) (Table  1). We found a strong 
negative relationship between the plasticity (logRR) in leaf [Si] and 
that of biomass in response to N fertilisation (Figure 4a), suggesting 
that larger increase in plant biomass following N fertilisation implied a 
stronger decrease in leaf [Si], and confirming the strong dependency 
between these two traits when N was manipulated. In contrast, plas-
ticity of plant height to N fertilisation was not related to that of leaf 
[Si] (Figure 4a).

In the models considering plants with a neighbour, we also ob-
served a slight negative relationship between leaf [Si] and above-
ground biomass, but only in the N− treatment (Table  1). When 
intra- and intergenotypic culture were considered separately, none 
of the biomass-Si relationships were significant (Table S1). However, 
significant positive relationships between plant height and leaf [Si] 
were identified for both N treatments (Table 1), and within the intra- 
and intergenotypic culture (Table S1).
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    |  2837Functional EcologyDE TOMBEUR et al.

Plasticity in plant biomass and plasticity in height to the pres-
ence of a neighbour were significantly related to genotype-mean 
leaf [Si] in the N− treatment but only very slightly (Figure  S2), 
suggesting a limited control of genotype leaf [Si] on competition 
outcomes. However, plasticity in plant height and plasticity in leaf 
[Si] to the presence of a neighbour were positively related for 

both N treatments (Figure 4b) and within intra- and intergenotypic 
culture (Figure S3), suggesting that increased leaf [Si] for plants in 
interaction implied an increase in plant height. In contrast, plas-
ticity of above-ground biomass to plant–plant interactions was 
not related to that of leaf [Si], except slightly in N− (Figure  4b; 
Figure S3).

F I G U R E  1  Leaf silicon concentrations ([Si]) of 19 durum wheat genotypes grown alone (single) and for two levels of N availability 
(means ± SE; n = 3) in (a). Boxplots showing the effects of plant growth modalities (single, intra- and intergenotypic culture) on leaf [Si] in (b), 
plant above-ground biomass in (c) and plant height in (d), for each N treatment. In (a), data are ranked by increasing genotype-mean leaf 
[Si] in the N− treatment for both plots, and results of ANOVA (F-values) conducted between the genotypes are given. In (b)–(d), the central 
horizontal bar in each box shows the median, the box represents the interquartile range (IQR) and the whiskers show the location of the 
most extreme data points that are still within a factor of 1.5 of the upper or lower quartiles. Each point indicates one individual, and the 
y-axis for leaf [Si] in (b) is on a logarithmic scale to improve visualisation. Different letters indicate significant differences (p < 0.05) between 
single, intra- and intergenotypic culture within an N treatment. ***p < 0.001; **p < 0.01; *p < 0.05; ns, not significant.

(a)

(b)
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2838  |   Functional Ecology DE TOMBEUR et al.

F I G U R E  2  Variation in log response ratios (logRR) of leaf silicon (Si) concentrations to nitrogen (N) fertilisation for the single plants in 
(a) and to plant–plant interactions for both N treatments in (b) among 19 wheat genotypes. Both intra- and intergenotypic culture were 
considered together in the analysis in (b) (see Figure S1 for separate analyses). Data are ranked by increasing genotype-mean logRR. The 
central horizontal bar in each box shows the median, the box represents the interquartile range (IQR), the whiskers show the location of 
the most extreme data points that are still within a factor of 1.5 of the upper or lower quartiles, and black points are values that fall outside 
the whiskers. Results of ANOVA (F-values) conducted between the genotypes are given. LogRR significantly different from zero following 
student t-tests are indicated with stars. ***p < 0.001; **p < 0.01; *p < 0.05; ns, not significant.
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4  |  DISCUSSION

We demonstrate that durum wheat genotypes markedly differ in 
both their Si concentrations and response to N fertilisation and 
plant–plant interactions. Despite contrasting responses among 
genotypes, N fertilisation predominantly decreased leaf Si con-
centrations. The responses to plant–plant interactions were less 
clear, with both increases and decreases in leaf [Si] in the presence 
of a neighbour among the studied wheat genotypes. The geno-
typic responses to plant–plant interactions were rather consistent 
between intra- and intergenotypic cultures, even though neigh-
bour identity seemed to play a slight role in Si concentrations, at 
least in N−. We also show that the leaf [Si] of a given genotype 
has a limited influence on its biomass gain/loss when mixed with a 
neighbour. However, we show that increased leaf [Si] in response 
to competition was associated with increased plant height, which 
could have a role in light capture.

The strong decrease in Si concentrations following N fertilisa-
tion confirms our hypothesis and previous studies using natural 

grassland/pasture species (Johnson et al., 2021; Massey et al., 2007; 
Minden et al., 2021; Quigley et al., 2020). The results are also in line 
with the resource availability hypothesis, which proposes higher lev-
els of defence in resource-limited environments (Coley et al., 1985; 
Endara & Coley,  2011). Since Si is thought to incur lower C costs 
than C-based structural/defensive compounds (Raven,  1983), this 
might also reflect a selective advantage of plants reducing leaf 
construction/defence costs when resources are limiting (Minden 
et al., 2021), but the underlying mechanism remains unclear (Hodson 
& Guppy, 2022). Although N deficiency might directly increase the 
expression of Si transporters (Wu et al., 2017), our results suggest a 
N-driven ‘dilution effect’ on leaf [Si] (Hodson & Guppy, 2022; Jarrell 
& Beverly, 1981) since we found a strong negative relation between 
biomass and leaf [Si]. This likely explains the strong negative rela-
tionship between the plasticity of biomass and that of leaf [Si] to N 
fertilisation. The significant interactions between wheat Si concen-
trations, total above-ground biomass and responses to N fertilisa-
tion stress the need to combine data on total Si content and total dry 
matter content, wherever possible (Jarrell & Beverly, 1981).

F I G U R E  3  Variation in log response ratios (logRR) of leaf silicon (Si) concentrations to intergenotypic culture for both N treatments as 
a function of neighbour identity. Data are ranked by increasing neighbour identity-mean logRR for both plots. The central horizontal bar 
in each box shows the median, the box represents the interquartile range (IQR), the whiskers show the location of the most extreme data 
points that are still within a factor of 1.5 of the upper or lower quartiles, and black points are values that fall outside the whiskers. Results of 
ANOVA (F-values) conducted between the neighbour identity are given. LogRR significantly different from zero following student t-tests are 
indicated with stars for the N− treatment. ***p < 0.001; **p < 0.01; *p < 0.05; ns, not significant.
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TA B L E  1  Results of the mixed-effect models (genotype as random factor) testing the effects of leaf silicon (Si) concentrations on above-
ground plant biomass and height for single plants (both nitrogen (N) levels in the analyses), and for plants in interactions for both N levels 
separately (intra- and intergenotypic treatments combined; see Table S1 for separated analyses)

Single Inter- and intragenotypic culture

N− and N+ combined N− N+

Slope F-value p-value Slope F-value p-value Slope F-value p-value

Biomass ~ Leaf Si −8.4 74.6 <0.001 −0.6 4.8 <0.05 −0.5 0.6 0.43

Height ~ Leaf Si −1.6 4.2 <0.05 1.8 11.1 <0.001 5.6 31.7 <0.001
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Despite the significantly lower biomass of plants in mixtures 
compared with that of plants grown alone in pots, growth modal-
ity did not significantly influence leaf [Si] overall. However, the re-
sponse of leaf [Si] to a neighbour presence strongly varied among 
the 19 wheat genotypes, and neighbour identity influenced the 
responses of leaf [Si] to plant–plant interactions in N−, in the in-
tergenotypic culture treatment. So far, facilitation for Si uptake in 
the rhizosphere has been demonstrated at the interspecific level 
with functionally contrasting species (e.g. contrast in Si demand 
and/or nutrient-acquisition strategies; Ning et al.,  2021). Our re-
sults suggest that both competition and facilitation for Si uptake 
might exist at the intraspecific level with durum wheat genotypes. 
Our comprehension of root-related processes influencing Si mobil-
isation in the rhizosphere is still limited, despite some progress in 
recent years (de Tombeur, Cornelis, et al., 2021; Frew et al., 2017; 
Gattullo et al.,  2016). Grasses release siderophores (i.e. low-
molecular weight chelators) in the soil solution to acquire limited 
nutrients (Ma, 2005; Oburger et al., 2014; Römheld, 1991), which 
also increase Si availability (Gattullo et al., 2016). This mechanism 

could possibly explain the increases of leaf [Si] of some mixtures 
(either intra- and intergenotypic mixtures), and why some genotypes 
(especially GQ4X76) consistently induced an increase of leaf [Si] of 
their neighbours.

A potential impact of genotype leaf [Si] on competition out-
comes might be expected, since Si is involved in traits linked 
with plant architecture and light capture (Ando et al.,  2002; de 
Tombeur, Cooke, et al., 2021; Yamamoto et al., 2012; Zanão Júnior 
et al., 2010). However, despite a slightly positive relationship be-
tween genotype-mean leaf [Si] in single and the response of above-
ground biomass to competition in the N− treatment, genotype leaf 
[Si] did not appear to play a major role in intra- or intergenotypic 
competition outcomes. Nevertheless, increased leaf [Si] in re-
sponse to competition was associated with increased plant height, 
and this was the case for both N and mixture treatments. Si might 
play an indirect role in intraspecific competition through its influ-
ence on plant height, given that this trait is often associated with 
a strong competitive ability in wheat (Thomas et al., 1993; Yenish 
& Young,  2004) and more generally with light capture (Falster & 

F I G U R E  4  Relationships between the log response ratio (logRR) of leaf silicon (Si) concentrations and those of biomass and height to 
nitrogen (N) fertilisation for the single in (a) and to plant–plant interactions for both N treatments in (b). Both intra- and intergenotypic culture 
were considered together as ‘plant–plant interactions’ in the analyses (see Figure S3 for separate analyses). Red lines indicate regression lines 
between variables, and multiple R-squared are given. ***p < 0.001; **p < 0.01; *p < 0.05; ns, not significant.
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Westoby,  2003; Violle et al.,  2009). Height gain following Si fer-
tilisation is, however, also associated with straighter leaves with 
lower leaf insertion angle (Zanão Júnior et al., 2010), which might 
in turn reduce the light extinction coefficient inside the canopy 
(Ando et al., 2002). In any case, this finding opens up new research 
directions on Si and plant–plant interactions in both natural and 
agroecosystems which remain strikingly scarce to date (but see 
Garbuzov et al., 2011; Ning et al., 2017, 2021).

Several perspectives arise from the results discussed above. 
First, the observed intragenotypic variation in leaf [Si] might be 
linked to the expression of Si transporters (Ma et al., 2007), which 
should be tested among the 180 EPO durum wheat genotypes. 
Finding a consistent pattern among genotype leaf [Si] and the ex-
pression of Si transporters at the intraspecific level would improve 
our understanding of the evolutionary path of Si uptake by vascu-
lar plants (Deshmukh et al.,  2020; Deshmukh & Bélanger,  2016). 
Second, since genotype leaf [Si] directly influences levels of silica-
based defences (Hartley et al.,  2015; McLarnon et al.,  2017) and 
their responses to abiotic stresses (Thorne et al.,  2022), breeding 
for Si-rich crop genotypes may have benefits for reducing pesti-
cide inputs, especially in low-nutrient and/or herbivore susceptible 
areas (Christian et al., 2022). Regarding N fertilisation, genotypes for 
which leaf [Si] did not decrease might be retained by plant breeders 
to limit the N-driven decrease in silica-based defences. Regarding 
plant–plant interactions, genotypes for which leaf [Si] increased 
when mixed with a neighbour might be preferred for their poten-
tially greater ability to accumulate Si and cope with environmental 
stresses, either in intra- or intergenotypic cultures. Third, the strong 
N-driven decrease in plant Si concentrations—and most likely result-
ing silica-based defences—may have detrimental effects on herbi-
vore attacks (Johnson et al., 2021) and resulting crop sustainability 
and food security (Sundström et al., 2014). Such negative feedback 
could be mitigated through the use of Si fertilisers, even though it 
comes with potential drawbacks and significant C footprints (Thorne 
et al., 2020). Implementing agricultural practices that have positive 
impacts on soil–plant Si mobility (e.g. cereal-legume intercrop-
ping, cover crops; no-till farming; de Tombeur, Roux, et al.,  2021; 
Li et al.,  2020) might mitigate this negative feedback. Finally, our 
results suggest the existence of ‘good neighbours’ that facilitate Si 
uptake. Future research should identify which root chemical and 
physical traits characterise these facilitators, for the future devel-
opment of productive and stress-resistant genotypes mixtures, that 
is, ideomixes (Litrico & Violle, 2015). Furthermore, facilitation/com-
petition for plant Si uptake should be tested for different soil types 
with contrasting Si availability because the effect of plant–plant in-
teractions on plant Si uptake is influenced by soil Si availability (Ning 
et al., 2021).
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